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Preface

La recherche du temps perdu passait par le Web. [...]

La mémoire était devenue inépuisable, mais la profondeur du temps [...] avait disparu.

On était dans un présent infini.

In Les années (2008), Annie Ernaux (1940)

Sed nos immensum spatiis confecimus aequor,

Et iam tempus equum fumentia solvere colla.1

In Georgica, Liber II, 541-542, Publius Virgilius (70 BC–19 BC)

Je suis arrivé au jour où je ne me souviens plus quand j’ai cessé d’être immortel.

In Livro de Crónicas, António Lobo Antunes (1942)

C’est une chose étrange à la fin que le monde

Un jour je m’en irai sans en avoir tout dit.

In Les yeux et la mémoire (1954), chant II, Louis Aragon (1897–1982)

Tout garder, c’est tout détruire.

Jacques Derrida (1930–2004)

1French: Mais j’ai déjà fourni une vaste carrière, il est temps de dételer les chevaux tout fumants.

English: But now I have traveled a very long way, and the time has come to unyoke my steaming horses.
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What is distributed computing? Distributed computing was born in the late 1970s when researchers

and practitioners started taking into account the intrinsic characteristic of physically distributed sys-

tems. The field then emerged as a specialized research area distinct from networking, operating sys-

tems, and parallel computing.

Distributed computing arises when one has to solve a problem in terms of distributed entities

(usually called processors, nodes, processes, actors, agents, sensors, peers, etc.) such that each entity

has only a partial knowledge of the many parameters involved in the problem that has to be solved.

While parallel computing and real-time computing can be characterized, respectively, by the terms

efficiency and on-time computing, distributed computing can be characterized by the term uncertainty.

This uncertainty is created by asynchrony, multiplicity of control flows, absence of shared memory

and global time, failure, dynamicity, mobility, etc. Mastering one form or another of uncertainty is

pervasive in all distributed computing problems. A main difficulty in designing distributed algorithms

comes from the fact that no entity cooperating in the achievement of a common goal can have an

instantaneous knowledge of the current state of the other entities, it can only know their past local

states.

Although distributed algorithms are often made up of a few lines, their behavior can be difficult

to understand and their properties hard to state and prove. Hence, distributed computing is not only

a fundamental topic but also a challenging topic where simplicity, elegance, and beauty are first-class

citizens.

Why this book? In the book “Distributed algorithms for message-passing systems” (Springer, 2013),

I addressed distributed computing in failure-free message-passing systems, where the computing enti-

ties (processes) have to cooperate in the presence of asynchrony. Differently, in my book “Concurrent

programming: algorithms, principles and foundations” (Springer, 2013), I addressed distributed com-

puting where the computing entities (processes) communicate through a read/write shared memory

(e.g., multicore), and the main adversary lies in the net effect of asynchrony and process crashes

(unexpected definitive stops).

The present book considers synchronous and asynchronous message-passing systems, where pro-

cesses can commit crash failures, or Byzantine failures (arbitrary behavior). Its aim is to present in a

comprehensive way basic notions, concepts and algorithms in the context of these systems. The main

difficulty comes from the uncertainty created by the adversaries managing the environment (mainly

asynchrony and failures), which, by its very nature, is not under the control of the system.

A quick look at the content of the book The book is composed of four parts, the first two are on

communication abstractions, the other two on agreement abstractions. Those are the most important

abstractions distributed applications rely on in asynchronous and synchronous message-passing sys-

tems where processes may crash, or commit Byzantine failures. The book addresses what can be done

and what cannot be done in the presence of such adversaries. It consequently presents both impossi-

bility results and distributed algorithms. All impossibility results are proved, and all algorithms are

described in a simple algorithmic notation and proved correct.

• Parts on communication abstractions.

– Part I is on the reliable broadcast abstraction.
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– Part II is on the construction of read/write registers.

• Parts on agreement.

– Part III is on agreement in synchronous systems.

– Part IV is on agreement in asynchronous systems.

On the presentation style When known, the names of the authors of a theorem, or of an algorithm,

are indicated together with the date of the associated publication. Moreover, each chapter has a bib-

liographical section, where a short historical perspective and references related to that chapter are

given.

Each chapter terminates with a few exercises and problems, whose solutions can be found in the

article cited at the end of the corresponding exercise/problem.

From a vocabulary point of view, the following terms are used: an object implements an abstrac-

tion, defined by a set of properties, which allows a problem to be solved. Moreover, each algorithm

is first presented intuitively with words, and then proved correct. Understanding an algorithm is a

two-step process:

• First have a good intuition of its underlying principles, and its possible behaviors. This is nec-

essary, but remains informal.

• Then prove the algorithm is correct in the model it was designed for. The proof consists in a

logical reasoning, based on the properties provided by (i) the underlying model, and (ii) the

statements (code) of the algorithm. More precisely, each property defining the abstraction the

algorithm is assumed to implement must be satisfied in all its executions.

Only when these two steps have been done, can we say that we understand the algorithm.

Audience This book has been written primarily for people who are not familiar with the topic and

the concepts that are presented. These include mainly:

• Senior-level undergraduate students and graduate students in informatics or computing engineer-

ing, who are interested in the principles and algorithmic foundations of fault-tolerant distributed

computing.

• Practitioners and engineers who want to be aware of the state-of-the-art concepts, basic princi-

ples, mechanisms, and techniques encountered in fault-tolerant distributed computing.

Prerequisites for this book include undergraduate courses on algorithms, basic knowledge on operat-

ing systems, and notions on concurrency in failure-free distributed computing. One-semester courses,

based on this book, are suggested in the section titled “How to Use This Book” in the Afterword.

Origin of the book and acknowledgments This book has two complementary origins:

• The first is a set of lectures for undergraduate and graduate courses on distributed computing I

gave at the University of Rennes (France), the Hong Kong Polytechnic University, and, as an

invited professor, at several universities all over the world.

Hence, I want to thank the numerous students for their questions that, in one way or another,

contributed to this book.

• The second is the two monographs I wrote in 2010, on fault-tolerant distributed computing,

titled “Communication and agreement abstractions for fault-tolerant asynchronous distributed
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systems”, and “Fault-tolerant agreement in synchronous distributed systems”. Parts of them

appear in this book, after having been revised, corrected, and improved.

Hence, I want to thank Morgan & Claypool, and more particularly Diane Cerra, for their per-

mission to reuse parts of this work.

I also want to thank my colleagues (in no particular order) A. Mostéfaoui, D. Imbs, S. Rajsbaum,

V. Gramoli, C. Delporte, H. Fauconnier, F. Taı̈ani, M. Perrin, A. Castañeda, M. Larrea, and Z. Bouzid,

with whom I collaborated in the recent past years. I also thank the Polytechnic University of Hong

Kong (PolyU), and more particularly Professor Jiannong Cao, for hosting me while I was writing parts

of this book. My thanks also to Ronan Nugent (Springer) for his support and his help in putting it all

together.

Last but not least (and maybe most importantly), I thank all the researchers whose results are pre-

sented in this book. Without their work, this book would not exist. (Finally, since I typeset the entire

text myself – LATEX2ε for the text and xfig for figures – any typesetting or technical errors that remain

are my responsibility.)

Professor Michel Raynal

Academia Europaea

Institut Universitaire de France

Professor IRISA-ISTIC, Université de Rennes 1, France

Chair Professor, Hong Kong Polytechnic University

June–December 2017

Rennes, Saint-Grégoire, Douelle, Saint-Philibert, Hong Kong,

Vienna (DISC’17), Washington D.C. (PODC’17), Mexico City (UNAM)
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Notation

Symbols

skip, no-op empty statement

process program in action

n number of processes

correct (or non-faulty) process process that does not fail during an execution

faulty process process that fails during an execution

t upper bound on the number of faulty of processes

f actual number of faulty of processes

pi process whose index (or identity) is i
idi identity of process pi (very often idi = i)
τ time instant (from an external observer point of view)

[1..m] set {1, ...,m}
AA[1..m] array with m entries (vector)

equal(a, I) occurrence number of a in the vector (or multiset) I
〈a, b〉 pair with elements a and b
〈a, b, c〉 triple with elements a, b, and c

XX small capital letters: message type (message tag)

xxi italics lower-case letters: local variable of process pi
xxi ← v assignment of value v to xxi

XX abstract variable known only by an external observer

xxr
i , XXr values of xxi, XX at the end of round r

〈m1; ...;mq〉 sequence of messages

ai[1..s] array of size s (local to process pi)
for each i ∈ {1, ...,m} do statements end for order irrelevant

for each i from 1 to m do statements end for order relevant

wait (P ) while ¬P do no-op end while

return (v) returns v and terminates the operation invocation

% blablabla % comments

; sequentiality operator between two statements

⊕ concatenation

ε empty sequence (list)

|σ| size of the sequence σ

The notation broadcast TYPE(m), where TYPE is a message type and m a message content, is used

as a shortcut for “for each j ∈ {1, · · · , n} do send TYPE(m) to pj end for”. Hence, if it is not faulty

during its execution, pi sends the message TYPE(m) to each process, including itself. Otherwise there

is no guarantee on the reception of TYPE(m).
(In Chap. 1 only, j ∈ {1, · · · , n} is replaced by j ∈ neighborsi .)

xxi



Acronyms (1)

SWMR single-writer/multi-reader register

MWSR multi-writer/single-reader register

SWMR single-writer/multi-reader register

CAMP Crash asynchronous message-passing

CSMP Crash synchronous message-passing

BAMP Byzantine asynchronous message-passing

BSMP Byzantine synchronous message-passing

EIG Exponential information gathering

RB Reliable broadcast

URB Uniform reliable broadcast

ND No-duplicity broadcast

BRB Byzantine reliable broadcast

BV Byzantine binary value broadcast

VBB Validated Byzantine broadcast

CC Consensus in the process crash model

BC Consensus in the Byzantine process model

SA Set-agreement

BBC Byzantine binary consensus

ICC Interactive consistency (vector consensus), crash model

SC Simultaneous (synchronous) consensus

CORE CORE-broadcast

CC-property Crash consensus property

BC-property Byzantine consensus property

xxii Notation



Acronyms (2)

CO Causal order

FIFO First in first out

TO Total order

SCD Set-constrained delivery

FC Fair channel

CRDT Conflict-free replicated data type

MS PAT Message pattern

ADV Adversary

FD Failure detector

HB Heartbeat

MS PAT Message pattern

SO Send omission

GO General omission

MS Message scheduling assumption

LC Local coin

CC Common coin

BCCB Binary common coin with bias

GST Global stabilization time

xxiiiNotation
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Chapter 1

A Few Definitions

and Two Introductory Examples

This chapter introduces basic definitions and basic computing models associated with fault-tolerant

message-passing distributed systems. It also presents two simple distributed computing problems,

whose aim is to give a first intuition of what can be done and what cannot be done in message-passing

systems prone to failures. Consequently, this chapter must be considered as an introductory warm-up

chapter.

Keywords Algorithm, Automaton, Asynchronous system, Byzantine process, Communication graph,

Distributed algorithm, Distributed computing model, Distributed computing problem, Fair communi-

cation channel, Liveness property, Message adversary, Message loss, Non-determinism, Process crash

failure, Process mobility, Safety property, Spanning tree, Synchronous system.

1.1 A Few Definitions Related to Distributed Computing

Distributed computing “Distributed computing was born in the late 1970s when researchers and

practitioners started taking into account the intrinsic characteristic of physically distributed systems.

The field then emerged as a specialized research area distinct from networking, operating systems, and

parallel computing.

Distributed computing arises when one has to solve a problem in terms of distributed entities

(usually called processors, nodes, processes, actors, agents, sensors, peers, etc.) such that each entity

has only a partial knowledge of the many parameters involved in the problem that has to be solved.”

The fact the computing entities and their individual inputs are distributed is not under the control

of the programmers but is imposed on them. From an architectural point of view, this is expressed

in Fig. 1.1, where a pair 〈pi, ini〉 denotes a computing entity pi and its associated input ini (this is

formalized with the notion of a distributed task introduced in Section 1.3, page 12).

The concept of a sequential process A sequential algorithm is a formal description of the behavior

of a sequential state machine: the text of the algorithm states the transitions that have to be sequentially

executed. When written in a specific programming language, an algorithm is called a program.

The concept of a process was introduced to highlight the difference between an algorithm as a text

and its execution on a processor. While an algorithm is a text that describes statements that have to

be executed (such a text can also be analyzed, translated, etc.), a process is a “text in action”, namely

the dynamic entity generated by the execution of an algorithm (program) on a processor (computing

device). At any time, a process is characterized by its state (which comprises, among other things, the

current value of its program counter). A sequential process is a process defined by a single control

© Springer Nature Switzerland AG 2018
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inn

Communication medium

p1in1 piini

pnpjinj

Figure 1.1: Basic structure of distributed computing

flow: its behavior is managed by a single program counter, which means it executes a single step at a

time.

Distributed system As depicted in Fig. 1.1, a distributed system is made up of a collection of dis-

tributed computing units, each one abstracted through the notion of a process, interconnected by a

communication medium. As already said, the distribution of the processes (computing units) is not

under the control of the programmers, it is imposed on them.

In this book we assume that the set of processes is static. Composed of n processes, it is denoted

Π = {p1, ..., pn}, where each pi, 1 ≤ i ≤ n, represents a distinct process. The integer i denotes the

index of process pi, i.e., the way an external observer can distinguish processes. It is nearly always

assumed that each process pi has its own identity, which is denoted idi. In a lot of cases idi = i.

The processes are assumed to cooperate on a common goal, which means that they exchange

information in one way or another. This book considers that the processes communicate by exchanging

messages on top of a communication network (see for example Fig. 1.2). Hence, the automaton

associated with each process provides it with basic point-to-point send and receive operations.

Communication medium The processes communicate by sending and receiving messages through

channels. A channel can be reliable (neither message loss, creation, modification, nor duplication), or

unreliable. Moreover, a channel can be synchronous or asynchronous. Synchronous means that there

is an upper bound on message transfer delays, while asynchronous means there is no such bound.

In any case, an algorithm must specify the properties it assumes for channels. As an example, an

asynchronous reliable channel guarantees that each message takes a finite time to travel from its sender

to its receiver. Let us notice that this does not guarantee that messages are received in their sending

order. A channel satisfying this last property is called a first in first out (FIFO) channel.

Each channel is assumed (a) to be bidirectional (it can carry messages in both directions) and (b)

to have an infinite capacity (it can contain any number of messages, each of any size).

Each process pi has a set of neighbors, denoted neighborsi . According to the context, this set con-

tains either the local identities of the channels connecting pi to its neighbor processes or the identities

of these processes.

Structural view It follows from the previous definitions that, from a structural point of view, a

distributed system can be represented by a connected undirected graph G = (Π, C) (where C denotes

the set of channels). Three types of graphs are of particular interest (Fig. 1.2):

• A ring is a graph in which each process has exactly two neighbors with which it can communi-

cate directly, a left neighbor and a right neighbor.
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• A tree is a graph that has two noteworthy properties: it is acyclic and connected (which means

that adding a new channel would create a cycle, while suppressing a channel would disconnect

it).

• A fully connected graph is a graph in which each process is directly connected to every other

process. (In graph terminology, such a graph is called a clique.)

CliqueRing Tree

Figure 1.2: Three graph types of particular interest

Distributed algorithm A distributed algorithm is a collection of n automata, one per process. An

automaton describes the sequence of steps executed by the corresponding process.

In addition to the power of a Turing machine, an automaton is enriched with two communication

operations which allows it to send a message on a channel or receive a message on any channel. The

operations are denoted “send()” and “receive()”.

Synchronous algorithm A distributed synchronous algorithm is an algorithm designed to be exe-

cuted on a synchronous distributed system. The progress of such a system is governed by an external

global clock, denoted R, whose domain is the sequence of increasing integers. The processes collec-

tively execute a sequence of rounds, each round corresponding to a value of the global clock.

During a round, a process sends a message to a subset of its neighbors. The fundamental property

of a synchronous system is that a message sent by a process during a round r is received by its desti-

nation process during the very same round r. Hence, when a process proceeds to the round (r + 1),
it has received (and processed) all the messages that have been sent to it during round r, and it knows

the same holds for any process.

Space/time diagram A distributed execution can be graphically represented by a space/time di-

agram. Each sequential progress is represented by an arrow from left to right, and a message is

represented by an arrow from the sending process to the destination process.

The space/time diagram on the left of Fig. 1.3 represents a synchronous execution. The vertical

lines are used to separate the successive rounds. During the first round, p1 sends a message to p3, and

p2 sends a message to p1, etc.

p3

p1

p2

p3

r = 2 r = 3r = 1
p1

p2

Figure 1.3: Synchronous execution (left) vs. asynchronous execution (right)
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Asynchronous algorithm A distributed asynchronous algorithm is an algorithm designed to be ex-

ecuted on an asynchronous distributed system. In such a system, there is no notion of an external time,

which is why asynchronous systems are sometimes called time-free systems.

In an asynchronous algorithm, the progress of a process is ensured by its own computation and the

messages it receives. When a process receives a message, it processes the message and, according to

its local algorithm, possibly sends messages to its neighbors.

A process processes one message at a time. This means that the processing of a message cannot be

interrupted by the arrival of another message. When a message arrives, it is added to the input buffer

of the destination process pj , and remains in it until an invocation of receive() by pj returns it.

The space/time diagram of a simple asynchronous execution is depicted on the right of Fig. 1.3.

One can see that, in this example, the messages from p1 to p2 are not received in their sending order.

Hence, the channel from p1 to p2 is not a FIFO (first in first out) channel. It is easy to see from

the figure that a synchronous execution is more structured (i.e., synchronized) than an asynchronous

execution.

Synchronous round vs asynchronous round In the synchronous model, the rounds, and their

progress, belong to the model. In the asynchronous model, rounds are not given for free, but can

be built by the processes. Nevertheless, when a process terminates a round r, it cannot conclude

that the other processes are simultaneously doing the same. When there are failures, it cannot even

conclude that all other processes will attain the round r it is executing.

Event and execution An event models the execution of a step issued by a process, where a step

is either a local step (communication-free local computation), or a communication step (the sending

of a message, or the reception of a message). An execution E is a partial order on the set of events

produced by the processes.

• In the context of a synchronous system, E is the partial order on the set of events produced by

the processes, such that all the events occurring in a round r precede all the events of the round

(r + 1), and, inside every round, all sending events, precede all reception events, which in turn

precede all local events executed in this round.

• In the context of an asynchronous system, E is the partial order on the events produced by

the processes such that, for each process, E respects the total order on its events, and, for

any message m sent by a process pi to a process pj , the sending of m event occurs before its

reception event by pj .

Process failure models Two main process failures models are considered in this book:

• Crash failures. A process commits a crash failure when it prematurely stops its execution. Until

it crashes (if it ever crashes), a process correctly executes its local algorithm.

• Byzantine failures. A process commits a Byzantine failure when it does not follow the behav-

ior assigned to it by its local algorithm. This kind of failure is also called arbitrary failure

(sometimes known as malicious when the failure is intentional). Let us notice that crash failures

(which are an unexpected definitive halt) are a proper subset of Byzantine failures.

A simple example of a Byzantine failure is the the following: while it is assumed to send the

same value to all processes, a process sends different values to different subsets of processes,

and no value at all to other processes. This is a typical Byzantine behavior. Moreover, Byzantine

processes can collude to foil the processes that are not Byzantine.

From a terminology point of view, let us consider an execution E (an execution is also called a

run). The processes that commit failures are said to be faulty in E. The other processes are said to
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be correct or non-faulty in E. It is not known in advance if a given process is correct or faulty, this is

specific to each execution.

Given a process failure model, the model parameter t is used to denote the maximal number of

processes that can be faulty in an execution.

Channel failure model Thanks to error-detecting/correcting codes, corrupted messages can be cor-

rected, and received correctly. If a corrupted message cannot be corrected, it can be discarded, and

then appears as a lost message. This means that, in practice, the important channel failure is the pos-

sibility to lose messages. These notions will be investigated in depth in Chapter 3, under the name

fair channel assumption. Intuitively, fair channels experiences uncontrolled transient periods during

which messages are lost.

Solving a problem A problem is defined by a set of properties (see examples in the two next sec-

tions). One of these properties (usually called liveness or termination) states that “something happens”,

i.e., a result is computed. The other properties are safety properties (according to what they state, they

are called validity, agreement, integrity, etc.). The safety properties state that “nothing bad happens”,

consequently they describe properties that must never be violated (invariants). The decomposition of

the definition of a problem into several properties facilitates both its understanding (as a problem) and

the correctness proof of the algorithms that claim to solve it.

An algorithm solves a problem in a given computing model M if, assuming the inputs are correct,

there is a proof showing that any run of the algorithm in M satisfies all the properties defining the

problem. (Observe that an algorithm designed for a model M is not required to work when executed

in a model M ′ which does not satisfy the requirements of M .)

1.2 Example 1: Common Decision Despite Message Losses

This section and the next one present two simple distributed computing problems in systems where no

process is faulty, but messages can be lost. Their aim is to make the readers familiar with basic issues

of fault-tolerant distributed computing, and, given a distributed computing model, help them to have

a first intuition of what can be done in this model, and what cannot be done. Let us remember that a

model defines an abstraction level. It has to be accurate enough to capture the important phenomena

that do really occur, and abstract enough to allow reasoning on the runs of the algorithms executed on

top of it.

1.2.1 The Problem

This problem concerns an irrevocable decision-making by two processes. It seems to have its origin

in the design of communication protocols, as presented by E.A. Akkoyunlu, E. Ekanadham, and R.V.

Huber (1975). It then appeared in databases, where it was formalized by J. Gray (1978) under the

name The two generals problem (there are variants of this problem, e.g., in synchronous systems).

A metaphor The name of the problem comes from the following analogy. Let us consider two

hilltops T1 and T2 separated by a valley V . There are two armies A and B. The army A is composed

of two divisions A1 and A2, each with a general, the general-in-chief being located in division A1.

Moreover, A1 is camping on T1, while A2 is camping on T2. Army B is in between, camping in the

valley V . The only way A1 and A2 can communicate is by sending messengers who need to traverse

the valley V . But messengers can be captured by army B, and never arrive. It is nevertheless assumed

that not all messengers sent by A1 and A2 can be captured.
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The generals of army A previously agreed on two possible battle plans bp1 and bp2, but, according

to his analysis of the situation, it is up to the general-in-chief to decide which plan must be adopted.

To this end, the general-in-chief must communicate his decision to the general of A2 so that they both

adopt the same battle plan (and win).

The problem consists in designing a distributed algorithm (a sequence of message exchanges ini-

tiated by the general-in-chief in A1), at the end of which (a) A2 knows the battle plan selected by A1,

and (b) both A1 and A2 know they no longer have to send or receive messages.

System model Let p1 and p2 be two processes representing A1 and A2, respectively, connected by

a bi-directional asynchronous channel controlled by the army B. The processes are assumed to never

fail. While no message can be modified (corrupted), the channel is asynchronous and unreliable in the

sense that messages can be lost (a message loss represents a messenger captured by army B). It is

nevertheless assumed that not all messages sent by p1 to p2 (and by p2 to p1) can be lost (otherwise,

there is a possible run in which the processes could not communicate, making the problem impossible

to solve). As mentioned previously, a channel can experience unexpected transient periods during

which messages are lost.

Formalizing the problem As the general-in-chief of army A is in A1, process p1 activates the

sequence of message exchanges by sending the message DECIDE(bp) to p2, where bp is the number of

the chosen battle plan.

For i ∈ {1, 2}, let donei be a local variable of pi initialized to no (for the corresponding process,

no decision has been made). Hence, representing a global state by the pair 〈done1, done2〉, the initial

global state is the pair 〈no, no〉. At the end of its execution, the distributed algorithm must stop in

the global state 〈yes, yes〉. When donei = yes, process pi knows (a) that each process knows the

selected battle plan, and (b) there is no need for messages to be exchanged, namely each process

terminates its local algorithm (see Fig. 1.4). This is captured by the following properties:

• Validity. A final global state cannot contain both yes and no.

• Liveness. If p1 activates the algorithm, it eventually and permanently enters the local state

done1 = yes.

The validity property states which are the correct outputs of the algorithm: in no case p1 and p2 are

allowed to disagree. The liveness property states that, if p1 starts the algorithm, it must eventually

progress. (Let us notice that, it then follows from the validity property that both processes must

progress.)

First message sent

done1 = no

done2 = no

Initially:

done1← yes

has terminated

the algorithm

p1

p2

messages exchange between p1 and p2

done2← yes

Figure 1.4: Algorithm structure of a common decision-making process
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A practical instance of the problem Let us consider two processes p1 and p2 communicating

through an unreliable fair channel. Let us assume that, after some time, they want to close their

working session; this disconnection being initiated by p1. Hence, in the previous parlance, they are

both in the local state donei = no, and they have to progress to the global state 〈yes, yes〉.
As the reader can see, the closing session problem is nothing other than an instance of the previous

“common decision-making in the presence of message losses” problem.

1.2.2 Trying to Solve the Problem: Attempt 1

Starting with p1 Let us try to design an algorithm for p1. As messages (but not all) sent by p1 to p2
can be lost, a simple idea is to require p1 to repeatedly send a message denoted DECIDE(bp) to p2 until

it has received an acknowledgment (bp is the – dynamically defined by p1 – number of the selected

battle plan):

done1 ← no;

bp← selected battle plan ∈ {1, 2};
repeat send DECIDE(bp) to p2 until ACK(DECIDE) received from p2 end repeat;

done1 ← yes.

Continuing with p2 While in the state done2 = no, p2 receives the message DECIDE(bp), it sends

back to p1 the acknowledgment message ACK(DECIDE), but this acknowledgment message can be lost.

Hence p2 must resend ACK(DECIDE) until it knows a copy of it has been received by p1. Consequently,

the local algorithm of p1 must be enriched with a statement sending an acknowledgment message back

to p2 that we denote ACK
2(DECIDE). We then obtain the following local algorithms for p2:

done2 ← no;

wait(message DECIDE(bp) from p1);

repeat send ACK(DECIDE) to p1 until ACK2(DECIDE) received from p1 end repeat;

done2 ← yes.

Returning to p1 As p1 is required to send the message ACK
2(DECIDE) to p2, and this message must

be received by p2, p1 needs to resend it until it knows that a copy of it has been received by p2. As we

have seen, the only way for p1 to know if p2 received ACK
2(DECIDE) is to receive an acknowledgment

message ACK
3(DECIDE) from p2. We then have the following enriched algorithm for p1:

done1 ← no;

bp← selected battle plan number ∈ {1, 2};
repeat send DECIDE(bp) to p2 until ACK(DECIDE) received from p2 end repeat;

repeat send ACK
2(DECIDE) to p2 until ACK

3(DECIDE) received from p2 end repeat;

done1 ← yes.

And so on forever As the reader can see, this approach does not work. An infinity of distinct

acknowledgment messages is needed, each acknowledging the previous one.

1.2.3 Trying to Solve the Problem: Attempt 2

Trying to modify both local algorithms In order to prevent the sending of an infinite sequence of

different acknowledgment messages, let us consider the same algorithm as before for p1, namely, p1
sends DECIDE(bp) until it knows that p2 has received it. When this occurs, p1 knows that “p2 knows

the number of the decided battle plan”, and p1 terminates this local algorithm:
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done1 ← no;

bp← selected battle plan ∈ {1, 2};
repeat send DECIDE(bp) to p2 until ACK(DECIDE) received from p2 end repeat;

done1 ← yes.

Let us now modify the algorithm of p2 according to the previous modification of p1:

done2 ← no;

wait(message DECIDE(bp) from p1);

repeat send ACK(DECIDE) to p1 each time DECIDE(bp) received from p1 end repeat;

done2 ← yes.

When it receives a copy of the message DECIDE(bp), p2 knows that “both p1 and p2 know the number

of the battle plan”, but it cannot be allowed to proceed to the local state done2 = yes. This is because,

as p1 needs to know that “both p1 and p2 know the number of the battle plan”, p2 needs to send an

acknowledgment ACK(DECIDE) each time it receives a copy of the message DECIDE(bp). As not all

messages are lost, this ensures that p1 will know that “both p1 and p2 know the battle plan” despite

message losses. Even if p1 sends a finite number of copies of DECIDE(bp), and none of them are lost,

the “repeat” statement inside p2 cannot be bounded. This is because p2 can never know how many

copies of the message DECIDE(bp) it will receive. Due to the fact that not all messages are lost, it

knows only that this number is finite, but never knows its value. This depends on the channel, and the

behavior of the channel is not under the control of the processes. Hence, this tentative version does

not ensure that both processes terminate their algorithm.

Which raises the fundamental question: is there another approach that can successfully solve the

problem, or is the problem unsolvable?

A sequence of messages instead of a common decision Before answering the question, let us

consider a similar problem, in which p1 wants to send to p2 an infinite sequence of messages m1,

m2, ..., mx, ... (each message mx carrying its sequence number x). In this case, starting from x = 1,

process p1 repeatedly sends mx to p2, until it receives an acknowledgment message ACK(x) from p2.

When it receives such a message, p1 proceeds to the message mx+1.

This algorithm is well-known in communication protocols, where, in addition, the acknowledg-

ments from p2 to p1 are actually replaced by a sequence of messages m′
1, m′

2, ..., m′
x, ... that p2 wants

to send to p1. As we can see, in addition to carrying its own data value, the message m′
x acts as an

acknowledgment message ACK(x) (and mx+1 acts as an acknowledgment message for m′
x).

1.2.4 An Impossibility Result

While it is possible to design a simple algorithm transmitting an infinite sequence of messages on top

of a channel which can experience transient message losses (an unreliable fair channel), it appears that

it is impossible to design an algorithm ensuring common decision-making on top of such an unreliable

channel.

Theorem 1. There is no algorithm solving the common decision-making problem between two pro-

cesses, if the underlying communication channel is prone to arbitrary message losses.

Proof Let us first observe that any algorithm solving the problem is equivalent to an algorithm A in

which p1 and p2 execute successive phases of message exchanges, where, in each phase, a process

sends a message to the other process.

The proof is by contradiction. Let us assume that there are phase-based algorithms that solve the

problem, and, among them, let us consider the algorithm A that uses the fewest communication phases.

As A terminates, there is a last phase during which a message is sent. Without loss of generality, let

us assume this message m is sent by p1. Moreover, assume m is not lost.
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• The last statement executed by p1 cannot depend on whether or not m is received by p2. This is

because, as m is the last message sent, the fact that it has been lost or received by p2 cannot be

known by p1. Hence, the last statement executed by p1 cannot depend on m.

• Similarly, the last statement executed by p2 cannot depend on m. This is because, as m could

be lost and this is not known by p1, the last statement of p1 must be as if m was lost, and cannot

consequently depend on m.

As the last statements of both p1 and p2 cannot depend on m, this message is useless. Hence, we

obtain a terminating execution in which one less message is sent. This execution can be produced by

an algorithm A′ which is the same as A without the sending of the message m. Hence, A′ contradicts

the fact that A solves the problem with the fewest number of communication phases. �Theorem 1

The notion of indistinguishability Considering the tentative algorithm outlined in Section 1.2.2, let

us assume that no messages are lost (but remember that neither p1 nor p2 can know this). Even in such

a run, the tentative algorithm never terminates.

As the reader can check, the difficulty for a process is its inability to distinguish what actually

happened (in this case no message loss) from what could have happened (message losses). Designing

distributed algorithms able to cope with this type of uncertainty is one of the main difficulties of

distributed computing in the presence communication failures.

1.2.5 A Coordination Problem

Let us consider the following coordination problem. Two processes are connected by a bidirectional

communication channel. As previously, the processes are assumed not to fail, but the channel is prone

to transient failures during which messages are lost. Each process can execute two actions, AC1 and

AC2, which both processes know in advance.

The problem consists in designing a distributed algorithm satisfying the following properties:

• Integrity. Each process executes at most one action.

• Agreement. The processes do not execute different actions.

• Liveness. Each process executes at least one action.

Integrity prevents a process from executing both actions. Combined with liveness, it follows that each

process executes exactly one action.

Integrity and agreement are safety properties: they state what must never be violated by an al-

gorithm solving the problem. Let us observe that the safety properties are trivially satisfied by an

algorithm doing nothing. Hence, the necessity of the liveness property which states that the algorithm

must force the processes to progress.

Despite the fact that both processes never fail, this problem is impossible to solve. Its impossibility

proof is Exercise 2 (see Section 1.8).

1.3 Example 2:

Computing a Global Function Despite a Message Adversary

1.3.1 The Problem

Let us assume that each process pi has an input ini, initially known only by the process. Moreover, it

is assumed that each process knows n, the total number of processes. Each process pi must compute

its own output outi such that outi = fi(in1, . . . , inn). According to what must be computed, the
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pi

T ()

outiini

Output vectorInput vector

OUT = [out1, ..., outn]IN = [in1, ..., inn]

Figure 1.5: A simple distributed computing framework

functions fi() can be the same function or different functions. A structural view is illustrated in

Fig. 1.5.

The important point here is that we consider a distributed system context. The fact that there

are n processes is not a design choice but a fact imposed on the designer of the algorithm: there

are n computing entities, geographically distributed. (As a simple example, suppose that each pi
is a temperature sensor, and some sensors must compute the highest temperature, other sensors the

lowest temperature, and the rest of the sensors the average temperature.) The case n = 1 is a very

particular case for which the problem boils down to the writing of a sequential algorithm computing

out1 = f1(in1).

In the distributed parlance, such a problem is sometimes called a distributed task, defined by a

relation T () associating a set of possible output vectors T (IN ) with each possible input vector IN ,

namely, OUT ∈ T (IN ).

Defining the problem with properties Given a set of functions fi(), let ini be the input of pi. Any

algorithm solving the problem must satisfy the following properties:

• Validity. If process pi returns outi, then outi = fi(in1, . . . , inn).

• Liveness. Each process pi returns a result outi.

As previously explained, the validity property states that, if a process returns a result, this result is

correct, while the liveness property states that the computation terminates.

1.3.2 The Notion of a Message Adversary

Reliable synchronous model Let SMPn[∅] be the synchronous message-passing system model in

which no process is faulty, each process pi has a set of neighbors (neighbori), and the communication

graph is connected (there is a path from any process to any other process). In this model the processes

execute a sequence of rounds, and each round r comprises three phases that follow the pattern “send;

receive; compute”:

• First each process sends a message to its neighbors.

• Then, each process waits for the messages that have been sent to it during the current round.

• Finally, according to its current local state and the messages it received during the current round,

each process computes its new local state.
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As already indicated, the fundamental property of this model is its synchrony: each message is

received in the round in which it was sent. Moreover, the progress from a round r to the next round

r + 1 is automatic, i.e., it is not under the control of the processes, but provided to them for free by

the model. From an operational point of view, there is a global round variable R that any process can

read, and whose progress is managed by the system (see left part of Fig. 1.3).

The notion of a message adversary A message adversary is a daemon that, at every round, is

allowed to suppress a subset of channels (i.e., it withdraws and discards the messages sent on these

channels).

To put it differently, the message adversary defines the actual communication graph associated

with every round. Let G(r) be the undirected communication graph associated with round r by the

adversary. This means that, at any round r, the message adversary is allowed to drop the messages

sent on any channel that does not belong to G(r). Hence, from the point of view of the processes

these messages are lost. Given any pair of distinct rounds r and r′, G(r) and G(r′) are not necessarily

related one to the other. Moreover, the adversary is not prevented from being “omniscient”, namely

it can define dynamically the graphs G(1), ..., G(r), G(r + 1), etc. For example, nothing prevents it

from knowing the local states of the processes at the end of a round r, and using this information to

define G(r+1). Finally, ∀r, no process ever knows G(r). Given an unconstrained message adversary

AD, and a system involving four processes, an example of three possible consecutive communication

graphs is depicted in Fig. 1.6.

G(1) G(2) G(3)

Figure 1.6: Examples of graphs produced by a message adversary

If the message adversary can suppress all messages at every round, no non-trivial problem can

be solved, whatever the individual computational power of each process. At the other extreme if,

at any round, the message adversary cannot suppress messages, it has no power (we have then the

reliable synchronous model SMPn[∅]). Hence, the question: How can we restrict the power of a

message adversary, so that, while it can suppress plenty of messages, it cannot prevent each process

from learning the inputs of the other processes? As we are about to see, the answer to this question is

a matter of graph connectivity, every round being taken individually.

The reliable synchronous model SMPn[∅], weakened by an adversary AD, is denoted SMPn[AD].

1.3.3 The TREE-AD Message Adversary

The TREE-AD message adversary At every round, this message adversary can suppress the mes-

sages on all the channels, except on the channels defining a spanning tree involving all the processes.

As an example, when considering Fig. 1.6, which involves four processes, G(1) and G(3) define span-

ning trees including all the processes, while G(2) does not (it includes two disconnected spanning

trees, one involving three processes, the other one being a singleton tree).

A TREE-AD-tolerant algorithm Fig. 1.7 describes an algorithm that works in the weakened syn-

chronous model SMPn[TREE-AD]. Each process pi has an input ini known only by itself, and man-

ages an array knowni[1..n], initialized to [⊥, ...,⊥], such that knowni[j] will contain the input value

of pj .
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Let us assume that ⊥ < inj for any j ∈ {1, n} (this is only to simplify the writing of the algo-

rithm). The operation “broadcast MSG-TYPE(val)” issued by pi, where MSG-TYPE is a message type

and val the data carried by the message, is a simple macro-operation for “for each k ∈ neighborsi do

send MSG-TYPE(val) to pk end for”. Let us remember that R is the model-provided round generator,

which automatically ensures the progress of the computation.

(1) knowni ← [⊥, ...,⊥]; knowni[i] ← ini;

(2) when R = 1, 2, ..., (n− 1) do

(3) begin synchronous round

(4) broadcast KNOWN(knowni);
(5) for each j ∈ 1..n such that KNOWN(knownj) received from pj do

(6) for each k ∈ {1, ..., n} do knowni[k] ← max(knowni[k], knownj [k]) end for

(7) end for

(8) end synchronous round;

(9) outi ← fi(knowni); return(outi).

Figure 1.7: Distributed computation in SMPn[TREE-AD] (code for pi)

A process pi first initializes knowni[1..n] (line 1). Then, simultaneously with all processes, it

enters a sequence of synchronous rounds (lines 2-8), at the end of which it will know the input values

of all the processes, and consequently will be able to return its local result (line 9).

As already stated, the global variable R is provided by the synchronous model, and each message

is either suppressed by the message adversary or received in the round in which it was sent. During

a round, a process pi first sends its current knowledge on the process inputs to its neighbors, which is

currently saved in its local array knowni (line 4). Then it updates its local array knowni according

to what it learns from the messages it receives during the current round (lines 5-7). The sequence of

rounds is made up of (n− 1) rounds.

Theorem 2. Each process pi returns a result outi (liveness), and this result is equal to fi(in1, ..., inn)
(validity).

Proof Let us first prove the liveness property. This is a direct consequence of the synchrony as-

sumption. The fact that the current round number R progresses from 1 to n is ensured by the model

(together with the property that a message that is not suppressed by the message adversary is received

in the same round by its destination process).

As far as the validity property is concerned, let us consider the input value ini of a process pi.
At the beginning of any round r, let us partition the processes into two sets: the set they knowi

which contains all the processes that know ini, and the set they do not knowi which contains the

processes that do not know ini. Initially (beginning of round R = 1), we have they knowi = {i},
and they do not knowi = {1, ..., n} \ they knowi.

they do not knowithey knowi

Figure 1.8: The property limiting the power of a TREE-AD message adversary
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Due to the fact that, at every round r, there is a spanning tree on which the message adversary does

not suppress the messages, this tree includes a channel connecting a process belonging to they knowi

to a process belonging to they do not knowi (Fig. 1.8). It follows that, if |they knowi| < n, there

is at least one process pk that moves from the set they do not knowi to the set they knowi during

round r. (“px knows ini” means knownx[i] = ini.) As there are (n − 1) rounds, it follows that, by

the end of the last round, we have |they knowi| = n. As this is true for any process pi, it follows

that any process pj is such that inj is known by all processes by the end of the round (n − 1), which

concludes the proof of the theorem. �Theorem 2

Cost of the algorithm For the time complexity, assuming each round costs one time unit, the algo-

rithm requires (n− 1) time units.

Let d the number of bits needed to represent any process input or ⊥. (Note that d does not depend

on the algorithm, but on the application that uses it.) Each message requires nd bits. Moreover, as

there are (n − 1) rounds, and (assuming a process does not send a message to itself) the number

of messages per round is upper bounded by (n − 1)n, which means that the bit complexity of the

algorithm is upper bounded by n3d bits.

On the meaning of the TREE-AD message adversary It is easy to see that, if, at any round,

the adversary can partition the set of n processes into two sets that can never communicate, as outi
depends on all the inputs, no process pi can compute its output. In this sense, TREE-AD states that the

system is never partitioned by messages losses that would prevent a process from learning the inputs

of the other processes.

It is possible to define a “stronger” adversary than TREE-AD, denoted TREE-ADc, which allows

the problem to be solved. “Stronger” means a message adversary that, at some rounds, can disconnect

the processes, and hence discard more messages than TREE-AD. Let c ≥ n− 1 be a constant known

by each process, and let us modify line 2 of the algorithm in Fig. 1.7 so that now each process executes

c rounds. TREE-ADc is defined by the following constraint:

|{r : 1 ≤ r ≤ c : G(r) contains a spanning tree }| ≥ n− 1.

TREE-ADc allows c − (n − 1) rounds where the subsets of processes are disconnected. It is easy to

see that the previous proof is still valid: eliminating a set of c − (n − 1) rounds r including all the

rounds in which G(r) does not contain a spanning tree, we obtain an execution that could have been

produced by the algorithm in Fig. 1.7. As this is obtained by the same algorithm at the price of more

rounds, this exhibits a compromise between “the power of the message adversary” and “the number

of rounds that have to be executed”.

1.3.4 From Message Adversary to Process Mobility

In a very interesting way, the notion of a message adversary allows the capture of the mobility of pro-

cesses in the reliable round-based synchronous system model SMPn[∅]. The movement of a process

from a location L1 to a location L2 translates as the suppression of some channels and the creation of

new channels when the system progresses from one round to the next.

As an example, let us consider Fig. 1.9. There are six processes, and the first three rounds are

represented. For r = 1, 2, 3, G(r) describes the communication graph during round r. The move of a

process is indicated by a dashed red arrow.

After it has processed the message it received during round r = 1, the movement of p3 entails

the suppression of the channel linking p3 to p2, and the creation of a new channel linking p3 to p4.

We then obtain the communication graph G(2). Then, the simultaneous motion of p5 and p6 connects

them to p3, without disconnecting them, which produces G(3).
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G(1) G(2) G(3)

p1p1

p2 p4

p3

p5

p6

p4
p2

p6p5

p3p3
p5

p4p2

p1

p6

Figure 1.9: Process mobility can be captured by a message adversary in synchronous systems

1.4 Main Distributed Computing Models Used in This Book

Let us remember that n denotes the total number of processes, and t is an upper bound on the number

of processes that can be faulty. In all cases it will be assumed that processing times are negligible

with respect to message transfer delays; they are consequently considered as having a zero duration.

Moreover, in the models defined in this section, the underlying communication network is assumed to

be fully connected (the associated communication graph is a clique).

According to the process failure model and the synchrony/asynchrony model, we have four main

distributed computing models, denoted as depicted in Table 1.1 (C stands for crash, B stands for

Byzantine, and MP stands for full graph message-passing). [∅] means there are neither additional

assumptions enriching the model, nor restrictions weakening it. Given a specific model, additional

assumptions allow for the definition of stronger models, while restrictions allow for the definition of

weaker models.

Crash failure model Byzantine failure model

Asynchronous model CAMPn,t[∅] BAMPn,t[∅]
Synchronous model CSMPn,t[∅] BSMPn,t[∅]

Table 1.1: Four classic fault-prone distributed computing models

Let us observe that, in these four basic models, the underlying network is reliable; hence, the main

difficulty in solving a problem in any of them will come from the net effect of the synchrony/asyn-

chrony of the network and the process failure model.

To summarize the reading of a model definition:

• The first letter states the process failure model (crash vs Byzantine).

• The second letter states the timing model (synchronous or asynchronous).

• The processes send and receive messages on a reliable complete communication graph.

• [∅] means that this is the basic model considered. There are no other assumptions, and hence t
can be any value in [1..(n− 1)]) (it is always assumed that at least one process does not crash).

Variants of the four previous basic models will be introduced in some chapters to address specific

issues related to fault-tolerance. These variants concern two dimensions:

• Enriched model. As an example, the model CAMPn,t[t < n/2] is the model CAMPn,t[∅]
enriched with the assumption t < n/2, which means that there is always a majority of correct

processes. Hence, CAMPn,t[t < n/2] is a stronger model than CAMPn,t[∅], where “stronger”

means “more constrained in the sense it provides us with more assumptions”.
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• Weakened Model. As an example, the model CAMPn,t[- FC] is the model CAMPn,t[∅] weak-

ened by the assumption FC (with states that the communication channels are no longer reliable

but are only fair, see Chap. 3). A weakening assumption is prefixed by the sign “-” (to stress the

fact the fact it weakens the model to which it is applied).

• Model with both enrichment and weakening. As an example, the model CAMPn,t[- FC, t <
n/2] is the model CAMPn,t[∅] weakened by fair channels, and enriched by the assumption there

is always a majority of correct processes.

Failure detectors (such as the one introduced in Chap. 3) are a classic way to enrich a system.

A failure detector is an oracle that provides each process with additional computability power.

As an example, CAMPn,t[- FC, FD1, FD2] denotes the model CAMPn,t[∅] weakened by fair

channels, and enriched with the computability power provided by the failure detectors of the

classes FD1 and FD2.

All these notions will be explicited in Chap. 3, where they will be used for the first time.

1.5 Distributed Computing Versus Parallel Computing

x y = f (x)f ()

Figure 1.10: Sequential or parallel computing

Parallel computing When considering Fig. 1.10, a function f(), and an input parameter x, parallel

computing addresses concepts, methods, and strategies which allow us to benefit from parallelism (si-

multaneous execution of distinct threads or processes) when one has to implement f(x). The essence

of parallel computing lies in the decomposition of the computation of f(x) in independent computa-

tion units and exploit their independence to execute as many of them as possible in parallel (simulta-

neously) so that the resulting execution is time-efficient. Hence, the aim of parallelism is to produce

efficient computations. This is a non-trivial activity which (among other issues) involves special-

ized programming languages, specific compilation-time program analysis, and appropriate run-time

scheduling techniques.

Distributed computing As we have seen, the essence of distributed computing is different. It is

on the coordination in the presence of “adversaries” (globally called environment) such as asyn-

chrony, failures, locality, mobility, heterogeneity, limited bandwidth, restricted energy, etc. From the

local point of view of each computing entity, these adversaries create uncertainty generating non-

determinism, which (when possible) has to be solved by an appropriate algorithm.

A synoptic view In a few words, parallel computing focuses on the decomposition of a problem

in independent parts (to benefit from the existence of many processors), while distributed computing

focuses on the cooperation of pre-existing imposed entities (in a given environment). Parallel comput-

ing is an extension of sequential computing in the sense any problem that can be solved by a parallel

algorithm can be solved – generally very inefficiently – by a sequential algorithm. Differently, as we

will see in the rest of this book, there are many distributed computing problems (distributed tasks) that

have neither a counterpart, nor a meaning, in parallel (or sequential) computing.
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1.6 Summary

A first aim of this chapter was to introduce basic definitions related to distributed computing, and

associated notions such as timing models (synchrony/asynchrony) and failure models. A second aim

was to introduce a few important notions associated with fault-tolerant distributed computing, such

as an impossibility result, and a non-trivial problem (computation of a distributed function) in the

presence of channels experiencing transient message losses.

An important point of distributed computing lies in the fact that the computing entities and their

inputs are distributed. This attribute, which is imposed on the algorithm designer, directs the processes

to coordinate in one way or another, according to the problem they have to solve. It is fundamental to

note that this feature makes distributed computing and parallel computing different. In parallel com-

puting, the inputs are initially centralized, and it is up to the algorithm designer to make the inputs

as independent as possible so that they can be processed “in parallel” to obtain efficient executions.

Whereas in many distributed computing problems, the inputs are inherently distributed (see Fig. 1.5).

It follows that the heart of distributed computing consists in mastering of the uncertainty created by

the environment, which is defined by the distribution of the computing entities, asynchrony, process

failures, communication failures, mobility, non-determinism, etc. (everything that can affect the com-

putation and is not under its control).

1.7 Bibliographic Notes

• There are many books on message-passing distributed computing in the presence of failures

(e.g., [43, 88, 250, 271, 366, 367]). Whereas [368] is an introductory book addressing basic

distributed computing problems encountered in failure-free synchronous and asynchronous dis-

tributed systems (e.g., mutual exclusion, global state computation, termination and deadlock

detection, logical clocks, scalar and vector time, distributed checkpointing and distributed prop-

erties detection, graph algorithms, etc.).

• Both the notion of a sequential process and the notion of concurrent computing were introduced

by E.W. Dijkstra in his seminal papers [129, 130].

• A recent (practical) introduction to distributed systems can be found in [402]. An introduction

to the notion of a system model, and its relevance, appeared in [389].

• The representation of a distributed execution as a partial order on a set of events is due to L.

Lamport [255].

• The notion of a Byzantine failure was introduced in the early 1980s, in the context of syn-

chronous systems [263, 342].

• The common decision-making problem seems to have been first introduced by E. A. Akkoyunlu,

E. Ekanadham K., and R.V. Huber in [26]. It was addressed in the late 1970s by J. Gray in

the context of databases [192]. The effect of message losses on the termination of distributed

algorithms is addressed in [248].

• A choice coordination problem, where the processes are anonymous and must collectively select

one among k ≥ 2 possible alternatives, was introduced by M. Rabin in [353]. As they are

anonymous, all processes have the same code. Moreover, a given alternative A (possible choice)

can have the name alti at pi and the name altj �= alti at another process pj . To break symmetry

and cope with non-determinism, the proposed solution is a randomized algorithm. A simple and

pleasant presentation of this algorithm can be found in [405].

• The readers interested in impossibility results in distributed computing should consult the mono-

graph [39].

• The notions of safety and liveness were made explicit and formalized by L. Lamport in [254].

Liveness is also discussed in [28].

1.7. Bibliographic Notes
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• The impossibility proof of the common decision-making problem is from [389], where the coor-

dination problem introduced in Section 1.2.5 is also presented. The most famous impossibility

result of distributed computing concerns the consensus problem in the context of asynchronous

systems prone to (even) a single process crash [162]. This impossibility will be studied in Part

IV of the book.

• The computation of a global function whose inputs are distributed is a basic problem of dis-

tributed computing. Its formalization (under the name distributed task) and its investigation in

the presence of one process crash was addressed for the first time in [65, 296]. Since then, this

problem has received a lot of attention (see e.g., [217]).

• The notion of a message adversary was introduced in the context of synchronous systems by N.

Santoro and P. Widmayer (in the late eighties) under the name “mobile fault” [385]. It has since

received a lot of attention (see e.g., [376, 386, 387]).

• The TREE-AD message adversary is from [251]. This paper considers the problem in a more

involved context where n is not known by the processes.

• The connection between message adversaries and dynamic synchronous systems (where “dy-

namic” refers to the motion of processes) is from [251]. An introduction of graphs (called time-

varying graphs) able to capture dynamic networks is presented in [100]. This graph formalism

is particularly well-suited to these types of network. A survey on dynamic network models is

presented in [252]. Theoretical foundations of dynamic networks are represented in [44].

• In several places in this chapter (and also in the book) we used the terms “process pi learns” or

“process pi knows that ...”. These notions have been formalized since the late eighties, as shown

in [103, 208, 298]. The corresponding knowledge theory is pretty powerful for explaining and

understanding distributed computing [152, 297].

• This book does not address robot-oriented distributed computing. Interested readers should

consult [163, 164, 349].

• The interested reader will find a synoptic view of distributed computing versus parallel comput-

ing in [371].

1.8 Exercises and Problems

1. Show that the common decision-making problem cannot be solved even if the system is syn-

chronous (there is a bound on message transfer delays, and this bound is known by the processes:

the system model is SMPn[∅] weakened by message losses).

2. Prove that the two-process coordination problem stated in Section 1.2.5 is impossible to solve.

3. Let us consider the following message adversary TREE-AD(x), where x ≥ 1 is an integer con-

stant initially known by the processes. TREE-AD(x) is TREE-AD with an additional constraint

limiting its power. Let us remember that G(r) denotes the communication graph on which the

message adversary does not suppress messages during round r.

TREE-AD(x) is such that, for any r, G(r) ∩ G(r + 1) · · · ∩ G(r + x − 1) contains the same

spanning tree. This means that any sequence of x consecutive communication graphs defined by

the adversary contains the same spanning tree. It is easy to see that TREE-AD(1) is TREE-AD.

Moreover, TREE-AD(n − 1) states that the same communication spanning tree (not known by

the processes) exists during the whole computation (made up of (n− 1) rounds).

Does the replacement of the message adversary TREE-AD by the message adversary TREE-

AD(x) allow the design of a more efficient algorithm?

Solution in [251].
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4. Is it possible to modify the algorithm in Fig. 1.7 so that no process needs to know n?

Solution in [251].



Part II

The Reliable Broadcast

Communication Abstraction

This part of the book is devoted to the implementation of reliable broadcast abstractions on top of

asynchronous message-passing systems prone to failures. Each of these abstractions is defined by a

set of properties, and any algorithm (that claims to implement it) must satisfy these propertiers. This

abstraction-oriented approach allows us to (a) know when these broadcast abstractions can be imple-

mented and when they cannot, and (b) reason on the algorithms that use them, in a precise way. This

part of the book is composed of three chapters:

• Chapter 2 defines the reliable broadcast communication abstraction, and presents algorithms

implementing it in the presence of process crash failures (system model CAMPn,t[∅]). These

algorithms differ in the abstraction level they implement, namely in the additional quality of

service (basic, FIFO, and causal order) they provide.

• Chapter 3 extends the results of the previous chapter, namely, it considers that channels may lose

messages. To this end, it introduces the notion of a fair channel and the notion of an unreliable

channel.

• Chapter 4 considers the case where some processes (not known in advance) can commit Byzan-

tine failures (model BAMPn,t[∅]), and presents algorithms suited to this model.

Let us remember that the model parameter t denotes the maximum number of processes that can

be faulty (crash or Byzantine failures according to the failure model). While, in a crash failure model

with reliable asynchronous channels, a reliable broadcast communication abstraction can be built for

any value of t, this is no longer true in a crash failure model with fair asynchronous channels, and in

a Byzantine failure model. Chapter 3 and Chapter 4 present corresponding computability bounds, and

algorithms which are optimal with respect to these bounds.
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Chapter 2

Reliable Broadcast in the Presence of

Process Crash Failures

This chapter focuses on the uniform reliable broadcast (URB) communication abstraction and its

implementation in an asynchronous message-passing system prone to process crashes. This commu-

nication abstraction is central in the design and implementation of fault-tolerant distributed systems,

as many non-trivial fault-tolerant distributed applications require communication with provable guar-

antees on message deliveries.

After defining the URB abstraction, the chapter presents a construction of it in an asynchronous

message passing system prone to process crashes but with reliable channels (i.e., in the system model

CAMPn,t[∅]). The chapter then considers two properties (related to the quality of service) that can be

added to URB without requiring enrichment of the system model with additional assumptions. These

properties concern the message delivery order, namely “first in first out” (FIFO) message delivery and

“causal order” (CO) message delivery.

Keywords Asynchronous system, Causal message delivery, Communication abstraction, Distributed

algorithm, Distributed computing model, FIFO message delivery, Message causal past, Process crash

failure, Reliable broadcast, Total order broadcast, Uniform reliable broadcast.

2.1 Uniform Reliable Broadcast

2.1.1 From Best Effort to Guaranteed Reliability

The broadcast operation “broadcast (m)”, introduced in the previous chapter, was a simple macro-

operation which expands in the statement

for each j ∈ {1, . . . , n} do send m to pj end for.

In the system model CAMPn,t[∅], this operation has best effort semantics in the following sense.

If the sender pi is correct, a copy of the message m is sent to every process, and, as the channels

are reliable, every process (that has not crashed) receives a copy of the message. As the channels

are asynchronous, these copies can be received at distinct independent time instants. Whereas if the

sender crashes while executing broadcastm, an arbitrary subset of the processes receives the message

m. Hence, in the presence of process crash failures, the specification of “broadcast m” provides no

indication which processes will actually receive the message m. The aim of this section is to introduce

a broadcast operation that provides the processes with stronger message delivery guarantees.
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2.1.2 Uniform Reliable Broadcast (URB-broadcast)

The URB-broadcast communication abstraction provides the processes with two operations, denoted

“URB broadcast (m)” and “URB deliver ()”. The first allows a process pi to send a message m to all

the processes (including itself), while the second one allows a process to deliver a message that has

been broadcast. In order to prevent ambiguities, when a process invokes “URB broadcast m” we say

that it “urb-broadcasts the message m”, and when it returns from “URB deliver ()” we say that it “urb-

delivers a message” (sometimes we also suppress the prefix “URB” when it is clear from the context).

Whereas the primitives “send() to” and “receive()” are used for the messages sent and received at the

underlying network level.

The specification of the URB-broadcast assumes that every message that is broadcast is unique.

This is easy to implement by associating a unique identity with each message m. The identity is

made up of a pair 〈m.sender,m.seq nb〉 where m.sender is the identity of the sender process, and

m.seq nb is a sequence number locally generated by pm.sender. The sequence numbers associated

with the messages broadcast by a process are the natural integers 1, 2, etc.

Definition The URB-broadcast is defined by the following four properties (as we have seen on page 7

– at the end of Section 1.1 – this means that, to be correct, any URB-broadcast algorithm must satisfy

these properties):

• URB-validity. If a process urb-delivers a message m, then m has been previously urb-broadcast

(by pm.sender).

• URB-integrity. A process urb-delivers a message m at most once.

• URB-termination-1. If a non-faulty process urb-broadcasts a message m, it urb-delivers the

message m.

• URB-termination-2. If a process urb-delivers a message m, then each non-faulty process urb-

delivers the message m.

The URB-validity property relates an output (here a message that is delivered) with an input (a

message that has been broadcast), i.e., there is neither creation nor alteration of messages. The URB-

integrity property states that there is no message duplication. Taken together, these two properties

define the safety property of URB-broadcast. Let us observe that they are satisfied even if no message

is ever delivered, whatever the messages that have been sent. So, for the specification to be complete,

a liveness property is needed, namely, not all the messages can be lost. This is the aim of the URB-

termination properties: if the process that urb-broadcasts a message is non-faulty, or if at least one

process (be it faulty or non-faulty, this is why the abstraction is called uniform) urb-delivers a message

m, then m is urb-delivered (at least) by the non-faulty processes. (Hence, these termination properties

belong to the family of “all or none/nothing” properties.)

A property on message deliveries It is easy to see from the previous specification that during each

execution (1) the non-faulty processes deliver the same set of messages, (2) this set includes all the

messages broadcast by the non-faulty processes, and (3) each faulty process delivers a subset of the

messages delivered by the non-faulty processes. Let us observe that two distinct faulty processes may

deliver different subsets of messages.

It is important to note that a message m urb-broadcast by a faulty process may or not be urb-

delivered. It is not possible to place a strong requirement on it delivery, which will depend on the

execution.
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Figure 2.1: An example of the uniform reliable broadcast delivery guarantees

A simple example A simple example appears in Fig. 2.1. There are four processes that urb-broadcast

5 messages. Processes p1 and p2 are non-faulty while p3 and p4 crash (shown by the crosses in the

figure). The message deliveries are indicated with vertical top to bottom arrows on the process axes.

Both p1 and p2 urb-deliver the same set of messages M = {m2,m32,m1,m4}, while each faulty

process delivers a subset of M . Moreover, not only is the message m31, urb-broadcast by a faulty

process, never urb-delivered, but the faulty process p3 delivers neither of the messages (m31 and m32)

it has urb-broadcast. In addition, the message m32, which is sent by p3 after m31, is delivered by the

non-faulty processes, while m31 is not. This is due to the net effect of asynchrony and process crashes.

It is easy to see that the message deliveries in Fig. 2.1 respect the specification of the uniform reliable

broadcast.

URB is a paradigm The uniform reliable broadcast problem is a paradigm that captures a family

of distributed coordination problems. As an example, “URB broadcast (m)” and “URB deliver ()”
can be given the meanings “this is an order” and “I execute it”, respectively. It follows that non-faulty

processes will execute the same set of orders (actions), including all the orders issued by the non-faulty

processes, plus a subset of orders issued by faulty processes.

Let us notice that URB-broadcast is a one-shot problem. The specification applies to each message

that is urb-broadcast separately from the other messages that are urb-broadcast.

Reliable broadcast The reliable broadcast communication abstraction is a weakened form of URB.

It is defined by the same validity and integrity properties (no message loss, corruption or duplication)

and the following weaker termination property:

• Termination. If a non-faulty process (1) urb-broadcasts a message m, or (2) urb-delivers a

message m, then each non-faulty process urb-delivers the message m.

This means that a faulty process can deliver messages not delivered by the non-faulty processes, i.e.,

it is the URB termination property without its uniformity requirement.

Let us observe that the termination property of the reliable broadcast abstraction does not state that

the set of messages urb-delivered by a faulty process must be a subset of the messages urb-delivered

by the non-faulty processes. Hence, reliable broadcast satisfies less properties, and consequently is a

weaker abstraction than uniform reliable broadcast.

In the following we do not consider the reliable broadcast abstraction because it is not useful for

practical applications. As it is not known in advance whether a process will crash or not, it is sensible

to require a process to behave as if it was non-faulty until it possibly crashes.

2.1.3 Building the URB-broadcast Abstraction in CAMPn,t[∅]
There is a very simple construction of the URB-broadcast in the system model CAMPn,t[∅]. This

is due to the fact that the point-to-point communication channels are reliable. The structure of the

corresponding algorithm is given in Fig. 2.2.
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Middleware

Network layer

Application layer

URB broadcast (m) URB deliver ()

sendm to pj receive ()
j ∈ {1, . . . , n}

Figure 2.2: URB-broadcast: architectural view

A simple construction The algorithms implementing URB broadcast (m) and URB deliver () are

described in Fig. 2.3. On its client side, when a process pi invokes URB broadcast (m) it sends m to

itself (line 1).

On its server side, when a process pi receives a message, it discards it if it has already received a

copy (line 2). Thanks to the unique identity 〈m.sender,m.seq nb〉 carried by each message m, it is

easy for pi to check if m has already been received. If it is the first time it has received m, pi forwards

it to the other processes, except for itself and the message sender, (line 3), and only then urb-delivers

m to itself at the application layer (line 4).

It is important to observe that the statement associated with the reception of MSG (m) is not

required to be atomic. A process pi can interleave the execution of several such statements.

Notation Let us notice that a tag MSG is added to each message (this tag will be used in the next

sections). A message m is called an application message, while a message carrying a tag defined by

the construction algorithm (e.g., MSG (m)) is called a protocol message.

operation URB broadcast (m) is

(1) send MSG(m) to pi.

when MSG (m) is received from pk do

(2) if (first reception of m) then

(3) for each j ∈ {1, . . . , n} \ {i, k} do send MSG (m) to pj end for;

(4) URB deliver (m) % deliver m to the upper application layer %

(5) end if.

Figure 2.3: Uniform reliable broadcast in CAMPn,t[∅] (code for pi)

Theorem 3. The algorithm described in Fig. 2.3 builds the URB-broadcast communication abstraction

in CAMPn,t[∅].
Proof The proof of the validity property follows directly from the text of the algorithm that forwards

only messages that have been received. The proof of the integrity property follows directly from the

fact that a message m is delivered only when it is received for the first time.

The termination properties are a direct consequence of the “first forward and then deliver” strategy.

Let us first consider a message m urb-broadcast by a non-faulty process pi. As pi is non-faulty, it

forwards the protocol message MSG (m) to every other process and delivers it to itself. As channels

are reliable, each process will eventually receive a copy of MSG (m) and urb-deliver m (the first time

it receives MSG (m)).
Let us now consider the case where a (faulty or non-faulty) process pj urb-delivers a message m.

Before urb-delivering m, pj forwarded MSG (m) to all, and the same reasoning as before applies,

which completes the proof of the termination properties. �Theorem 3
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2.2 Adding Quality of Service

Uniform reliable broadcast provides guarantees on which messages are delivered to processes. As we

have seen, non-faulty processes urb-deliver the same set of messages M , and each faulty process pi
delivers a subset Mi ⊆M .

FIFO and CO message delivery Some applications are easier to design when processes are pro-

vided with stronger guarantees on message delivery. These guarantees concern the order in which

messages are delivered to the upper layer application. We consider here two types of such guaran-

tees: the First In, First Out (FIFO) property, and the Causal Order (CO) property. (A third delivery

property, called Total Order (TO) will be studied in Chap. 16.)

A modular view of the FIFO and CO uniform reliable constructions presented in this section is

given in Fig. 2.4. Each arrow corresponds to a construction: A
Fig.x−→ B means that Fig. x describes

an algorithm building B on top of a solution to A. It is important to note that these constructions

can be built in any system where the URB-broadcast abstraction can be built. When compared to

URB, neither FIFO-URB nor CO-URB requires additional computability-related assumptions (such

as restrictions on the model on top of which URB is built, or failure detector-like additional objects).

Fig. 2.10Fig. 2.7
URB FIFO-URB CO-URB

Fig. 2.12

Figure 2.4: From URB to FIFO-URB and CO-URB in CAMPn,t[∅]

Terminology When it is clear from the context, we sometimes use the terms “FIFO-broadcast” and

“CO-broadcast” instead of “FIFO-URB-broadcast” and “CO-URB-broadcast”, and similarly we also

use the terms “FIFO-delivered” and “CO-delivered” (sometimes abbreviated to “delivered”).

One-shot vs multi-shot problems As we have seen, URB-broadcast is a one-shot problem. It con-

siders each message independently from the other messages. Whereas both FIFO-URB and CO-URB

are not one-shot problems. This is because (as we are about to see) their specifications involve all the

messages that are broadcast on the same channel or on all the channels.

2.2.1 “First In, First Out” (FIFO) Message Delivery

Definition The FIFO-URB abstraction is made up of two operations denoted “FIFO broadcast m”

and “FIFO deliver ()”. It is the URB-broadcast abstraction (defined by the validity, integrity and

termination properties stated in Section 2.1.2) enriched with the following additional property:

• FIFO-URB message delivery. If a process fifo-broadcasts a message m and later fifo-broadcasts

a message m′, no process fifo-delivers m′ unless it has previously fifo-delivered m.

This property states that the messages fifo-broadcast by each process (taken separately) are deliv-

ered according to their sending order. There is no delivery constraint placed on messages broadcast

by different processes. It is important to notice that the FIFO-URB delivery property prevents a faulty

process from fifo-delivering m′ while never fifo-delivering m. Given any process pi, a faulty process

fifo-delivers a prefix of the messages fifo-broadcast by pi.
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p1

p2

p3

p4

m11 m12

m42

m13

m41

Figure 2.5: An example of FIFO-URB message delivery

An example A simple example is depicted in Fig. 2.5 where the transfer of each message is explicitly

indicated. Process p1 fifo-urb-broadcasts m11, then m12, and finally m13. Process p4 fifo-broadcasts

m41 and then m42. The FIFO-URB message delivery property states that m11 has to be fifo-urb-

delivered before m12, which in turn has to be fifo-urb-delivered before m13. Similarly, with respect

to process p4, no process is allowed to fifo-urb-deliver m42 before m41. In this example, p4 crashes

before fifo-urb-delivering its own message m42.

As the FIFO-URB specification imposes no constraint on the messages broadcast by distinct pro-

cesses, we can easily see that the FIFO-URB delivery of the messages from p1 and the ones from p4
can be interleaved differently at distinct receivers.

A simple construction The construction assumes that the underlying communication layer provides

processes with a uniform reliable broadcast abstraction as depicted in Fig. 2.6.

Middleware

Network layer
sendm to pj receive ()
j ∈ {1, . . . , n}

Application layer

Middleware

URB deliver ()URB broadcast (m)

FIFO broadcast (m) FIFO deliver ()

Figure 2.6: FIFO-URB uniform reliable broadcast: architecture view

An easy way to implement the FIFO message delivery property consists in associating an appro-

priate predicate with message delivery. While the predicate remains false, the message remains in the

input buffer of the corresponding process, and is delivered as soon as the predicate becomes true. The

construction for FIFO-URB-broadcast is described in Fig. 2.7.

Each process pi manages two local variables. The set msg seti (initialized to ∅) is used to keep

the messages that have been urb-delivered but not yet FIFO-delivered by pi (lines 7 and 12). The array

nexti[1..n] (initialized to [1, . . . , 1] and used at lines 4, 6, and 12) is such that nexti[j] denotes the

sequence number of the next message that pi will fifo-deliver from pj (the sequence number of the first

message fifo-broadcast by a process pi is 1, the sequence number of the second message is 2, etc.).

The operation “FIFO broadcast (m)” consists of a simple invocation of “URB broadcast (m)”
(line 2). When a message m is urb-delivered by the underlying communication layer, pi deposits it
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operation FIFO broadcast (m) is

(1) m.sender ← i; m.seq nb ← pi’s next seq. number (starting from 1);

(2) URB broadcast MSG(m).

when MSG(m) is urb-delivered do % m carries its identity (m.sender,m.seq nb) %

(3) let j = m.sender;

(4) if (nexti[j] = m.seq nb)

(5) then FIFO deliver (m);
(6) nexti[j] ← nexti[j] + 1;

(7) while
(
∃m′ ∈ msg seti : (m

′.sender = j) ∧ (nexti[j] = m′.seq nb)
)

(8) do FIFO deliver (m′);
(9) nexti[j] ← nexti[j] + 1;

(10) msg seti ← msg seti \ {m
′}

(11) end while

(12) else msg seti ← msg seti ∪ {m}
(13) end if.

Figure 2.7: FIFO-URB message delivery in ASn,t[∅] (code for pi)

in the set msg seti if m arrives too early with respect to its fifo-delivery order. Otherwise, pi fifo-

delivers m (lines 5-6). After delivering m, pi fifo-delivers the messages from the same sender (if any)

whose sequence numbers agree with the delivery order (lines 7-11). The processing associated with

the urb-delivery of a message m is assumed to be atomic, i.e., a process pi executes one urb-delivery

code at a time.

Theorem 4. The algorithm described in Fig. 2.7 constructs the FIFO-URB-broadcast communication

abstraction in any system in which URB-broadcast can be built.

Proof The proof is an immediate consequence of the properties of the underlying URB-broadcast

abstraction (Theorem 3) and the use of sequence numbers. �Theorem 4

2.2.2 “Causal Order” (CO) Message Delivery

A partial order on messages Let M be the set of messages that are urb-broadcast during an execu-

tion, and M̂ = (M,→M ) be the relation where →M is defined on M as follows. Given m,m′ ∈ M ,

m→M m′ (and we say that “m causally precedes m′”) if:

• m and m′ are co-broadcast by the same process and m is co-broadcast before m′, or

• m has been co-delivered by a process pi before pi co-broadcasts m′, or

• There is message m′′ ∈M such that m→M m′′ and m′′ →M m′.

Let us notice that, as a message cannot be co-delivered before being co-broadcast, M̂ is a partial order.

Causal message delivery The CO-URB communication abstraction is made up of two operations

denoted “CO broadcast m” and “CO deliver ()”. It is URB-broadcast (defined by the validity, in-

tegrity and termination properties stated in Section 2.1.2) enriched with the following additional prop-

erty:

• CO-URB message delivery. If m →M m′, no process co-delivers m′ unless it has previously

co-delivered m.

FIFO delivery is a weakening of CO delivery applied to each channel. This means that CO delivery

generalizes FIFO delivery to all the messages whose broadcasts are related by the “message happened

before” relation (→M ), whatever their senders are.
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An example An example of CO-broadcast is depicted in Fig. 2.8. We have m11 →M m42 and

m41 →M m42. As the messages m11 and m41 are not “→M”-related, it follows that every process can

deliver them in any order. Whereas m42 has to be delivered at any process after m41 (FIFO order is

included in CO order), and m42 has to be delivered at any process after m11 (because p4 delivers m11

before broadcasting m42). So, despite the fact that p1 and p2 deliver m11 and m41 in different order,

these messages delivery orders are correct. The message delivery order is also correct at p3 if m42 is

delivered according to the plain arrow, but it is not if m42 is delivered according to the dashed arrow

(i.e., before m11).

p1

p2

p3

p4

m11

m42m41

Figure 2.8: An example of CO message delivery

The local order property The definition of this property is motivated by Theorem 5, which gives a

characterization of causal order, namely, CO is FIFO + local order:

• Local order. If a process delivers a message m before broadcasting a message m′, no process

delivers m′ unless it has previously delivered m.

Theorem 5. Causal order is equivalent to the combination of FIFO order and local order.

Proof It follows from its very definition that the causal order property implies the FIFO property and

the local order property. Let us show the other direction.

Assuming the FIFO order property and the local order property are satisfied, let m and m′ be two

messages such that m→M m′, and p be a process that delivers m′. The proof consists in showing that

p delivers m before m′.

As m →M m′, there is a finite sequence of messages m = m1, m2, . . . , mk−1, mk = m′,

with k ≥ 2, that have been broadcast by the processes q1, q2, . . . , qk, respectively, and are such that,

∀x : 1 ≤ x < k, we have mx →M mx+1 (this follows from the first or the second item of the CO

delivery definition, i.e., not taking into account the third item on transitivity). For any x such that

1 ≤ x < k we have one of the following cases:

• If qx = qx+1: mx and mx+1 are broadcast by the same process. It follows from the FIFO order

property that p delivers mx before mx+1.

• If qx �= qx+1: mx and mx+1 are broadcast by different processes, and qx+1 delivers mx before

broadcasting mx+1. It follows from the local order property that p delivers mx before mx+1.

It follows that when p delivers mk = m′, it has previously delivered mk−1. Similarly, when it

delivers mk−1, it has previously delivered mk−2, etc. until m1 = m. It follows that if p delivers m′, it

has previously delivered m. �Theorem 5

Remark Theorem 5 is important, from a proof modularity point of view, when one has to prove

that an algorithm satisfies the CO delivery property. Namely, one only has to show that the algorithm

satisfies both the FIFO property and the local order property. It then follows from Theorem 5 that the
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algorithm satisfies the CO delivery property. We will proceed this way in the proof of Theorem 6. (A

direct proof of the CO delivery property would require a long and tedious induction on the length of

the “message causality chains” defined by the relation “→M”.)

2.2.3 From FIFO-broadcast to CO-broadcast

A simple CO-broadcast construction from URB-broadcast Before presenting a CO-broadcast

construction based on the FIFO-broadcast abstraction, this paragraph presents a very simple (but very

inefficient) construction of CO-broadcast on top of the URB-broadcast (Fig. 2.9). Given an application

message m, this construction, due to K. Birman and T. Joseph (1987), consists in building a protocol

message that carries m plus a copy of all the messages that causally precede it.

To this end, each process pi manages a local variable, denoted causal predi, that contains the

sequence of all the messages m′ such that m′ →M m, where m is the next message that pi will co-

broadcast. The variable causal predi is initialized to the empty sequence (denoted ε). The operator

⊕ denotes the concatenation of a message at the end of causal predi.

operation CO broadcast (m) is

(1) URB broadcast MSG (causal pasti ⊕m);
(2) causal pasti ← causal pasti ⊕m.

when MSG (〈m1, . . . ,m�〉) is urb-delivered do

(3) for x from 1 to � do

(4) if (mx not yet CO-delivered) then

(5) CO deliver (mx);
(6) causal pasti ← causal pasti ⊕mx

(7) end if

(8) end for.

Figure 2.9: A simple URB-based CO-broadcast construction in CAMPn,t[∅] (code for pi)

When a process pi co-broadcasts m (lines 1-2), it urb-broadcasts the protocol message MSG

(causal pasti⊕m), and then updates causal pasti to causal pasti⊕m as, from now on, the appli-

cation message m belongs to the causal past of the next application messages that pi will co-broadcast.

When it urb-delivers MSG (〈m1, . . . ,m�〉), pi considers, one after the other (lines 3-8), each ap-

plication message mx of the received sequence. If it has already co-delivered mx, it discards it.

Otherwise, it co-delivers it, and adds it at the end of causal pasti (line 6).

Both the code associated with the urb-delivery of a message and the code associated with the op-

eration CO broadcast () are assumed to be executed atomically. This construction is highly inefficient

as the size of protocol messages increases forever.

From FIFO-broadcast to CO-broadcast: construction A more efficient FIFO-broadcast-based

construction of CO-broadcast is described in Fig. 2.10. Its underlying principle is based on the

following observation. FIFO-broadcast has a “memory” of the message already delivered between

each pair of processes. This property allows for a resetting of causal pasti (which increases with-

out bound) to the empty sequence of messages (denoted ε) when a new message is co-broadcast

by process pi (lines 1-2). Hence, the local variable causal pasti is replaced by a suffix of it, de-

noted im causal pasti, which contains only the messages that pi co-delivered since its previous co-

broadcast (lines 2 and 6). This construction is due to V. Hadzilacos and S. Toueg (1994).

To illustrate this idea, let us consider Fig. 2.11, where the process pi co-broadcasts two messages,

first m1 and then m2. Between these two co-broadcasts, pi has co-delivered the messages m, m′

and m′′, in this order. Hence, when pi co-broadcasts m2, it actually fifo-broadcasts the sequence

〈m,m′,m′′,m2〉, thereby indicating that, if not yet co-delivered, the messages m, m′ and m′′ have
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operation CO broadcast (m) is

(1) FIFO broadcast MSG (im causal pasti ⊕m);
(2) im causal pasti ← ε.

when MSG (〈m1, . . . ,m�〉) is FIFO-delivered do

(3) for x from 1 to � do

(4) if (mx not yet CO-delivered) then

(5) CO deliver (mx);
(6) im causal pasti ← im causal pasti ⊕mx

(7) end if

(8) end for.

Figure 2.10: From FIFO-URB to CO-URB message delivery in ASn,t[∅] (code for pi)

to be co-delivered before m2. Hence, we have im causal pasti = 〈m,m′,m′′〉 just before pi co-

broadcasts m2.

pi
m1

m2

m m′′

m′

︸ ︷︷ ︸
im causal pasti = 〈m,m′,m′′〉

Figure 2.11: How the sequence of messages im causal pasti is built

As before, both the code associated with the FIFO-delivery of a message and the code associated

with the CO-broadcast operation are assumed to be executed atomically.

Let us remember that, due to Theorem 4, it is possible to build a FIFO reliable broadcast abstraction

in any system in which URB can be built. So, the construction of the CO reliable broadcast abstraction

on top of the URB-broadcast abstraction does not require additional computational assumptions.

Remark The processing associated with the FIFO-delivery of a protocol message is “fast” in the

sense that, when a sequence of application messages is fifo-delivered, each application message con-

tained in this sequence is co-delivered (if not yet done). The price that has to be paid to obtain this

delivery efficiency property is that the underlying FIFO-broadcast communication abstraction has to

handle “possibly big” protocol messages, which are unbounded sequences of application messages.

Moreover, the FIFO-broadcast abstraction cannot enjoy this “fast delivery” property (each process has

to manage a local “waiting room” msg seti in which messages can be momentarily delayed).

Theorem 6. The algorithm described in Fig. 2.10 builds the CO-URB-broadcast communication ab-

straction in any system in which FIFO-URB-broadcast can be built.

Proof Proof of the validity and integrity properties. Let us first observe that, as “CO broadcast (m)”
is implemented on top of FIFO-broadcast, it directly inherits its validity property (neither creation nor

alteration of protocol messages), and its integrity property (a protocol message is fifo-delivered at most

once). It follows that no application message m can be lost or modified. It is also clear from the test

done before co-delivering an application message that no message can be co-delivered more than once.

Proof of the termination property. When a process co-broadcasts an application message m, it fifo-

broadcasts a protocol message MSG(seq ⊕ m). Moreover, when a sequence of application mes-

sages MSG(〈m1, . . . ,m�〉) is fifo-delivered, if not yet co-delivered, each application message mx,
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1 ≤ x ≤ 	, is co-delivered without being delayed. Consequently, the co-broadcast algorithm inherits

the termination property of the underlying fifo-broadcast, from which it follows that each application

message that has been co-broadcast is co-delivered.

Proof of the CO-delivery property. We have to prove that, for any two messages m and m′ such

that m →M m′ (as defined in Section 2.2.2), no process co-delivers m′ unless it has previously co-

delivered mx. This proof is based on three claims.

Claim C1. Let us suppose that a process pi FIFO-broadcasts MSG(seq′⊕m′) (where seq′ is a sequence

of application messages), and either m ∈ seq′ or pi previously fifo-broadcast MSG(seq ⊕m). Then,

no process co-delivers m′ unless it previously co-delivered m.

Proof of claim C1. The proof is by contradiction. Let us assume that, while the assumption of the

claim is satisfied, some process co-delivers m′ before m. Let τ be the first time instant at which a

process co-delivers m′ without having previously co-delivered m, and let pj be such a process. We

consider two cases, according to what caused pj to co-deliver m′:

• Case 1. pj fifo-delivered MSG(seq′ ⊕m′). There are two sub-cases (due to the assumption in

the claim).

– Sub-case 1: m ∈ seq′.
– Sub-case 2: pi fifo-broadcast MSG(seq⊕m) before MSG(seq′⊕m′). It then follows from

the FIFO-delivery property that pj fifo-delivered MSG(seq ⊕m) before MSG(seq′ ⊕m′).

It is easy to conclude from the text of the algorithm that, whatever the sub-case, pj co-delivers

m before m′, which contradicts the assumption that pj co-delivers m′ before m.

• Case 2. pj fifo-delivered a protocol message MSG(seq′′ ⊕m′′) such that m′ ∈ seq′′ and m is

not before m′ in seq′′. Let pk be the sender of MSG(seq′′ ⊕m′′). Process pk co-delivered m′

before fifo-broadcasting MSG(seq′′ ⊕m′′).

Due to the FIFO order property, pj fifo-delivered all the previous protocol messages fifo-broadcast

by pk. Since, by assumption, pj does not co-deliver m before m′, the application message m
was not included in any of these co-broadcasts, and m does not appear before m′ in seq′′. Hence,

when pk co-delivered m′, it has not previously co-delivered m. Moreover, pk co-delivered m′

before pj co-delivered it. We consequently have τ ′ < τ , where τ ′ is the time instant at which pk
co-delivered m′. This contradicts the definition of τ , which states that “τ is the first time instant

at which a process co-delivers m′ without having previously co-delivered m”.

As both cases lead to a contradiction, the claim C1 follows.

The proof of the CO-delivery property follows from two further claims C2 and C3. C2 establishes

that the algorithm satisfies the FIFO message delivery property, while C3 establishes that it satisfies

the local order property. Once these claims are proved, the CO-delivery property is obtained as an im-

mediate consequence of Theorem 5 that states: FIFO message delivery + local order ⇒ CO message

delivery.

Claim C2. The algorithm satisfies the FIFO (application) message delivery property.

Proof of claim C2. Let us suppose that pi co-broadcasts m before m′. It follows that pi fifo-broadcasts

MSG(seq ⊕ m) before MSG(seq′ ⊕ m′). Let us consider the channel from pi to pj . It follows from

the claim C1 that pj cannot co-deliver m′ unless it has previously co-delivered m, which proves the

claim.

Claim C3. The algorithm satisfies the local order property (for application messages).

Proof of claim C3. Let pi be a process that co-delivers m before co-broadcasting a message m′, and

pj a process that co-delivers m′. We must show that pj co-delivers m before m′.
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Let m′′ be the first message that pi co-broadcasts after it co-delivered m (notice that m′′ could be

m′). When it co-broadcasts m′′, pi fifo-broadcasts MSG(seq′′ ⊕m′′) (for some seq′′). Due to the text

of the algorithm and the definition of m′′, it follows that m ∈ seq′′. From claim C1, we know that

pj co-delivers m before m′′. If m′′ = m′, the claim follows. Otherwise, pi co-broadcasts m′′ before

m′, and then due to claim C2, pj co-delivers m′′ before m′, which concludes the proof of claim C3.

�Theorem 6

2.2.4 From URB-broadcast to CO-broadcast: Capturing Causal Past in a Vector

Delivery condition Unlike from the previous one, this construction of the CO-broadcast abstraction

is built directly on top of the uniform reliable broadcast abstraction (so the layer structure is the same

as the one in Fig. 2.6 where, at its top, FIFO is replaced by CO). It is an extension to crash-prone

systems of a CO-broadcast algorithm introduced by M. Raynal, A. Schiper, and S. Toueg (1991) in the

context of failure-free systems.

Each process pi manages a local vector clock denoted causal pasti[1..n]. Initialized to [0, . . . , 0],
this vector is such that causal pasti[k] contains the number of messages co-broadcast by pk that

have been co-delivered by pi. (As CO-broadcast includes FIFO-broadcast, this number is actually the

sequence number of the last message co-broadcast by pk and co-delivered by pi.) Thanks to this control

data, each application message m can piggyback a vector of integers denoted m.causal past[1..n]
such that

m.causal past[k] = number of messages m′ co-broadcast by pk such that m′ →M m.

Let m be a message that is urb-delivered to pi. Its co-delivery condition can be easily stated: m
can be co-delivered if all the messages m′ such that m′ →M m have already been locally co-delivered

by pi. Operationally, this is locally captured by the following delivery condition:

DCi(m) ≡
(
∀ k : causal pasti[k] ≥ m.causal past[k]

)
.

Let us notice that, when a process co-broadcasts a message m, it can immediately co-deliver it.

This is because, due to the very definition of the causal precedence relation “→M”, all the messages

m′ such that m′ →M m are already co-delivered, and consequently DCi(m) is satisfied.

The construction The construction is described in Fig. 2.12. In addition to the identity of its sender,

each message m co-broadcast by a process pi, carries the array m.causal past, which is a copy of the

local array causal pasti (which encodes the causal past of m from the co-broadcast point of view).

As already indicated, m.causal past[k] is the number of messages m′ co-broadcast by pk such that

m′ →M m.

To co-broadcast a message m, a process pi first updates the control fields of m, and then urb-

broadcasts m and waits until it locally co-delivers m. The Boolean donei is used to ensure that if m
is co-broadcast by pi before m′, the broadcast of m is correctly encoded in m′.causal past[1..n].

When a process pi co-broadcasts a message m, the algorithm presented in Fig. 2.12 co-delivers m
only when MSG(m) is urb-delivered (and not in the code of the operation CO broadcast (m)). This

allows it to benefit from the properties of the underlying URB-broadcast abstraction, namely, if pi urb-

delivers m, we know from the termination property of urb-broadcast that all the non-faulty processes

eventually urb-deliver m.

When a process pi urb-delivers a message m it checks the delivery condition DCi(m) (this condi-

tion is always true if pi co-broadcast m). If it is false, there are messages m′ co-broadcast by processes

different from pi, which have not yet been co-delivered by pi, such that m′ →M m. Consequently, m
is deposited in the waiting set msg seti. If DCi(m) is true, pi updates causal pasti[m.sender] to
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operation CO broadcast (m) is

(1) donei ← false;

(2) m.causal past[1..n] ← causal pasti[1..n];
(3) m.sender ← i;
(4) URB broadcast MSG (m);
(5) wait (donei).

when MSG (m) is urb-delivered do

(6) if DCi(m)
(7) then CO deliver (m);
(8) let j = m.sender;

(9) causal pasti[j] ← m.causal pasti[j] + 1;

(10) donei ← (m.sender = i);
(11) while

(
∃m′ ∈ msg seti : DCi(m

′)
)

(12) do CO deliver (m′);
(13) let j = m′.sender;

(14) causal pasti[j] ← m′.causal pasti[j] + 1;

(15) msg seti ← msg seti \ {m
′}

(16) end while

(17) else msg seti ← msg seti ∪ {m}
(18) end if.

Figure 2.12: From URB to CO message delivery in ASn,t[∅] (code for pi)

its next value (this is where the array causal pasti is updated with the sequence numbers of the last

messages that are co-delivered), and sets donei to true if m.sender = i.

After it has co-delivered a message m, process pi checks if messages in the waiting room msg seti
can be co-delivered. If there are such messages, it co-delivers them, suppresses them from msg seti,
and updates causal pasti accordingly.

Except for the wait statement at the end of the operation “CO broadcast (m)”, the first three lines

of “CO broadcast (m)”, on one side, and all the statements associated with the urb-delivery of a

message are executed atomically.

Example A simple example of the vector-based CO-broadcast construction is described in Fig. 2.13.

Messages m1, m2 and m3 are such that m1.sender = 1, m2.sender = 2, and m3.sender = 3.

Messages m1 and m2 have no messages in their causal past (i.e., there is no message m′ such that

m′ →M m1 or m′ →M m2, respectively), so we have m1.causal past = m2.causal past =
[0, 0, 0]. As their broadcast is not co-related, these messages can be co-delivered in a different order at

different processes. However, message m3 is such that m1 →M m3; so, m3.causal past = [1, 0, 0]
encoding the fact that the first message co-broadcast by p1 (namely m1) has been co-delivered by p3
before it co-broadcast m3.

Consequently, as shown in the figure, while m3 is urb-delivered at p2 before m1, its co-delivery

condition forces it to remain in p2’s input buffer msg set2 until m1 has been co-delivered at p2 (this

is indicated by a dashed arrow in the figure).

Lemma 1. Let m and m′ be any two (distinct) application messages.

(m →M m′) ⇒
(
∀ k (m.causal past[k] ≤ m′.causal past[k])) ∧ (∃ k : m.causal past[k] <

m′.causal past[k])
)
.

Proof Let us first consider the case where the messages m and m′ are co-broadcast by the same

process pi. Due to the management of the Boolean donei (lines 1, 5, and 10), and the fact that pi in-

creases causal pasti[i] each time it co-delivers a message it co-broadcast (line 9), any two consecutive

invocations of co-broadcast by pi are separated by an update causal pasti[i] ← causal pasti[i] + 1
(line 9). It follows that we have m.causal past[i] < m′.causal past[i]. As far the entries k �= i are



36 2.2. Adding Quality of Service

0
0

0

0
0

0

0
0

0

1
0

1
1
1

1

1
0

0

0
0

1

0
0

1

0
0

1
0
0

0

0
0

0

1
0

1
1
1

1

1
1

1
0
1

1
0
0

1

p1

p2

p3

m1

m2

m3

Figure 2.13: How vectors are used to construct the CO-broadcast abstraction

concerned, let us observe that the successive values contained in causal pasti[k] never decrease, from

which we conclude ∀ k : m.causal past[k] ≤ m′.causal past[k], which completes the proof for this

case.

Let us now consider the case where m and m′ are co-broadcast by different processes. As m→M

m′, there is a finite chain of messages such that m = m0 →M m1 →M · · · →M mz = m′,

and for each message mx, 1 ≤ x ≤ z, the process that co-broadcast mx previously co-delivered

mx−1. We claim that (∀ k (m.causal past[k] ≤ m1.causal past[k])) ∧ (∃ k : m.causal past[k] <
m1.causal past[k]). Then the proof of the lemma follows directly by a simple induction on the length

of the message chain.

Proof of the claim. Let pi be the process that co-broadcast m, and pj (i �= j) the process that co-

delivered m before co-broadcasting m1. It follows from the definition of m→M m1, the co-delivery

of m by pj , and the CO-delivery condition DCj(m) that ∀ k : m.causal past[k] ≤ causal pastj [k]
just after m is co-delivered by pj . On the other side, when pj co-delivered m, it executed the statement

causal pastj [i] ← causal pastj [i] + 1 (line 9 or line 14). Hence, after pj co-delivered m, we

have m.causal past[i] < m.causal past[i] + 1 = causal pastj [i], and more generally we have

(∀ k : m.causal past[k] ≤ causal pastj [k]) ∧ (∃ k : m.causal past[k] < causal pastj [k].
Finally, as m1.causal past[1..n] = causal pastj [1..n] when pj co-broadcasts m1 (line 2), and this

occurs after the co-delivery of m by pj , it follows that we then have (∀ k : m.causal past[k] ≤
m1.causal past[k]) ∧ (∃ k : m.causal past[k] < m1.causal past[k]), and the claim follows.

�Lemma 1

Theorem 7. The algorithm described in Fig. 2.10 builds the CO-URB-broadcast communication ab-

straction in any system in which URB-broadcast can be built.

Proof Proof of the validity and integrity properties. The validity property follows directly from the

validity of the underlying URB-broadcast abstraction, and the text of the algorithm (which does not

create application messages). The integrity property of the underlying URB-broadcast guarantees that,

for every application message m that is co-broadcast, a process pi co-delivers at most one protocol

message MSG (m). If DCi(m) is satisfied, the message m is immediately co-delivered. Otherwise,

it is deposited in msg seti, and is suppressed from this set when it is co-delivered. It follows that no

message m can be co-delivered more than once by each process.

Proof of the termination property. The termination property of the underlying URB-broadcast guar-

antees that (a) if a non-faulty process co-broadcasts a message m (as in this case it urb-broadcasts

MSG (m)), or (b) if any process urb-delivers MSG (m), then each non-faulty process urb-delivers
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MSG (m). It follows that if (a) or (b) occurs, then every non-faulty process pi either co-delivers m
or deposits m in msg seti. Hence, to prove the termination property of CO-broadcast we have to

show that any non-faulty process pi eventually co-delivers all the messages that are deposited in its

set msg seti. Let us observe that any two different application messages m and m′ are such that

m.causal past �= m′.causal past.
Let us assume by contradiction that some messages remain forever in a set msg seti. Let us

denote this set of messages blockedi, and let us order its messages according to the lexicographical

order <lex defined from their vectors m.causal past. (v = [a, b, c] and v′ = [a′, b′, c′] being two

vectors, v <lex v′ if (a < a′) ∨ (a = a′ ∧ b < b′) ∨ (a = a′ ∧ b = b′ ∧ c < c′).)
Let m be the first message of msg seti according to this lexicographical order, and px be the

process that issued CO broadcast (m). As m remains forever in msg seti, DCi(m) remains forever

false, and consequently there is at least one process identity k such that 0 ≤ causal pasti[k] <
m.causal past[k]. As m.causal past[k] = α is a constant, so is the last value of causal pasti[k].
Let β < α be this last value.

pk

px

pi

CO broadcast (m)

URB deliver (m)

CO deliver (m′)

CO broadcast (m′)

m ∈ msg seti ∧
URB deliver (m′)

m.last sn[k] = last snx[k] = α

last sni[k] = β < m.last sn[k] = α

m′.last sn[k] = α− 1

Figure 2.14: Proof of the CO-delivery property (second construction)

Moreover, as causal pastx[k] = m.causal past[k] = α ≥ 1, px co-delivered an application

message m′ from pk such that m′.causal past[k] = α − 1. This is depicted in Fig. 2.14. As px
co-delivered m′, it previously urb-delivered MSG (m′). It then follows from the termination property

of URB-broadcast that any non-faulty process (hence pi) eventually urb-delivers MSG (m′). When pi
urb-delivers MSG (m′), there are two cases:

• Case 1. DCi(m
′) is false and remains false forever. In this case, as m′ →M m, we have

m′.causal past <lex m.causal past (Lemma 1). It follows that m is not the first message of

msg seti according to lexicographical order. A contradiction.

• Case 2. m′ is eventually co-delivered by pi. In this case, causal pasti[k] becomes equal to

β + 1, which contradicts the fact that the last value taken by causal pasti[k] is β.

In both cases, we obtain a contradiction, which completes the proof of the CO-broadcast Termination

property.

Proof of the CO-delivery property. Let us consider a message m co-broadcast by a process pj . Thanks

to the initialization of causal pastj [1..n] to [0, . . . , 0] and its management at lines 9 and 14, it follows

that m.causal past[1..n] encodes the message causal past of m and no more, i.e., the set M1 of all

the messages m′ such that m′ →M m.

For a process pi that urb-delivered MSG (m), let us consider the time at which DCi(m) becomes

satisfied. When this occurs, the local array causal pasti[1..n] encodes the current message causal

past of pi, i.e., the set M2 of all the messages m′ such that m′ →M m′′ if pi was about to co-broadcast

the message m′′.
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The proof follows from the observation that DCi(m) states that m can be co-delivered only if

M1 ⊆M2. �Theorem 7

2.2.5 The Total Order Broadcast Abstraction Requires More

From FIFO/CO to the total order broadcast abstraction It is very important to notice that the

message delivery constraints imposed by the previous FIFO and CO communication abstractions are

defined from a message partial order, extracted from the execution itself. The delivery constraints are

on local variables and control values piggybacked by the messages. As we have seen, among other

features, a message that has been co-broadcast can be co-delivered by its sender immediately after it

has been broadcast.

This is because the constraints on the delivery order of the messages are defined only from their

causal past (which messages have been broadcast “before” by the same process for FIFO order, and

by any process for CO order). As we will see, this is no longer the case when one has to implement

the Total Order (TO) delivery property. In this case, any pair of messages has to be delivered in the

same order at any process, even if the broadcast of these messages is neither FIFO, nor CO-related.

p1

p2
m2

m1

Figure 2.15: Total order message delivery requires cooperation

To be more explicit, let us consider the messages m1 and m2 broadcast in Fig. 2.15. Neither of

these broadcasts is related to the other (i.e., there is neither a FIFO nor a CO relation linking them).

Hence, ensuring the Total Order message delivery property cannot rely only on control information

piggybacked by the messages that are broadcast by the application. The processes have to cooperate

(exchange additional control messages) to establish a common delivery order. This order has to be

defined by both p1 and p2, and if m1 is delivered first at p1, p2 cannot deliver m2 just after it broadcast

it.

Actually, as we will see in Chap. 16, it is impossible to construct a total order broadcast abstrac-

tion in CAMPn,t[∅]. This is a fundamental result of fault-tolerant distributed computing. It is impor-

tant to notice that, unlike the impossibility of the “common decision-making” problem (presented in

Chap. 1), which is due to messages losses in a system without process crashes, the total order broad-

cast impossibility is due to the net effect of asynchrony and process crashes even in a system model in

which no message is lost. This communication abstraction requires a system model strictly stronger

than CAMPn,t[∅] from a computability point of view. There is a computability gap separating TO-

broadcast, and FIFO and CO-broadcast: the latter can be implemented in a weaker system model than

the one needed to implement the TO-broadcast abstraction; TO-broadcast cannot be solved with the

mastering of message causality only.

The FIFO and CO constructions are very general It is important to stress the fact that, as shown

in this chapter, the FIFO and CO reliable broadcast abstractions can be implemented in any system

where URB-broadcast can be built. They can consequently be used on top of the URB constructions

described in the next chapter, which addresses the case where, in addition to process crashes, the

channels are not reliable, i.e., in systems weaker than CAMPn,t[∅].
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2.3 Summary

This chapter was devoted to one of the most important communication abstractions encountered in

asynchronous message-passing systems prone to process crash failures, namely, Uniform Reliable

Broadcast. This communication abstraction guarantees that any message urb-delivered by a process

(be it correct or faulty), is urb-delivered by any correct process. It follows that all correct processes

urb-deliver the same set of messages S (which includes at least the messages urb-broadcast by these

processes), while a faulty process urb-delivers a subset of S.

After presenting a simple URB-broadcast algorithm, which tolerates any number of process crashes,

the chapter presented two enhancements which provide higher communication levels, namely, FIFO-

URB-broadcast and CO-URB-broadcast.

2.4 Bibliographic Notes

• The problem of broadcasting messages in a reliable way in asynchronous systems prone to

process failures has given rise to a large amount of literature. Early seminal works can be found

in [68, 104, 117, 181, 348]. Surveys can be found in [48, 119].

A nice and very comprehensive presentation of fault-tolerant broadcast problems, their specifi-

cations and algorithms that solve them is given by V. Hadzilacos and S. Toueg in [207].

• An early paper on constraints on message order delivery is [348].

The causal message delivery property was introduced by K. Birman and T. Joseph [68]. The

construction from FIFO to CO-broadcast is due to V. Hadzilacos and S. Toueg [207]. The

presentation we followed is theirs.

The second CO-broadcast construction is a variant of an algorithm proposed by M. Raynal, A.

Schiper and S. Toueg that was designed for asynchronous failure-free systems [374].

The notion of causal message delivery has been extended to messages that carry data whose

delivery is constrained by real-time requirements [50] and to mobile environments [351].

• The total order broadcast is strongly related to the state machine replication paradigm [87, 255,

388]. Its impossibility in asynchronous systems prone to process crashes is related to the con-

sensus impossibility in these systems [162].

• Different types of broadcast operations are studied in [67, 150]. The books [66, 88, 271, 366]

present distributed programming approaches based on reliable broadcast.

2.5 Exercises and Problems

1. Consider a synchronous model in which

• there is a global clock CLOCK accessible to all processes,

• δ is an upper bound (known by the processes) on message transfer delays,

• processing times have zero duration,

• up to t < n processes may crash.

Design a uniform reliable broadcast algorithm which, in addition to the validity, integrity, and

termination properties, satisfies the following time-related property:

• Timeliness delivery. There is a known constant Δ such that if the URB-broadcast of an

application message m is initiated at real-time τ , no process urb-delivers m after real-time

τ +Δ.

Solution in [207].
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2. Let us consider an asynchronous system model stronger than CAMPn,t[∅], namely no process

crashes (i.e., t = 0) and the processes can access a global clock CLOCK . Each application

message m has a lifetime defined as the physical time duration during which, after m has been

broadcast, its content is meaningful and can consequently be used by its destination processes.

A message that arrives at its destination process after its lifetime has elapsed becomes useless

and must be discarded (for the destination process, it is as if the message has been lost). A

message that arrives at a destination process before its lifetime has elapsed must be delivered by

the expiration of its lifetime.

m

m

pk

pi

pj

λ

m is obsolete at pk

it is discarded by pk

τ τ + λ

it is co-delivered by pj

m is meaningful at pj

Figure 2.16: Broadcast of lifetime-constrained messages

It is assumed that all the messages have the same lifetime denoted λ. Let τ be the sending time

of a message m. The physical date τ + λ is consequently the deadline after which the message

m is useless for the processes that have not yet received it. This is illustrated in Fig. 2.16. If m
arrives by its deadline at pi, it must be processed by its deadline by pi. Alternatively, if m arrives

after its deadline at pj it must be discarded by pj . (In practice, a great percentage of messages

arrive by their deadlines, as is usually the case in distributed multimedia applications.)

Design an algorithm implementing a CO-URB-broadcast abstraction defined by the following

properties:

• Validity. If a process co-delivers a message m, then m was previously co-broadcast.

• Integrity. A process co-delivers a message m at most once.

• CO-delivery. For any pair of messages m and m′ such that m →M m′, which arrive at a

process pi by their deadlines, pi co-delivers m before m′.

• Expiry constraint. No message can be co-delivered by a process after its deadline.

• Termination. Any message that arrives by its deadline at a process pi is co-delivered by pi.

Solutions in [49]. (This message causality-related broadcast problem was introduced in [50].)



Chapter 3

Reliable Broadcast in the Presence of

Process Crashes and Unreliable Channels

The previous chapter presented several constructions for the uniform reliable broadcast (URB) abstrac-

tion. These constructions considered the asynchronous underlying system model CAMP [∅] in which

processes may crash and channels are reliable. These constructions differ in the quality of service they

provide to the application processes, this quality being defined with respect to the order in which the

messages are delivered (namely, FIFO or CO order). This order restricts message asynchrony.

This chapter introduces constructions of URB-broadcast suited to asynchronous systems prone to

process crashes and unreliable channels, i.e., asynchronous system models weaker than CAMPn,t[∅].

Keywords Asynchronous system, Communication abstraction, Distributed algorithm, Fair channel,

Fair lossy channel, Failure detector, Heartbeat failure detector, Impossibility result, Process crash

failure, Quiescence property, Reliable broadcast, Uniform reliable broadcast, Theta failure detector,

Unreliable channel.

3.1 A System Model with Unreliable Channels

3.1.1 Fairness Notions for Channels

Restrict the type of failures Trivially, if a channel can lose all the messages it has to transmit from

a sender to a receiver, no communication abstraction with provable guarantees can be defined and

implemented. So, in order to be able to compute on top of unreliable channels, we need to restrict the

type of failures a channel is allowed to exhibit. This is exactly what is addressed by the concept of

channel fairness.

All the messages transmitted over a channel are protocol messages (remember that the transmission

of an application message gives rise to protocol messages that are sent at the underlying abstraction

layer). Several types of protocol messages can co-exist at this underlying layer, e.g., protocol messages

that carry application messages, and protocol messages that carry acknowledgments. In the following,

we consider that each protocol message has a type denoted μ. Moreover, when there is no ambiguity,

the word “message” is used as a shortcut for “protocol message”, and “μ-message” is used as a shortcut

for “protocol message of type μ”.

Fairness with respect to μ-messages Considering a uni-directional channel that allows a process pi
to send messages to a process pj , let us observe that, at the network level, process pi can send the same

message several times to pj (for example, message re-transmission is needed to overcome message

losses). This channel is fair with respect to the message type μ if it satisfies the three following
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properties (all the messages that appear in these properties are messages carried by the channel from

pi to pj):

• μ-validity. If the process pj receives a μ-message (on this channel), then this message has been

previously sent by pi to pj .

• μ-integrity. If pj receives an infinite number of μ-messages from pi, then pi has sent an infinite

number of μ-messages to pj .

• μ-termination. If pi sends an infinite number of μ-messages to pj , and pj infinitely often exe-

cutes “receive () from pi”, it receives an infinite number of μ-messages from pi.

As they capture similar meanings, these properties have been given the same names as for URB-

broadcast introduced in the previous chapter. The validity property means that there is neither message

creation, nor message alteration. The integrity property states that, if a finite number of messages of

type μ are sent, the channel is not allowed to duplicate them an infinite number of times (it can

nevertheless duplicate them an unknown but finite number of times). Intuitively, this means that the

network performs only the re-transmissions issued by the sender.

Finally, the termination property states the condition under which the channel from pi to pj has to

eventually transmit messages of type μ, i.e., the condition under which a μ-message msg cannot be

lost. This is the liveness property associated with the channel. From an intuitive point of view, this

property states that if the sender sends “enough” μ-messages, some of these messages will be received.

In order to be as unrestrictive as possible, “enough” is formally stated as “an infinite number”. This is

much weaker than a specification such as “for every 10 consecutive sendings of μ-messages, at least

one message is received”, as this kind of specification would restrict unnecessarily the bad behavior

that a channel is allowed to exhibit.

3.1.2 Fair Channel (FC) and Fair Lossy Channel

Fair channel The notion of a “fair channel” encountered in the literature corresponds to the case

where (1) each protocol message msg defines a specific message type μ, and (2) the channel is fair

with respect to all the message types. Hence, the specification of a fair channel is defined by the

following properties:

• FC-validity. If pj receives a message msg from pi, then msg has been previously sent by pi to

pj .

• FC-integrity. For any message msg , if pj receives msg from pi an infinite number of times, then

pi has sent msg to pj an infinite number of times.

• FC-termination. For any message msg , if pi sends msg an infinite number of times to pj , and

pj executes “receive () from pi” infinitely often, it receives msg from pi an infinite number of

times.

As described by the FC-termination property, the only reception guarantee is that each message

msg that is sent infinitely often cannot be lost. This means that if a message msg is sent an arbitrary

but finite number of times, there is no guarantee on its reception. Let us observe that the requirement

“msg sent an infinite number of times” for a message to be received, does not prevent any number

of consecutive copies of msg from being lost, even an infinite number of copies from being lost (for

example, this is the case when all the even sendings of msg are lost, while all the odd sendings are

received).

Fair lossy channel The notion of a “fair lossy channel” encountered in the literature corresponds to

the case where all the protocol messages have the same message type. Hence, the specification of a

fair lossy channel is defined by the following properties.
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• FLL-validity. If pj receives a message from pi, this message has been previously sent by pi to

pj .

• FLL-integrity. If pj receives an infinite number of messages from pi, then pi has sent an infinite

number of messages to pj .

• FLL-termination. If pi sends an infinite number of messages to pj , and pj is non-faulty and

executes “receive () from pi” infinitely often, it receives an infinite number of messages from

pi.

While the FLL-termination property states that the channel transmits messages, it gives no information

on which messages are received.

Comparing fair channel and fair lossy channel As we are about to see, given an infinite sequence

of protocol messages, the notions of a fair channel and a fair lossy channel are different, none of them

includes the other one.

To this end, let us consider that the given infinite sequence of protocol messages is the infinite

sequence of the consecutive positive integers 1, 2, etc. Hence, no two messages sent by pi are the

same. If the channel from pi to pj is fair lossy, the termination property guarantees that pj will receive

an infinite sequence of integers (but it is possible that an infinite number of different integers will

never be received). Whereas if the channel is fair, it is possible that no integer is ever received (this is

because no integer is sent an infinite number of times).

Let us now consider that the sequence of protocol messages that is sent by pi is the alternating

sequence of 1, 2, 1, 2, 1, etc. If the channel from pi to pj is fair, both 1 and 2 are received infinitely

often (this is because both integers are sent an infinite number of times). Differently, if the channel is

fair lossy, it is possible that pj receives the integer 1 an infinite number of times and never receives the

integer 2 (or receives 2 and never receives 1).

This means that when one has to prove a construction based on unreliable channels, one has to be

very careful regarding the type of unreliable channels, namely, fair or fair lossy.

From fair lossy channel to a fair channel Given an infinite sequence of protocol messages msg1,

msg2, msg3, etc., which pi wants to send to pj , it is possible to construct new protocol messages (the

ones that are really sent over the channel) such that each message msgx is eventually received by pj
(if it is non-faulty) under the assumption that the channel is fair lossy.

Let msg1 be the first protocol message that pi wants to send to pj . It actually sends instead the

“real” protocol message 〈msg1〉. When it wants to sends the second protocol message msg2, it actu-

ally sends the “real” protocol message made up of the sequence 〈msg1,msg2〉. Similarly, pi sends the

sequence 〈msg1,msg2,msg3〉 when it wants to send its third protocol message msg3, etc. Hence, the

sequence of protocol messages successively sent by pi to pj is the sequence 〈msg1〉, 〈msg1,msg2〉,
〈msg1,msg2,msg3〉, etc. It follows that, in the infinite sequence of “real” protocol messages sent by

pi, all “real” protocol messages sent by pi are different (each being a sequence whose prefix is the

sequence that constitutes the previous message). If pj is non-faulty and the channel is fair lossy, this

simple construction ensures that every msgx is received infinitely often by pj . Hence, considering the

infinite sequence of protocol messages msg1, msg2, etc., which pi wants to send to pj , this construc-

tion simulates a fair channel on top of a fair lossy channel. The price of this construction is the size of

the “fair lossy” protocol messages that increases without bound.

3.1.3 Reliable Channel in the Presence of Process Crashes

An abstraction for the application layer A reliable channel is a communication abstraction that

neither creates, nor duplicates, nor loses messages. Its definition is at the same abstraction level as
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the definition of URB-broadcast. It is an abstraction offered to the application layer, and consequently

considers application messages, each of them being unique.

The formal definition of a reliable channel from pi to pj is given by the following three properties:

• RC-validity. If pj receives a message m from pi, then m was previously sent by pi to pj .

• RC-integrity. Process pj receives a message m at most once.

• RC-termination. If pi completes the sending of k messages to pj , then, if pj is non-faulty and

executes k times “receive () from pi”, pj receives k messages from pi.

This definition captures the fact that each message m sent by pi to pj is received exactly once by

pj . The words “pi completes the sending of m” mean that, if pi does not crash before returning from

the invocation of the send operation, the “underlying network” (i.e., the implementation of the reliable

channel abstraction) guarantees that m will arrive at pj . Whereas if pi crashes during the sending of

its kth message to pj , pj eventually receives the previous (k − 1) messages sent by pi, while there is

no guarantee on the reception of the kth message sent by pi to pj (this message may or not be received

by pj).

Remark Let us notice that the termination property considers that pj is non-faulty. This is because,

if pj crashes, due to process and message asynchrony, it is not possible to state a property on which

messages must be received by pj .

Let us also notice that it is not possible to conclude from the previous specification that a reliable

channel ensures that the messages are received in their sending order (FIFO reception order). This is

because, once messages have been given to the “underlying network”, nothing prevents the network

from reordering messages sent by pi.

Reliable channel vs uniform reliable broadcast As we have seen in the previous chapter, URB-

broadcast is a one-shot problem defined with respect to the broadcast of a single application message.

This means that the URB-broadcast of a message m1 and the URB-broadcast of a message m2 consti-

tute two distinct instances of the URB problem.

Whereas the reliable channel abstraction is not a one-shot problem. Its specification involves

all the messages sent by a process pi to a process pj . The difference in the specification of both

communication abstractions appears clearly in their termination properties.

3.1.4 System Model

In the rest of this chapter we consider an asynchronous system made up of n processes prone to process

crashes and where each pair of processes is connected by two unreliable but fair channels (one in each

direction). This system model is denoted CAMPn,t[- FC], namely it is CAMPn,t[∅], weakened by

- FC (the fair channel assumption).

3.2 URB-broadcast in CAMPn,t[- FC]

This section first presents an URB-broadcast construction suited to the system model CAMPn,t[- FC]
constrained by the condition t < n/2, i.e., any execution of an algorithm in this model assumes

that there is a majority of processes – not known in advance – which never crash. This constrained

model is consequently denoted CAMPn,t[- FC, t < n/2]. It is then shown that this additional model

assumption is a necessary requirement for the construction when processes are not provided with

information on the actual failure pattern.
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3.2.1 URB-broadcast in CAMPn,t[- FC, t < n/2]

Principle Designing an algorithm that implements URB-broadcast in CAMPn,t[- FC, t < n/2] is

pretty simple. The construction relies on two simple basic techniques:

• First, use the classical re-transmission technique in order to build a reliable channel on top of a

fair channel.

• Second, locally urb-deliver an application message m to the upper application layer only when

this message has been received by at least one non-faulty process. As there are at least (n −
t) non-faulty processes and n − t > t (model assumption), this means that, without risking

remaining blocked forever, a process pi may urb-deliver m as soon as it knows that at least

(t+ 1) processes have received a copy of m.

As a message that is urb-delivered by a process is in the hands of at least one correct process, that

correct process can transmit it safely to the other processes (by repeated sendings) thanks to the fair

channels that connect it to the other processes.

The construction The construction is described in Figure 3.1. When a process pi wants to urb-

broadcast a message m, it sends the protocol message MSG (m) to itself (to simplify and without loss

of generality we assume there is reliable channel from a process to itself).

The central data structure used in the construction is an array of sets, denoted rec byi, where the

set rec byi[m] is associated with the application message m. This set contains the identities of all the

processes that, to pi’s knowledge, received a copy of MSG (m).

operation URB broadcast (m) is send MSG (m) to pi.

when MSG (m) is received from pk do

(1) if (first reception of m)

(2) then allocate rec byi[m]; rec byi[m] ← {i, k};

(3) activate task Diffusei(m)
(4) else rec byi[m] ← rec byi[m] ∪ {k}
(5) end if.

when (|rec byi[m]| ≥ t+ 1) ∧ (pi has not yet urb-delivered m) do

(6) URB deliver (m).

task Diffusei(m) is

(7) repeat forever

(8) for each j ∈ {1, . . . , n} do send MSG (m) to pj end for

(9) end repeat.

Figure 3.1: Uniform reliable broadcast in CAMPn,t[- FC, t < n/2] (code for pi)

When it receives MSG (m) for the first time (line 1), pi creates the set rec byi[m] and updates

it to {i, k} where pk is the process that sent MSG (m) (line 2). Then pi activates a task, denoted

Diffusei(m) (line 3). If it is not the first time that MSG (m) has been received, pi only adds k to

rec byi[m] (line 4). Diffusei(m) is the local task that is in charge of re-transmitting the protocol

message MSG (m) to the other processes in order to ensure the eventual URB-delivery of m, namely

pi repeatedly forwards the protocol message MSG (m) to each other process pj .

Finally, when it has received MSG (m) from at least one non-faulty process (this is operationally

controlled by the predicate |rec byi[m]| ≥ t+ 1), pi urb-delivers m, if not yet done (line 6).

Let us remember that, as in the previous chapter, the processing associated with the reception of

a protocol message is atomic, which means here that the processing of any two messages MSG (m1)
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and MSG (m2) are never interleaved, they are executed one after the other. This atomicity assumption,

which is on any protocol message reception (i.e., whatever its MSG or ACK type) is valid through-

out this chapter (ACK protocol messages will be used in Section 3.5). However, several local tasks

Diffusei(m1), Diffusei(m2), etc., are allowed to run concurrently.

Remark acknowledgment messages It is important to note that the task Diffusei(m) forever sends

protocol messages (and consequently never terminates). The use of acknowledgments (which would

be used to fill in the set rec byi[m] to prevent useless re-transmissions) cannot prevent this infinite

sending of protocol messages, as shown by the following scenario. Let pj be a process that has crashed

before a process pi issues URB broadcast (m). In this case pj will never acknowledge MSG (m),
and consequently pi will forever execute MSG (m) to pj . To prevent these infinite re-transmissions,

processes must be provided with appropriate information on failures. This is the topic addressed in

Section 3.5 of this chapter.

Theorem 8. The algorithm described in Fig. 3.1 implements the URB-broadcast abstraction in the

system model CAMPn,t[- FC, t < n/2].

Proof (The proof of this construction is a simplified version of the proof of the more general con-

struction given in Section 3.5.) The validity property (neither creation nor alteration of application

messages) and the integrity property (an application message is received at most once) of the URB

abstraction follow directly from the text of the construction. So, we focus here on the proof of the

termination property of the URB-broadcast abstraction. There are two cases:

• Let us first consider a non-faulty process pi that urb-broadcasts a message m. We have to show

that each non-faulty process urb-delivers m. As pi is non-faulty, it activates the task Diffusei(m)
and forever sends MSG (m) to every other process pj . As the channels are fair, it follows that

each non-faulty process px eventually receives MSG (m). The first time this occurs, px activates

the task Diffusex(m). Hence, each non-faulty process infinitely often sends MSG (m) to every

process. Due to termination property of the fair channels, and the assumption that there is a

majority of non-faulty processes, it follows that the set rec byi[m] eventually contains (t + 1)
process identities (lines 2 and 4). Hence, the URB-delivery condition of m eventually becomes

true at every non-faulty process, which proves the theorem for the case of a non-faulty process

that urb-broadcasts an application message.

• We have now to prove the second case of the URB-broadcast termination property, namely, if a

(non-faulty or faulty) process px urb-delivers a message m, then every non-faulty process urb-

delivers m. If px urb-delivers a message m, we have |rec byx[m]| ≥ t+ 1, which means that at

least one non-faulty process pi received the protocol message MSG (m). When this non-faulty

process pi received MSG (m) for the first time, it activated the task Diffusei(m). The rest of the

proof is then the same as the previous case.
�Theorem 8

3.2.2 An Impossibility Result

This section shows that the assumption t < n/2 is a necessary requirement on the maximal number

of process crashes when one wants to construct URB-broadcast in the system model CAMPn,t[- FC].
The proof of this impossibility is based on an “indistinguishability” argument.

Theorem 9. There is no algorithm implementing URB-broadcast in CAMPn,t[- FC, t ≥ n/2].

Proof The proof is by contradiction. Let us assume that there is an algorithm A that constructs the

URB-broadcast abstraction in CAMPn,t[- FC, t ≥ n/2]. Given t ≥ n/2, let us partition the processes

into two subsets P1 and P2 (i.e., P1∩P2 = ∅ and P1∪P2 = {p1, . . . , pn}) such that |P1| = �n/2�
and |P2| = �n/2�. Let us consider the following executions E1 and E2:
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• Execution E1. In this execution, the processes of P2 crash initially, and the processes in P1 are

non-faulty. Moreover, a process px ∈ P1 issues URB broadcast (m). Due to the very existence

of the algorithm A, every process of P1 urb-delivers m.

• Execution E2. In this execution, the processes of P2 are non-faulty, and no process of P2 ever

issues URB broadcast (). The processes of P1 behave as in E1: px issues URB broadcast (m),
and they all urb-deliver m. Moreover, after they urb-deliver m, each process of P1 crashes, and

all the protocol messages ever sent by a process of P1 are lost (and consequently are never

received by the processes of P2). It is easy to see that this is possible as no process of P1 can

distinguish this run from E1.

Let us observe that the fact that no message sent by a process of P1 is ever received by any

process of P2 is possible because the termination property associated with the fair channels

that connect the processes of P1 to the processes of P2 requires that the sender of a protocol

message must be non-faulty in order to have the certainty that this message is ever received.

(There is no reception guarantee for a message that is sent an arbitrary, but finite, number of

times.)

As, in the execution E2, no process of P2 ever receives a message from a process of P1, none

of these processes can urb-deliver m, which completes the proof of the theorem.
�Theorem 9

Impossibility vs uniformity requirement Let us observe that the previous impossibility result is

due to the uniformity requirement stated in the Termination property of the URB abstraction. More

precisely, this property states that, if a process pi urb-delivers a message m, then every non-faulty

process has to urb-deliver m. The fact that the process pi can be a faulty or a non-faulty process

defines the uniformity requirement.

If this property is weakened to “if a non-faulty process pi urb-delivers a message m, then all the

non-faulty processes urb-deliver m”, then we have the simple (non-uniform) reliable broadcast, and

the impossibility result no longer holds. When we look at the construction in Fig. 3.1, the predicate

|rec byi[m]| ≥ t+ 1 is used to ensure the uniformity requirement. It ensures that, when a message is

urb-delivered, at least one non-faulty process has a copy of it.

3.3 Failure Detectors: an Approach to Circumvent Impossibilities

3.3.1 The Concept of a Failure Detector

The concept of a failure detector is one of the main approaches that have been proposed to circumvent

impossibility results in fault-tolerant asynchronous distributed computing models. It is due to T. Chan-

dra and S. Toueg (1996). From an operational point of view, a failure detector can be seen as an oracle

made up of several modules, each associated with a process. The module attached to process pi pro-

vides it with hints concerning which processes have failed. Failure detectors are divided into classes

based on the particular type of information they provide on failures. Different problems may require

different classes of failure detectors in order to be solved in an otherwise fault-prone asynchronous

distributed system model.

There are two main characteristics of the failure detector approach, one associated with its software

engineering feature, and the other associated with its computability dimension.

The software engineering dimension of failure detectors A failure detector class is defined by a

set of abstract properties. This way, a failure detector-based distributed algorithm relies only on the

properties that define the failure detector class, regardless of the way they are implemented in a given
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system (in the following we sometimes say “failure detector FD” for “any failure detector of the class

FD”). This software engineering dimension of the failure detector approach favors algorithm design,

algorithm proof, modularity, and portability.

Similarly to a stack and a queue that are defined by their specification, and can have many different

implementations, a failure detector of a given class can have many different implementations each

taking into account appropriate features of a particular underlying system (such as its topology, local

clocks, distribution of message delays, timers, etc.). Due to the fact that a failure detector is defined

by abstract properties and not in terms of a particular implementation, an algorithm that uses it does

not need to be rewritten when the underlying system is modified.

It is important to notice that, in order for a failure detector to be implementable, the underlying

system has to satisfy additional behavioral properties (which in some sense restrict its asynchrony).

(If not, the impossibility result – that the considered failure detector allows us to circumvent – would

no longer hold.)

Let A be an abstraction (object, problem) that can be solved in a system model enriched with a

failure detector FD. The failure detector concept favors separation of concerns as follows:

• Design and prove correct a distributed algorithm that implements (solves) A in a system model

enriched with FD.

• Independently from the previous item, investigate the system behavioral properties that have to

be satisfied for FD to be implementable, and provide an implementation of FD for these systems.

The computability dimension of failure detectors Given a problem Pb that cannot be solved in an

asynchronous system prone to failures (e.g., build URB-broadcast in CAMPn,t[- FC, t ≥ n/2]), the

failure detector approach allows us to investigate and state the minimal assumptions on failures the

processes have to be provided with, in order for the problem Pb to be solved. This is the computability

dimension of the failure detector approach.

An interesting side of this computability dimension lies in the ranking of problems according to

the weakest failure detectors that these problems require to be solved. (The notion of “weakest” failure

detector for the register problem will be discussed later in the book, e.g., in Chap. 7 and Chap. 17.) This

provides us with a failure detector-based method to establish a hierarchy among distributed computing

problems.

3.3.2 Formal Definitions

Failure pattern A failure pattern defines a possible set of failures, along with their occurrence times,

that can occur during an execution. Formally, a failure pattern is a function F : IN → 2Π, where

IN is the set of natural numbers (time domain), and 2Π is the power-set of Π (the set of all sets of

process identities). The time domain has to be understood as the time of an external observer, which

is inaccessible to the processes.

Considering the models with process crash failures (e.g., CAMPn,t[∅]), F (τ) denotes the set of

processes that have crashed up to time τ . As a crashed process does not recover, we have F (τ) ⊆
F (τ + 1). Let Faulty(F ) be a set of processes that crash in an execution with failure pattern F .

Let τmax denote the end of that execution. We then have Faulty(F ) = F (τmax). As τmax is not

known and depends on the execution, and we want to be as general as possible (and not tied to a

time-specific class of executions), we (conceptually) consider that an execution never ends, i.e., we

consider that τmax = +∞. We have accordingly Faulty(F ) = ∪1≤τ<+∞F (τ) = limτ→+∞ F (τ).
Let Non-faulty(F ) = Π − Faulty(F ) (the set of processes that do not crash in F ). Correct(F ) is

used as a synonym of Non-faulty(F ).
It is important to notice that the notions of faulty process and correct process are defined with

respect to a failure pattern, i.e., to the failure pattern that occurs in a given execution. Different

executions might have different failure patterns.
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Failure detector history with rangeR A failure detector history with rangeR describes the behav-

ior of a failure detector during an execution. R defines the type of information on failures provided to

the processes. Here we consider failure detectors whose range is the set of process identities, or arrays

of natural integers, whose dimension n is the number of processes.

A failure detector history is a function H : Π×IN→ R, where H(pi, τ) is the value of the failure

detector module of process pi at time τ . This means that each process pi is provided with a read-only

local variable that contains the current value of H(pi, τ).

Failure detector class FD with rangeR A failure detector class FD with rangeR is a function that

maps each failure pattern F to a set of failure detector histories with rangeR. This means that FD(F )
represents the whole set of possible behaviors that the failure detector FD can exhibit when the actual

failure pattern is F .

Environment It is important to notice that the output of a failure detector does not depend on the

computation produced by an algorithm; it depends only on the actual failure pattern, and is a feature

of what is called the environment. More generally, the notion of an environment captures everything

that is not under the control of the algorithm (failures, speed of processes, message transit times,

non-determinism, etc.).

Moreover, a given failure detector might associate several histories with each failure pattern. Each

history represents a possible sequence of outputs for the same failure pattern; this feature captures the

inherent non-determinism of a failure detector.

Remark The failure detector classes presented in this book do not appear in their historical order (the

order in which they have been chronologically introduced in research articles). They are introduced

according to the order in which this book presents the problems that they allow us to solve.

3.4 URB-broadcast in CAMPn,t[- FC] Enriched with a Failure Detector

The previous impossibility result (Theorem 9) states that there is no algorithm implementing the URB-

broadcast abstraction in CAMPn,t[- FC, t ≥ n/2]. Whereas if we know in advance that there is a

predefined process px that never crashes, URB-broadcast can be solved (the other processes can use

it as centralized server). Hence the following natural question: Which information on failures do the

processes have to be provided with in order for the URB abstraction to be built whatever the value

of t?
This section first presents the failure detector class, denoted Θ (the weakest failure detector class

that answers the previous question), and then an algorithm building URB-broadcast in the system

model CAMPn,t[- FC, Θ].

3.4.1 Definition of the Failure Detector Class Θ

The failure detector class Θ was introduced by M. Aguilera, S. Toueg, and B. Deianov (1999). A

failure detector of this class provides each process pi with a read-only local variable, a set denoted

trustedi. Let trustedτi denote the value of trustedi at time τ . Remember that this notion of time is

with respect to an external observer: no process has access to it. Let us also remember that Correct(F )
denotes the set of processes that are non-faulty in that run. Given a run with the failure pattern F , Θ
is defined by the following properties (using the formal notation introduced in Section 3.3.2, we have

trustedτi = H(i, τ)):

• Accuracy. ∀i ∈ Π : ∀τ ∈IN:
(
trustedτi ∩ Correct(F )

)
�= ∅.

• Liveness. ∃τ ∈IN: ∀τ ′ ≥ τ : ∀i ∈ Correct(F ) : trustedτ
′

i ⊆ Correct(F ).
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The accuracy property is a perpetual property stating that, at any time, any set trustedi contains

at least one non-faulty process. Let us notice that this process is not required to always be the same,

it can change with time. The liveness property states that, after some time, the set trustedi of any

non-faulty process pi contains only non-faulty processes.

3.4.2 Solving URB-broadcast in CAMPn,t[- FC, Θ]

Constructing an URB abstraction in the system model CAMPn,t[- FC] enriched with a failure detec-

tor of the class Θ is particularly easy. The only modification of the construction described in Fig. 3.1

consists in replacing the urb-delivery predicate (just before line 6), namely, replacing

(|rec byi[m]| ≥ t+ 1) ∧ (pi has not yet urb-delivered m),

with

(trustedi ⊆ rec byi[m]) ∧ (pi has not yet urb-delivered m).

The accuracy property of Θ guarantees that, when pi urb-delivers an application message m, at

least one non-faulty process has a copy of m. As we have seen in the construction of Fig. 3.1, this

guarantees that the application message m that is urb-delivered can no longer be lost. The liveness

property of Θ guarantees that eventually m can be locally urb-delivered (let us observe that, if a faulty

process could remain forever in trustedi, it could prevent the predicate trustedi ⊆ rec byi[m]) from

becoming true).

3.4.3 Building a Failure Detector Θ in CAMPn,t[- FC, t < n/2]

As urb-broadcast can be implemented in CAMPn,t[- FC, t < n/2], and in the more general system

model CAMPn,t[- FC, Θ] (i.e., whatever the value of t), it follows that Θ can be implemented in

CAMPn,t[- FC, t < n/2].
The corresponding construction is described in Fig. 3.2. Each process pi manages a queue queuei,

which initially contains all the processes in any order. Process pi repeatedly broadcasts the message

ALIVE(), and, when it receives a message ALIVE() from pk, it moves pk at the head of the queue, and

sets trustedi to the �n+1
2 � processes at the head of the queue.

initialization: trustedi ← any set of �n+1

2
 processes.

background task: repeat forever broadcast ALIVE() end repeat.

when ALIVE () is received from pk do

(1) suppress pk from queuei; add pk at the head of queuei;
(2) trustedi ← the �n+1

2
 processes at the head of queuei.

Figure 3.2: Building Θ in CAMPn,t[- FC, t < n/2] (code for pi)

Theorem 10. The algorithm described in Fig. 3.2 implements a failure detector Θ in the system model

CAMPn,t[- FC, t < n/2].

Proof The accuracy property follows from the fact that trustedi always contains a majority of pro-

cesses, and, as t < n/2, there is always a correct process in the first �n+1
2 � processes at the head of

any queue queuei.
The liveness property follows from the following observation. After some time the faulty processes

no longer send messages ALIVE(), while, as the channels are fair, each correct process receives an

infinite number of messages from each correct process. It follows that, after some finite time, each

correct process repeatedly appears at the head of any queue, and faulty processes are shifted to the
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end of the queue. As there is a majority of correct processes, there is a finite time after which the

first �n+1
2 � processes at the head of the queue queuei of any correct process pi are correct processes.

�Theorem 10

3.4.4 The Fundamental Added Value Supplied by a Failure Detector

When considering a failure detector, here Θ, the fundamental added value with respect to the assump-

tion t < n/2 lies in the fact that a failure detector allows us to know which is the weakest information

on failures the processes have to be provided with for a problem to be solved. The condition t < n/2 is

a model assumption, it is not the weakest information on failures that allows the construction of URB-

broadcast in an asynchronous system whose communication channels are fair. Even when t ≥ n/2,

the “oracle” Θ allows URB-broadcast to be built.

3.5 Quiescent Uniform Reliable Broadcast

After introducing the quiescence property, this section introduces three failure detector classes that

can be used to obtain quiescent URB-broadcast algorithms. The first one is the class of perfect failure

detectors (denoted P ), the second one the class of eventually perfect failure detectors (denoted �P ),

and the third one the class of heartbeat failure detectors (denoted HB ).

It is shown that P ensures more than the quiescence property (namely, it also ensures termina-

tion which means that there is a time after which a process knows it will never have to send more

messages). The class �P is the weakest class of failure detectors (with bounded outputs) that allows

for the construction of quiescent uniform reliable broadcast. Unfortunately, no failure detector of the

classes P and �P can be implemented in a pure asynchronous system. Finally, the class HB allows

quiescent uniform reliable broadcast to be implemented. The failure detectors of this class have un-

bounded outputs, but can be implemented in pure asynchronous systems (their implementations are

not quiescent).

3.5.1 The Quiescence Property

Prevent an infinity of protocol messages In the previous URB-broadcast constructions, a correct

process is required to send protocol messages forever. This is highly undesirable. The use of acknowl-

edgment messages can easily solve this problem in asynchronous systems where every channel is fair

and no process ever crashes. Each time a process pk receives a protocol message MSG (m) from a

process pi, it sends back ACK (m) to pi, and when pi receives this acknowledgment message it adds

k to rec byi[m]. Moreover, a process pi keeps on sending MSG (m) only to the processes that are

not in rec byi[m]. Due to the fairness of the channels and the fact that no process crashes, eventually

rec byi[m] contains all the process identities, and consequently pi will stop sending MSG (m).

Unfortunately (as indicated in Section 3.2.1), this classic “re-transmission + acknowledgment”

technique does not work when processes may crash. This is due to the trivial observation that a crashed

process cannot send acknowledgments, and (due to asynchrony) a process pi cannot distinguish a

crashed process from a very slow process or a process with which the communication is very slow.

The previous problem is known as quiescence problem, and solving it requires appropriate failure

detectors.

Quiescence property: definition An algorithm that implements a communication abstraction is

quiescent (or “satisfies the quiescence property”) if each application message it has to transfer to its

destination processes gives rise to a finite number of protocol messages.
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It is important to see that the quiescence property is not a property of a communication abstraction

(it does not belong to its definition); it is a property of its construction (the algorithm that implements

it). Hence, among all the constructions that correctly implement a communication abstraction, some

are quiescent while others are not.

3.5.2 Quiescent URB-broadcast Based on a Perfect Failure Detector

This section introduces the class of perfect failure detectors, denoted P , and shows how it can be used

to design a quiescent URB construction.

The class P of perfect failure detectors This failure detector class, introduced by T. Chandra and

S. Toueg (1996), provides each process pi with a local variable suspectedi, which is a set that pi can

only read. The range of this failure detector class is the set of process identities. Intuitively, at any

time, suspectedi contains the identities of the processes that pi considers to have crashed.

More formally (as defined in Section 3.3.2), a failure detector of the class P satisfies the following

properties. Let us remember that, given a failure pattern F , F (τ) denotes the set of processes that

have crashed at time τ , Correct(F ) the set of processes that are non-faulty in the failure pattern F and

Faulty(F ) the set of processes that are faulty in F . Observe that Correct(F ) and Faulty(F ) define a

partition of Π = {1, . . . , n}. Moreover, let Alive(τ) = Π \ F (τ) (the set of processes not crashed at

time τ ). Finally, suspectedτi denotes the value of suspectedi at time τ .

• Completeness. ∃τ ∈ IN: ∀ τ ′ ≥ τ : ∀ i ∈ Correct(F ), ∀ j ∈ Faulty(F ): j ∈ suspectedτ
′

i .

• Strong accuracy. ∀ τ ∈ IN: ∀ i, j ∈ Alive(τ): j /∈ suspectedτi .

The completeness property is an eventual property that states that there is a finite but unknown

time (τ ) after which any faulty process is definitely suspected by any non-faulty process. The strong

accuracy property is a perpetual property that states that no process is suspected before it crashes.

It is trivial to implement a failure detector satisfying either the completeness or the strong accu-

racy property. Defining permanently suspectedi = {1, . . . , n} satisfies completeness, while always

defining suspectedi = ∅ satisfies strong accuracy. The fact that, due to the asynchrony of processes

and messages, a process cannot distinguish if another process has crashed or is very slow, makes it

impossible to implement a failure detector of the class P without enriching the underlying unreliable

asynchronous system with synchrony-related assumptions (this issue will be addressed in Chap. 18).

P with respect to Θ A failure detector of the class Θ can easily be built in CAMPn,t[P ] (system

model CAMPn,t[∅] enriched with a perfect failure detector P ). This can be done by defining trustedi
as being always equal to the current value of {1, . . . , n} \ suspectedi.

Whereas a failure detector of the class P cannot be built in CAMPn,t[Θ], from which it follows

that P is a failure detector class strictly stronger than Θ. This means that CAMPn,t[Θ, P ] is not

computationally stronger than CAMPn,t[P ]. Nevertheless, even if Θ can be built in CAMPn,t[P ]
we still use the model notation CAMPn,t[Θ, P ] which provides us with Θ for free. This favors an

incremental design (on top of the algorithm described in Fig. 3.1), whose modularity (separation of

concerns) facilitates the understanding and the proof.

A quiescent URB construction in CAMPn,t[Θ, P ] In this model, each process pi has read-only

access to both the failure detector-provided local variables: trustedi and suspectedi.

• As we have already seen, Θ is used to ensure the second part of the termination property,

namely, if a process urb-delivers an application message m, any non-faulty process urb-delivers

it. Hence, the “uniformity” of the reliable broadcast is obtained thanks to Θ.

• P is used to obtain the quiescence property. In later sections, P will be replaced by a weaker

failure detector class.
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operation URB broadcast (m) is send MSG (m) to pi.

when MSG (m) is received from pk do

(1) if (first reception of m)

(2) then allocate rec byi[m]; rec byi[m] ← {i, k};

(3) activate task Diffusei(m)
(4) else rec byi[m] ← rec byi[m] ∪ {k}
(5) end if;

(6) send ACK (m) to pk.

when ACK (m) is received from pk do

(7) rec byi[m] ← rec byi[m] ∪ {k}.

when (trustedi ⊆ rec byi[m]) ∧ (pi has not yet urb-delivered m) do

(8) URB deliver (m).

task Diffusei(m) is

(9) repeat

(10) for each j ∈ {1, . . . , n} \ rec byi[m] do

(11) if (j /∈ suspectedi) then send MSG (m) to pj end if

(12) end for

(13) until (rec byi[m] ∪ suspectedi) = {1, . . . , n} end repeat.

Figure 3.3: Quiescent uniform reliable broadcast in CAMPn,t[- FC, Θ, P ] (code for pi)

The quiescent URB construction for CAMPn,t[Θ, P ] is described in Fig. 3.3. It is the same as

the one described in Fig. 3.1 (where the predicate |rec byi[m]| ≥ t + 1 is replaced by trustedi ⊆
rec byi[m] to benefit from Θ) enriched with the following additional statements:

• Each time a process pi receives a protocol message MSG (m), it systematically sends back to its

sender an acknowledgment message denoted ACK (m) (line 6). Moreover, when a process pi
receives ACK (m) from a process pk, it knows that pk has a copy of the application message m
and it consequently adds k to rec byi[m] (line 7). (Let us observe that this would be sufficient

to obtain a quiescent URB construction if no process ever crashes.)

• In order to prevent a process pi from forever sending protocol messages to a crashed process pj ,
the task Diffusei(m) is appropriately modified. A process pi repeatedly sends the protocol mes-

sage MSG (m) to a process pj only if j /∈ (rec byi[m] ∪ suspectedi) (lines 10-11). Due to the

completeness property of the failure detector class P , pj will eventually appear in suspectedi if

it crashes. Moreover, due to the strong accuracy property of the failure detector class P , pj will

not appear in suspectedi before pj crashes (if it ever crashes).

The proof that this algorithm is a quiescent construction of the URB abstraction is similar to the

proof (given below) of the construction shown in Fig. 3.4 for the system model CAMPn,t[- FC, Θ,HB ].
It is consequently left to the reader.

Terminating construction Let us observe that the construction in Fig. 3.3 is not only quiescent but

also terminating. Termination is a stronger property than quiescence.

More precisely, for each application message m, the task Diffusei(m) not only stops sending

messages, but eventually terminates. This means that there is a finite time after which the predicate

(rec byi[m]∪suspectedi) = {1, . . . , n}, which controls the exit of the repeat loop, becomes satisfied.

When this occurs, the task Diffusei(m) no longer has to send protocol messages and can consequently

terminate.

This is due to the properties of the failure detector class P , from which we can conclude that

(1) the predicate rec byi[m] ∪ suspectedi = {1, . . . , n} eventually becomes true, and (2) when the
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set suspectedi becomes true it contains only crashed processes (no non-faulty process is mistakenly

considered as crashed by the failure detector).

As we are about to see below, the termination property can no longer be guaranteed when a failure

detector of the class �P or HB (defined below) is used instead of a failure detector of the class P .

The class �P of eventually perfect failure detectors Like the class P , the class of eventually

perfect failure detectors, denoted �P , was introduced by T. Chandra and S. Toueg (1996). It provides

each process pi with a set suspectedi that satisfies the following property: the sets suspectedi can

arbitrarily output values during a finite but unknown period of time, after which their outputs are the

same as the ones of a perfect failure detector. More formally, �P includes all the failure detectors that

satisfy the following properties:

• Completeness. ∃ τ ∈ IN: ∀ τ ′ ≥ τ : ∀ i ∈ Correct(F ), ∀ j ∈ Faulty(F ): j ∈ suspectedτ
′

i .

• Eventual strong accuracy. ∃ τ ∈ IN: ∀ τ ′ ≥ τ : ∀ i, j ∈ Alive(τ ′): j /∈ suspectedτ
′

i .

The completeness property is the same as for P : every process that crashes is eventually suspected

by every non-faulty process. The accuracy property is weaker than the accuracy property of P . It

requires only that there is a time after which no correct process is suspected. Hence, the set suspectedi
of a non-faulty process eventually contains all the crashed processes (completeness), and only them

(eventual strong accuracy).

As we can see, both properties are eventual properties. There is a finite anarchy period during

which the values read from the sets {suspectedi}1≤i≤n can be arbitrary (e.g., a non-faulty process

can be mistakenly suspected, in a permanent or intermittent manner, during that arbitrarily long period

of time). The class P is strictly stronger than the class �P . It is easy to see that the classes �P and

Θ cannot be compared (see Exercise 3 in Section 3.8).

�P -based quiescent (but not terminating) URB A quiescent URB construction that works in the

model CAMPn,t[- FC, Θ,�P ] is obtained by replacing the predicate that controls the termination of

the task Diffusei(m) (line 13 in Fig. 3.3), by the following weaker predicate rec byi[m] = {1, . . . , n}.
This modification is due to the fact that a set suspectedi no longer permanently guarantees that all the

processes it contains have crashed. As previously mentioned, during a finite but unknown anarchy

period, these sets can contain arbitrary values. But, interestingly, despite the possible bad behavior

of the sets suspectedi, the test j /∈ suspectedi (that controls the sending of a protocol message to

pj in the task Diffuse(m)) is still meaningful. This is due to the fact that we know that, after some

finite time, suspectedi will contain only crashed processes and will eventually contain all the crashed

processes. It follows from the previous observation that the construction for CAMPn,t[- FC, Θ,�P ]
is quiescent but not necessarily terminating (according to the failure pattern, it is possible that the

termination predicate rec byi[m] = {1, . . . , n} is never satisfied).

3.5.3 The Class HB of Heartbeat Failure Detectors

The weakest class of failure detectors for quiescent communication The range of the failure

detector classes P and �P is 2Π (the value of suspectedi is a set of process identities); so, their

outputs are bounded. It has been shown that �P is the weakest class of failure detectors with bounded

outputs that can be used to implement quiescent reliable communication in asynchronous systems

prone to process crashes and where the channels are unreliable but fair. Unfortunately, it is impossible

to implement a failure detector of the class �P in CAMPn,t[∅] and consequently it is also impossible

in CAMPn,t[- FC] (such an implementation would need additional synchrony assumptions).
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How can uniformity and quiescence be obtained These properties can be obtained in CAMPn,t[∅]
as soon as this system is enriched with:

1. Uniformity. This part of the termination property states that if a message is urb-delivered by a

(correct or faulty) process, it will be urb-delivered by any correct process. This can be obtained

thanks to assumption t < n/2 or a failure detector of the class Θ.

2. Quiescence. This property can be obtained by the use of a failure detector of the class denoted

HB (defined below), which has a simple implementation with unbounded outputs.

The class HB of heartbeat failure detectors This class of failure detectors was introduced by M.

Aguilera, W. Chen, and S. Toueg (1999). Formally, a failure detector of the class HB provides each

process with a read-only array HB i[1..n] (heartbeat), whose entries contain natural integers, defined

by the following two properties (where HBτ
i [j] is the value of HB i[j] at time τ ):

• Completeness. ∀ i ∈ Correct(F ), ∀l j ∈ Faulty(F ): ∃K: ∀ τ ∈ IN: HB τ
i [j] < K.

• Liveness.

1. ∀ i, j ∈ Π: ∀ τ ∈ IN: HB τ
i [j] ≤ HB τ+1

i [j], and

2. ∀ i, j ∈ Correct(F ): ∀K: ∃ τ ∈ IN: HB τ
i [j] > K.

The range of each entry of the array HB is the set of positive integers. Unlike from �P , this range

is not bounded. The Completeness property states that the heartbeat counter at pi of a crashed process

pj (i.e., HB i[j]) stops increasing, while the liveness property states that the heartbeat counter HB i[j]
(1) never decreases and (2) increases without bound if both pi and pj are non-faulty.

Let us observe that the counter of a faulty process increases during a finite but unknown period,

while the speed at which the counter of a non-faulty process increases is arbitrary (this speed is “asyn-

chronous”). Moreover, the values of two local counters HB i[j] and HBk[j] are not related.

Implementing HB There is a trivial implementation of a failure detector of the class HB in the

system CAMPn,t[- FC]. Each process pi manages its array HB i[1..n] (initialized to [0, . . . , 0]) as

follows. On the one side, pi repeatedly sends the message HEARTBEAT (i) to each other process. On

the other side, when it receives HEARTBEAT (j), pi increases HB i[j]. This very simple implementation

is not quiescent; it requires correct processes to sends messages forever.

This means that HB has to be considered as a “black box” (i.e., we do not look at the way it is im-

plemented) when we say that quiescent communication can be realized in CAMPn,t[- FC, Θ,HB ]. In

fact, a failure detector of a class such as P , �P , or Θ provides a system with additional computational

power. Whereas a failure detector of a class HB constitutes an abstraction that “hides” implementa-

tion details (all of the non-quiescent part is pieced together in a separate module, namely, the heartbeat

failure detector).

A remark on oracles The notion of an oracle was first introduced as a language whose words could

be recognized in one step from a particular state of a Turing machine. The main feature of such oracles

is to hide a sequence of computation steps in a single step, or to guess the result of a non-computable

function. They have been used to define (a) equivalence classes of problems, and (b) hierarchies of

problems, when these problems are considered with respect to the assumptions they require to be

solved.

In our case, failure detectors are oracles that provide the processes with information that depends

only on the failure pattern that affects the execution in which they are used. It is important to remember

that the outputs of a failure detector never depend on the computation produced by the algorithm. They

depend on the environment. According to the previous terminology, we can say that classes such as P ,

�P , or Θ, are classes of “guessing” failure detectors, while HB is a class of “hiding” failure detectors.
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3.5.4 Quiescent URB-broadcast in CAMPn,t[- FC, Θ,HB ]

A URB Construction in CAMPn,t[- FC, Θ,HB ] A quiescent algorithm implementing the URB-

broadcast communication abstraction in CAMPn,t[- FC, Θ,HB ] is described in Fig. 3.4. Designed by

M. Aguilera, W. Chen and S. Toueg (2000), it is similar to the one for CAMPn,t[- FC, Θ, P ] described

in Fig. 3.3. It differs in the addition of two local variables per application message (prev hbi[m] and

cur hbi[m] which contain previous and current heartbeat arrays, line 2), and in the task Diffusei(m).
Basically, a process pi sends the protocol message MSG (m) to a process pj only if j /∈ rec byi[m]
(from pi’s point of view, pj has not yet received the application message m), and HB i[j] has increased

since the last test (from pi’s point of view, pj is alive, predicate of line 14). The local variables

prev hbi[m][j] and cur hbi[m][j] are used to keep the two last values read from HB i[j].

operation URB broadcast (m) is send MSG (m) to pi.

when MSG (m) is received from pk do

(1) if (first reception of m)

(2) then allocate rec byi[m], prev hbi[m], cur hbi[m];
(3) rec byi[m] ← {i, k};

(4) activate task Diffuse(m)
(5) else rec byi[m] ← rec byi[m] ∪ {k}
(6) end if;

(7) send ACK (m) to pk.

when ACK (m) is received from pk do

(8) rec byi[m] ← rec byi[m] ∪ {k}.

when (trustedi ⊆ rec byi[m]) ∧ (pi has not yet urb-delivered m) do

(9) URB deliver (m).

task Diffusei(m) is

(10) prev hbi[m] ← [−1, . . . ,−1];
(11) repeat

(12) cur hbi[m] ← HB i;

(13) for each j ∈ {1, . . . , n} \ rec byi[m] do

(14) if (prev hbi[m][j] < cur hbi[m][j]) then send MSG (m) to pj end if

(15) end for;

(16) prev hbi[m] ← cur hbi[m]
(17) until rec byi[m] = {1, . . . , n} end repeat.

Figure 3.4: Quiescent uniform reliable broadcast in CAMPn,t[- FC, Θ,HB ] (code for pi)

Theorem 11. The algorithm described in Fig. 3.4 is a quiescent construction of the URB-broadcast

communication abstraction in CAMPn,t[- FC, Θ,HB ].

Proof The proof of the URB-validity property (no creation of application messages) and the URB-

integrity property (an application message is delivered at most once) follow directly from the text of

the construction. Hence, the rest of the proof addresses the URB-termination property and the quies-

cence property. It is based on two preliminary claims. Let us first observe that, once added, an identity

j is never withdrawn from rec byi[m].

Claim C1. If a non-faulty process pi activates Diffusei(m), all the non-faulty processes pj activate

Diffusej(m).
Proof of claim C1. Let us consider a non-faulty process pi that activates Diffusei(m). It does it when

it receives MSG (m) for the first time. Let pj be a non-faulty process. There are two cases:

• There is a time after which j ∈ rec byi[m]. The process pi has added j to rec byi[m] because

it has received MSG (m) or ACK (m) from pj . It follows that pj received MSG (m). The first
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time it received this protocol message, it activated Diffusej(m), which proves the claim for this

case.

• The identity j is never added to rec byi[m]. As pj is non-faulty, it follows from the liveness of

HB that HBi [j ] increases forever, from which it follows that the predicate (prev hbi[m][j] <
cur hbi[m][j]) is true infinitely often. It then follows that pi sends infinitely often MSG (m) to

pj . Due to the termination property of the fair channel connecting pi to pj , pj receives MSG (m)
infinitely often from pi. The first time it was received, pj activated the task Diffuse(m)j , which

concludes the proof of claim C1.

Claim C2. If all the non-faulty processes activate Diffuse(m), they all eventually execute the operation

URB deliver (m).
Proof of claim C2. Let pi and pj be any pair of non-faulty processes. As pi executes Diffusei(m)
and pj is non-faulty, pi sends MSG (m) to pj until j ∈ rec byi[m]. Let us observe that, due to the

systematic sending of acknowledgments and the termination property of the channels, we eventually

have j ∈ rec byi[m]. It follows that rec byi[m] eventually contains all the non-faulty processes.

Moreover, it follows from the liveness property of Θ that there is a finite time from which trustedi
contains only non-faulty processes.

It follows from the two previous observations that, for any non-faulty process pi, there is a finite

time after which the predicate (trustedi ⊆ rec byi[m]) becomes and remains true forever, and conse-

quently pi eventually urb-delivers m. End of the proof of claim C2.

Proof of the termination property. Let us first show that, if a non-faulty process pi invokes the operation

URB broadcast (m), all the non-faulty processes urb-deliver the application message m. As pi is

non-faulty, it sends the protocol message MSG (m) to itself and (by assumption) receives it. It then

activates the task Diffusei(m). It follows from claim C1 that every non-faulty process pj activates

Diffusej(m). We conclude then from claim C2 that each correct process urb-delivers m.

Let us now show that if a (faulty or non-faulty) process pi urb-delivers the application m, then all

the non-faulty processes urb-deliver m. As pi urb-delivers m, we have trustedi ⊆ rec byi[m]. Due

to the Accuracy property of the underlying failure detector of the class Θ, trustedi always contains a

non-faulty process. Let pj be a non-faulty process such that j ∈ trustedi when the delivery predicate

trustedi ⊆ rec byi[m] becomes true. As j ∈ rec byi[m], it follows that pj has received MSG (m)
(see the first item of the proof of Claim C1). The first time it received such a message, pj activated

Diffusej(m). It then follows from claim C1 that every non-faulty px process activates Diffusex(m),
and from claim C2 that all the non-faulty processes urb-deliver m.

Proof of the quiescence property. We have to prove here that any application message m gives rise to a

finite number of protocol messages. The proof relies only on the underlying heartbeat failure detector

and the termination property of the underlying fair channels.

Let us first observe that (a) the reception of a protocol message ACK () never entails the sending

of protocol messages, and (b) a protocol message ACK (m) is only sent when a protocol message

MSG (m) is received. So, the proof amounts to showing that the number of protocol messages of the

type MSG (m) is finite. Moreover, a faulty process sends a finite number of protocol messages MSG

(m), so we have only to show that the number of messages MSG (m) sent by each non-faulty process

pi is finite. Such messages are sent only inside the task Diffusei(m). Let pj be a process to which the

non-faulty process pi sends MSG (m). If there is a time after which j ∈ rec byi[m] holds, pi stops

sending MSG (m) to pj . So, let us consider that j ∈ rec byi[m] remains false forever. There are two

cases:

• Case pj is faulty. In this case there is a finite time after which, due to the Completeness property

of HB , HB i[j] no longer increases. It follows that there is a finite time after which the predicate
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(prev hbi[m][j] < cur hbi[m][j]) remains false forever. When this occurs, pi stops sending

MSG (m) to pj , which proves the case.

• Case pj is non-faulty. We show a contradiction. In this case, the predicate prev hbi[m][j] >
cur hbi[m][j] is true infinitely often. It follows that pi sends MSG (m) to pj infinitely often.

Due to the termination property of the fair channel from pi to pj , the process pj receives MSG

(m) from pi an infinite number of times. Consequently it sends back ACK (m) to pi an infinite

number of times, and, due to the termination property of the channel from pj to pi, pi receives

this protocol message an infinite number of times. At the first reception of ACK (m), pi adds

j to rec byi[m]. As no process identity is ever withdrawn from rec byi[m], the predicate j ∈
rec byi[m] remains true forever, contradicting the initial assumption, which concludes the proof

of the quiescence property.
�Theorem 11

Quiescence vs termination Unlike the quiescent URB construction for CAMPn,t[- FC, Θ, P ] (de-

scribed in Fig. 3.3), but similar to the quiescent construction for CAMPn,t[- FC, Θ,�P ], the con-

struction described in Fig. 3.4 for CAMPn,t[- FC, Θ,HB ] is not terminating. It is easy to see that it is

possible that the task Diffusei(m) of a process pi never terminates. In fact, while quiescence concerns

only the activity of the underlying network (due to message transfers), termination is a more general

property that concerns the activity of both message transfers and processes.

This is due to the fact that the properties of both �P and HB are eventual. When HB i[j] does not

change, we do not know if it is because pj crashed or because its next increase is arbitrarily delayed.

This uncertainty is due to the net effect of asynchrony and failures. When the failure detector is perfect

(class P ), the “due to failures” part of this uncertainty disappears (because when a process is suspected

we know for sure that it has crashed), and consequently a P -based construction has to cope only with

asynchrony.

3.6 Summary

This chapter addressed uniform reliable broadcast in the context of asynchronous systems where pro-

cesses may crash, and communication channels are unreliable but fair, which intuitively means that,

if a process repeatedly re-transmits the same message, the channel cannot lose all of the copies due to

these re-transmissions.

It has been shown that, in the presence of asynchrony and fair channels, URB-broadcast can be

implemented only if a majority of processes do not crash. This assumption has been captured at a

more abstract level, namely with the concept of a failure detector. The chapter also introduced the

notion of a quiescent implementation, where “quiescent” means that, at the implementation level, an

application message cannot give rise to an infinite number of protocol messages. It has been shown

that URB-broadcast quiescent algorithms require appropriate failure detectors.

3.7 Bibliographic Notes

• The concept of a failure detector was introduced by T. Chandra and S. Toueg in [102] where

they defined, among other failure detector classes, the classes P and �P . The class P has

been shown to be the weakest class of failure detectors to solve some distributed computing

problems [121, 211].

• The oracle notion in sequential computing is presented in numerous textbooks. Among other

books, the reader can consult [182, 222].
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• The weakest failure detector class Θ that allows the construction of the URB-broadcast abstrac-

tion despite asynchrony, any number of process crashes, and fair channels, was proposed by

M.K. Aguilera, S. Toueg, and B. Deianov [22].

• The notion of quiescent communication and the heartbeat failure detector class were introduced

by M.K. Aguilera, W. Chen and S. Toueg in [10, 12]. These notions were investigated in [11] in

the context of partitionable networks.

The very weak communication model and the corresponding quiescent URB-broadcast con-

struction presented in Exercise 4 (Section 3.8) was introduced in [12].

• When we consider a system as simple as the one made up of two processes connected by a

bidirectional channel, there are impossibility results related to the effects of process crashes,

channel unreliability, or the constraint to use only bounded sequence numbers. Chapter 22 of N.

Lynch’s book [271] presents an in-depth study of the power and limits of unreliable channels.

• The effects of fair lossy channels on problems in general, and in asynchronous systems that are

not enriched with failure detectors, is addressed in [54].

• Given two processes that (a) can crash and recover, (b) have access to volatile memory only,

and (c) are connected by a (physical) reliable channel, let us consider the problem that consists

in building a (virtual) reliable channel connecting these two (possibly faulty) processes. Maybe

surprisingly, this problem is impossible to solve [154]. This is mainly due to the absence of

stable storage.

It is also impossible to build a reliable channel when the processes are reliable (they never

crash) and the underlying channel can duplicate and reorder messages (but cannot create or lose

messages), and only bounded sequence numbers can be used [412].

However, if processes do not crash and the underlying channel can lose and reorder messages,

but cannot create or duplicate messages, it is possible to build a reliable channel, but this con-

struction is highly inefficient [5].

3.8 Exercises and Problems

1. Considering the algorithm in Fig. 3.1, let us replace line 8

for each j ∈ {1, . . . , n} do send MSG (m) to pj end for,

with

for each j ∈ {1, . . . , n} \ rec byi[m] do send MSG (m) to pj end for.

Show that this modification can prevent a correct process pi, which issues URB broadcast (m),
from urb-delivering the message m.

2. Show that no failure detector of the class P can be built in CAMPn,t[Θ].

3. Show that failure detector classes �P and Θ cannot be compared (hint: a set trustedi is never

required to contain the identity of all correct processes).

4. A more difficult problem.

The processes are asynchronous and may crash (as before). On the network side each directed

pair of processes is connected by a channel that is either fair or unreliable. An unreliable channel

is similar to a fair channel as far as the validity and integrity properties are concerned but has no

termination property. Whatever the number of times a message is sent (even an infinite number

of times), the channel can lose all its messages. So, if an unreliable channel connects pi to pj ,
it is possible that no message sent by pi is ever received by pj on this channel, exactly as if this

channel was missing.
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An example of such a network is represented in Fig. 3.5. A black or white big dot represents a

process. A simple arrow from a process to another process represents a fair unidirectional chan-

nel. A double arrow indicates that both unidirectional channels connecting the two processes

are fair. All the other channels are unreliable (in order not to overload the figure they are not

represented).

Figure 3.5: An example of a network with fair paths

Notion of fair path In order to be able to construct a communication abstraction that, in

any run, allows any pair of non-faulty processes to communicate, basic assumptions on the

connectivity of the non-faulty processes are required. These assumptions are based on the notion

of a fair path. Hence, given an execution, it is assumed that every directed pair of non-faulty

processes is connected by a directed path made up of non-faulty processes and fair channels,

which is known as a fair path.

When considering Fig. 3.5, let the black dots denote the non-faulty processes and the white

dots denote the faulty ones. One can check that every directed pair of non-faulty processes is

connected by a fair path.

What has to be done Considering the previous system mode with very weak connectivity,

design:

• an algorithm implementing a Heartbeat failure detector, and

• an algorithm building URB-broadcast with the help of a Heartbeat failure detector, and a

failure detector of the class Θ.

Solution in [12] (original paper) and in Chapter 4 of the monograph [366].



Chapter 4

Reliable Broadcast in the Presence of

Byzantine Processes

This chapter presents two broadcast communication abstractions suited to the asynchronous systems

prone to process Byzantine failures (basic model BAMPn,t[∅] appropriately enriched). The first of

these broadcast abstractions is called no-duplicity broadcast, while the second one is the classic non-

uniform reliable broadcast adapted to Byzantine failures. (Let us notice that, as a Byzantine process

may behave arbitrarily, it is meaningless to force a correct process to deliver a message only because

it was delivered by a Byzantine process.) An algorithm implementing no-duplicity broadcast, and

two algorithms implementing Byzantine reliable broadcast are presented. The no-duplicity broad-

cast algorithm and one of the reliable broadcast algorithms require t < n/3, which is a necessary

requirement (hence they are optimal from a failure resilience point of view, and work in the model

BAMPn,t[t < n/3]). The second reliable broadcast algorithm requires t < n/5. The two reliable

broadcast algorithms differ in their respective costs both in terms of time and number of messages.

Keywords Asynchronous system, Byzantine process, Fault-tolerance, Message-passing, No-duplicity

property, Reliable broadcast, Signature-free algorithm, Uniformity requirement.

4.1 Byzantine Processes and Properties of the Model BAMPn,t[t < n/3]

Byzantine behavior A Byzantine process is a process that deviates arbitrarily from its intended

behavior (as defined by the algorithm it is assumed to execute). Examples of a Byzantine behavior

are:

• a process crash,

• omitting to send or receive messages,

• the sending of erroneous values,

• the sending of different values to different subsets of processes, when assumed to broadcast the

same value to all, etc.

It is also possible for several Byzantine processes to collude to pollute the computation and foil correct

processes. They can read the content of the messages sent over the network, delay some of them, but

can neither modify their content, nor discard them.

Properties of the system model BAMPn,t[t < n/3] It will be shown in the next section that t <
n/3 is a necessary requirement to implement both the no-duplicity broadcast and the reliable broadcast

communication abstractions. The corresponding model BAMPn,t[t < n/3] has the following model-

related properties, which will be used in the correctness proof of algorithms presented in this chapter.
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Lemma 2. Let m, n, and t be positive integers. We have:
(
m > n+t

2

)
⇔

(
m ≥ �n+t

2 �+ 1
)
.

Proof

• Direction⇐: As x− 1 < �x�, it follows that
(
m ≥ �n+t

2 �+ 1
)

=⇒
(
m > n+t

2

)
.

• Direction⇒: (m > n+t
2 )⇒ (m ≥ �n+t

2 �+ 1).

– Case (n+ t) mod 2 = 0. We then have m > n+t
2 ⇒ m ≥ n+t

2 + 1 = �n+t
2 �+ 1.

– Case (n+ t) mod 2 = 1. We then have m > n+t
2 ⇒ m ≥ n+t

2 + 1
2 = �n+t

2 �+ 1.
�Lemma 2

Lemma 3. Let n > 3t. We have

(a) n− t > n+t
2 ,

(b) any set containing more than n+t
2 distinct processes, contains at least (t + 1) non-faulty pro-

cesses,

(c) any two sets of processes Q1 and Q2 of size at least �n+t
2 �+1 have at least one correct process

in their intersection.

Proof Proof of (a). n > 3t⇔ 2n > n+ 3t⇔ 2n− 2t > n+ t⇔ n− t > n+t
2 .

Proof of (b). We have n+t
2 ≥ 4t+1

2 = 2t + 1
2 , from which it follows that any set of more than n+t

2
distinct processes contains at least 2t+ 1 processes. The proof then follows from the fact that any set

of 2t+ 1 distinct processes contains at least t+ 1 non-faulty processes.

Proof of (c). When considering integers, it follows from Lemma 2, that “strictly more than n+t
2 ” is

equivalent to “at least �n+t
2 �+ 1”.

• Q1 ∪Q2 ⊆ {p1, . . . , pn}. Hence, |Q1 ∪Q2| ≤ n.

• |Q1∩Q2| = |Q1|+ |Q2|−|Q1∪Q2| ≥ |Q1|+ |Q2|−n ≥ 2(�n+t
2 �+1)−n > 2(n+t

2 )−n = t.
Hence, |Q1 ∩ Q2| ≥ t + 1, from which it follows that Q1 ∩ Q2 contains at least one correct

process.

�Lemma 3

4.2 The No-Duplicity Broadcast Abstraction

4.2.1 Definition

The no-duplicity communication abstraction (in short ND-broadcast) was introduced by G. Bracha

(1983) and S. Toueg (1984) in the context of asynchronous systems prone to Byzantine process fail-

ures. It is defined by two operations denoted ND broadcast() and ND deliver(), which provide the

processes with a higher abstraction level than unreliable best effort broadcast.

Considering an instance of ND-broadcast where ND broadcast() is invoked by a process pi, this

communication abstraction is defined by the following properties:

• ND-validity. If a non-faulty process nd-delivers an application message m from pi, then, if pi is

correct, it nd-broadcast m.

• ND-integrity. No correct process nd-delivers a message more than once.

• ND-no-duplicity. No two non-faulty processes nd-deliver distinct messages from pi.

• ND-termination. If a non-faulty process pi nd-broadcasts an application message m, all the

non-faulty processes eventually nd-deliver m.



Chapter 4. Reliable Broadcast in the Presence of Byzantine Processes 63

Let us observe that, if the sender pi is faulty, it is possible that some non-faulty processes nd-

deliver a message m from pi, while others do not. Let us also observe that, if processes nd-deliver a

message m from a faulty sender, there is no constraint on the content of m. The no-duplicity property

prevents any two non-faulty processes from nd-delivering different messages m1 and m2 from a faulty

sender.

4.2.2 An Impossibility Result

Theorem 12. There is no algorithm implementing ND-broadcast in the system model BAMPn,t[t ≥
n/3].

Proof Let us partition the n processes into three sets P1, P2 and P3, such that each set contains �n3 �
or �n3 � processes. As t ≥ max(|P1|, |P2|, |P3|), there are executions in which all the processes of the

same partition (either P1, or P2, or P3) can be Byzantine.

Let us assume there is an algorithm A that solves the problem. Let us consider an execution E, in

which the processes of P1 and P3 are correct, while all the processes of P2 are Byzantine. Observe

that, in A, no process can wait for protocol messages from more than (n− t) processes without risking

being blocked forever, which, due to n ≤ 3t, translates into “a correct process can wait for protocol

messages from at most n − t ≤ 2t processes”. Let us also consider that, due to message asynchrony,

the execution E is such that the messages exchanged between the processes of P1 and the processes

of P3 are delayed for an arbitrarily long period.

The processes of P2 (which are Byzantine) simulate, with respect to the processes of P1, a correct

behavior as if one of them px invoked ND broadcast(m). Hence, the processes of P2 appear to be

correct to the processes of P1.

Similarly, with respect to the processes of P3, the processes of P2 simulate a correct behavior as if

px invoked ND broadcast(m′), where m′ �= m. Hence, the processes of P2 appear as being correct to

the processes of P3.

Due to

(a) the assumption that A is correct,

(b) n− t ≤ 2t,
(c) |P1 ∪ P2| ≤ 2t, (d) |P3 ∪ P2| ≤ 2t,
(e) the processes of P1 do not receive messages from the processes of P3, and

(f) the processes of P3 do not receive messages from the processes of P1,

it follows that eventually the processes of P1 nd-deliver m (this is what should occur if the processes

of P1 ∪ P2 were correct and the processes of P3 initially crashed). In a similar way and for the same

reason, the processes of P3 nd-deliver m′. This contradicts the fact that no two correct processes

nd-deliver different values from the same process, which concludes the proof of the theorem. (The

messages – if any – between the processes of P1 and the processes of P3 that were delayed are received

after the processes of P1 and P − 3 have nd-delivered m and m′, respectively). �Theorem 12

4.2.3 A No-Duplicity Broadcast Algorithm

The algorithm described in Fig. 4.1 is due to S. Toueg (1984). It implements the ND-broadcast ab-

straction in BAMPn,t[t < n/3]. It follows from the previous impossibility result that this algorithm

is optimal with respect to t.

Let us remember that “broadcast MSG(m)” is a shortcut for “for each j ∈ {1, . . . , n} do send

MSG(m) to pj end for”.

The algorithm considers an instance of ND-broadcast per process, i.e., a correct process invokes

ND-broadcast at most once. Adding sequence numbers would allow processes to ND-broadcast sev-
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operation ND broadcast (mi) is

(1) broadcast INIT(i,mi).

when INIT(j,m) is received do

(2) if
(
first reception of INIT(j,−)

)
then broadcast ECHO(j,m) end if.

when ECHO(j,m) is received do

(3) if
(

(ECHO(j,m) received from more than n+t
2

different processes)

∧ ((j,m) not yet ND-delivered)
)

(4) then ND deliver 〈j,m〉
(5) end if.

Figure 4.1: Implementing ND-broadcast in BAMPn,t[t < n/3]

eral messages. In this case, the process identity associated with each message has to be replaced by a

pair made up of a sequence number and a process identity.

When a process pi nd-broadcasts an application message mi, it broadcasts the protocol message

INIT(i,mi) (line 1), whose intuitive meaning is “pi initiated the nd-broadcast of message mi”.

When a process pi receives a protocol message INIT(j,−) for the first time (where “−” stands

for any message value), it broadcasts the protocol message ECHO(j,m) where m is the content of the

message INIT(j,−) (line 2). The intuitive meaning of this message is “pi knows that pj initiated the

nd-broadcast of message m”. If the message INIT(j,m) is not the first message INIT(j,−) received by

pi, we can conclude that pj is Byzantine and consequently the message is discarded. Finally, when pi
has received the same message ECHO(j,m) from more than (n+ t)/2 processes, it locally nd-delivers

the pair 〈j,m〉 (lines 3-4).

Theorem 13. The algorithm described in Fig. 4.1 implements ND-broadcast communication abstrac-

tion in the system model BAMPn,t[t < n/3].

Proof The proof of the ND-integrity property follows directly from the second part of the ND-delivery

predicate (line 3).

Proof of the ND-termination property. To prove this property, let us consider a non-faulty process pj
that nd-broadcasts the application message m. As pj is non-faulty, the protocol message INIT(j,m)
is received by all the non-faulty processes, which are at least (n − t), and every non-faulty process

broadcasts ECHO(j,m) (line 2). Hence, each non-faulty process receives ECHO(j,m) from at least

(n − t) different processes. As n − t > n+t
2 (item (a) of Lemma 3), it follows that every non-faulty

process eventually nd-delivers 〈j,m〉 (lines 3-4).

Proof of the ND-no-duplicity property. Let us assume by contradiction that two non-faulty processes

pi and pj nd-deliver different messages m1 and m2 from some process pk, i.e., pi nd-delivers 〈k,m1〉
and pj nd-delivers 〈k,m2〉, where m1 �= m2. It follows from the predicate of line 3, that pi received

ECHO(k,m1) from a set of more than n+t
2 distinct processes, and pj received ECHO(k,m2) from a set

of more than n+t
2 distinct processes. Moreover, it follows from item (c) of Lemma 3 that the inter-

section of these two sets contains a non-faulty process px. But, as it is non-faulty, px sent the same

protocol message ECHO(k,−) to pi and pj (line 2). It follows that m1 = m2, which contradicts the

initial assumption.

Proof of the ND-validity property. If Byzantine processes forge and broadcast a message ECHO(i,m)
such that pi is correct and has never invoked ND broadcast(m), no correct process nd-delivers the

pair 〈i,m〉. Let us observe that at most t processes can broadcast the fake message ECHO(i,m). As

t < n+t
2 , it follows that the predicate of line 3 can never be satisfied at a correct process. Hence, if pi
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is correct, no correct process can nd-deliver from pi a message that has not been nd-broadcast by pi.
�Theorem 13

Cost of an ND-broadcast It is easy to see that this implementation uses two consecutive commu-

nication steps and, counting only the protocol messages sent by correct processes, at most O(n2)
underlying messages ((n − 1) in the first communication step, and at most n(n − 1) in the second

one). Moreover, there are two types of protocol message, and the size of the control information

added to a message is log2n (sender identity).

Remark on the ND-delivery predicate Let us notice that replacing at line 4 “more than n+t
2 dif-

ferent processes” with “(n − t) different processes” leaves the algorithm correct. As n − t > n+t
2

(item (a) of Lemma 3), it follows that using “more than n+t
2 different processes” provides a weaker

ND-delivery condition, and consequently a more efficient algorithm from a ND-delivery point of view.

As a simple numerical example, let us consider n = 21 and t = 2. We have then n− t = 19, which is

much greater than the required value of 12 (> n+t
2 = 11.5).

A simple example Fig. 4.2 presents an example of an execution where n = 4, t = 1, and the sender

process p1 is Byzantine. Although it has not invoked ND broadcast(), this process sends the same

message INIT(1, a) to p2 and p3, and a different message INIT(1, b) to p4. Each of p2, p3, and p4
broadcasts an echo message carrying the pair it received (only the echos of p2 and p3 appear on the

figure). Then p1 (which is Byzantine) sends a message ECHO(1, a) to p1 and p2, and ECHO(1, b) to p4.

As they receive 3 > n+t
2 = 2 messages ECHO(1, a), both p2 and p3 nd-delivered a. Whereas, as p4

can receive at most two messages ECHO(1, b) (one from p1 and one from itself), it cannot nd-deliver

b.

Byzantine

correct

correct

correct

p1

p2

p3

p4

ECHO(1, a)

INIT(1, b)

INIT(1, a) ECHO(1, a)
ECHO(1, a)

ECHO(1, a)

ECHO(1, a)

ECHO(1, b)

No ND delivery from p1
ECHO(1, a)

INIT(1, a) ECHO(1, a)

ECHO(1, a)
ECHO(1, a)

ND deliver 〈1, a〉

ND deliver 〈1, a〉

Figure 4.2: An example of ND-broadcast with a Byzantine sender

The reader can play with the speed of messages and the behavior of p1 to produce an example in

which no process nd-delivers a message, or an example in which none of the processes p1, p2, and p3
nd-deliver a message from p1.

4.3 The Byzantine Reliable Broadcast Abstraction

From crash failures to Byzantine failures The definition of the uniform reliable broadcast (URB-

broadcast) communication abstraction presented in Chap. 2 was suited to the process crash failure

model. Its Termination property states that “(1) if a non-faulty process urb-broadcasts a message m,

or (2) if a process urb-delivers a message m, then each non-faulty process URB-delivers the message

m”. Part (2) requires that, as soon as a (correct or faulty) process delivers a message m, all correct
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processes deliver the same message m. This requirement can be ensured in the case of crash failures

because a process that crashes behaved correctly until it crashed.

This is impossible to ensure in the case of a Byzantine process as, by its very definition, the

behavior of a Byzantine process can deviate from the text of the algorithm it is assumed to execute.

It follows that part (2) of the previous definition must be weakened in the presence of Byzantine

processes. In such a context, it is not possible to implement a uniform reliable broadcast; hence, the

following definition is suited to the Byzantine failure model, which is presented as an extension of

ND-broadcast.

Byzantine reliable broadcast (BRB): Definition The BRB-broadcast communication abstraction

was introduced by G. Bracha and S. Toueg (1985). It provides the processes with the operations

BRB broadcast() and BRB deliver() defined by the following properties:

• BRB-validity. If a non-faulty process brb-delivers a message m from a correct process pi, then

pi brb-broadcast m.

• BRB-integrity. No correct process brb-delivers a message more than once.

• BRB-no-duplicity. No two non-faulty processes brb-deliver distinct messages from pi.

• BRB-termination-1. If the sender pi is non-faulty, all the non-faulty processes eventually brb-

deliver its message.

• BRB-termination-2. If a non-faulty process brb-delivers a message from pi (possibly faulty)

then all the non-faulty processes eventually brb-deliver a message from pi.

Hence, from an abstraction level and modularity point of view, BRB-broadcast is ND-broadcast

plus the BRB-termination-2 property. As BRB-broadcast extends ND-broadcast, and t < n/3 is a

necessary (and sufficient) requirement on the maximal number of processes which can be Byzantine,

it follows that t < n/3 is also a necessary requirement for BRB-broadcast.

Let us notice that the combination of RB-no-duplicity and BRB-termination-2 implies that if a

non-faulty process brb-delivers a message m from pi (possibly faulty) then all the non-faulty processes

eventually brb-deliver m. These two properties can be pieced together into a single property as follows:

“If a non-faulty process brb-delivers a message m from a process pi (faulty or non-faulty), all the non-

faulty processes eventually brb-deliver the message m”.

4.4 An Optimal Byzantine Reliable Broadcast Algorithm

4.4.1 A Byzantine Reliable Broadcast Algorithm for BAMPn,t[t < n/3]

The algorithm presented in Fig. 4.3 implements the reliable broadcast abstraction in the system model

BAMPn,t[t < n/3]. Due to G. Bracha (1984, 1987), it is presented here incrementally as an enrich-

ment of the ND-broadcast algorithm of Fig. 4.1.

First: a simple modification of the ND-broadcast algorithm The first five lines are nearly the

same as the ones of the ND-broadcast algorithm. The main difference lies in the fact that, instead of

nd-delivering a pair 〈j,m〉 when it has received enough messages ECHO(j,m), pi broadcasts a new

message denoted READY(j,m). The intuitive meaning of READY(j,m) is the following: “pi is ready

to brb-deliver the pair 〈j,m〉 if it receives enough messages READY(j,m) witnessing that the correct

processes are able to brb-deliver the pair 〈j,m〉”.

Let us observe that, due to ND-no-duplicity, it is not possible for any pair of correct processes pi
and pj to be be such that, at line 4, pi broadcasts READY(j,m) while pj broadcasts READY(j,m′)
where m �= m′.
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operation BRB broadcast (mi) is

(1) broadcast INIT(i,mi).

when INIT(j,m) is received do

(2) if
(
first reception of INIT(j,−)

)
then broadcast ECHO(j,m) end if.

when ECHO(j,m) is received do

(3) if
(

(ECHO(j,m) received from more than n+t
2

different processes)

∧ (READY(j,m) not yet broadcast)
)

(4) then broadcast READY(j,m) % replaces ND deliver 〈j,m〉 of Fig. 4.1

(5) end if.

when READY(j,m) is received do

(6) if
(

(READY(j,m) received from (t+ 1) different processes)

∧ (READY(j,m) not yet broadcast)
)

(7) then broadcast READY(j,m)
(8) end if;

(9) if
(

(READY(j,m) received from (2t+ 1) different processes)

∧ (〈j,m〉 not yet brb-delivered)
)

(10) then BRB deliver 〈j,m〉
(11) end if.

Figure 4.3: Implementing BRB-broadcast in BAMPn,t[t < n/3]

Then: processing the new message READY() The rest of the algorithm (lines 6-11) comprises

two “if” statements. The first one is to allow each correct process to receive enough messages

READY(j,m) to be able to brb-deliver the pair 〈j,m〉. To this end, if not yet done, a process pi
broadcasts the message READY(j,m) as soon as it is received from at least one correct process, i.e.,

from at least (t+ 1) different processes (as t of them can be Byzantine).

The second “if” statement is to ensure that if a correct process brb-delivers the pair 〈j,m〉, no

correct process will brb-deliver a different pair. This is because, despite possible fake messages

READY(j,−) sent by faulty processes, each correct process will receive the pair 〈j,m〉 from enough

correct processes, where “enough” means here “at least (t+1)” (which translates as “at least (2t+1)
different processes”, as up to t processes can be Byzantine).

4.4.2 Correctness Proof

Theorem 14. The algorithm described in Fig. 4.3 implements BRB-broadcast communication ab-

straction in the system model BAMPn,t[t < n/3].

Proof The proof of the BRB-integrity property follows trivially from the brb-delivery predicate of

line 9.

Proof of the BRB-validity property. We have to show that if pi and pj are correct, and pj brb-delivers

an application message from pi, then pi brb-broadcast m. The proof is similar to the one in Theo-

rem 13, namely, if Byzantine processes forge and broadcast a message ECHO(i,m) such that pi is

correct and never invoked BRB broadcast(m), no correct process brb-delivers the pair 〈i,m〉. Let

us observe that at most t processes can broadcast the fake message READY(i,m). As t < 2t + 1, it

follows that the predicate of line 9 can never be satisfied at a correct process. Hence, if pi is correct,

no correct process can brb-deliver a message it has never brb-broadcast.

Proof of the BRB-no-duplicity property. To prove this property, let us first prove the following claim:

if two non-faulty processes pi and pj broadcast the messages READY(k,m) and READY(k,m′), re-

spectively, we have m = m′. There are two cases:
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• Both pi and pj broadcast READY(k,m) and READY(k,m′) at line 4. In this case, we are in the

same scenario as the one of the ND-broadcast algorithm in Fig. 4.1, and the claim follows from

its ND-no-duplicity property.

• At least one of pi or pj (let us call it px) broadcast READY(k, v) (where v is m or m′), at line 7.

In this case, due to the predicate of line 6, it received a message READY(k, v) from at least one

correct process, say px1
, which received READY(k, v) from at least one correct process, say px2

,

etc. It follows from the text of the algorithm that the seed of this message forwarding is a correct

process that broadcast READY(k, v) at line 4. We are then brought back to the previous item,

from which we conclude that m = m′.

Let us now prove the BRB-no-duplicity property: if two non-faulty processes pi and pj brb-deliver

〈j,m〉 and 〈j,m′〉, respectively, we have m = m′.

If pi brb-delivers 〈j,m〉, it received READY(j,m) from (2t+1) different processes, and hence from

at least one non-faulty process. Similarly, if pj brb-delivers 〈j,m′〉, it brb-delivered READY(j,m′)
from at least one non-faulty process. It follows from the previous claim that all the non-faulty pro-

cesses broadcast the same message READY(j, v), from which we conclude that m = v and m′ = v.

Proof of the BRB-termination-1 property. This property states that if a non-faulty process pi brb-

broadcasts m, all the non-faulty process brb-deliver 〈i,m〉. If a non-faulty process pi brb-broadcasts

m, every non-faulty process receives INIT(i,m), and broadcasts ECHO(i,m) (line 2). As n− t > n+t
2 ,

it follows from the predicate of line 3 that each correct process broadcasts READY(i,m). Let us notice

that, as t < n+t
2 , even if they collude and broadcast the same message READY(i,m′) where m′ �= m,

the faulty processes cannot prevent a non-faulty process from broadcasting READY(i,m). Finally, as

n − t ≥ 2t + 1, the predicate of line 9 eventually becomes satisfied, and every non-faulty process

brb-delivers 〈i,m〉.

Proof of the BRB-termination-2 property. This property states that if a non-faulty process brb-delivers

〈j,m〉, any non-faulty process brb-delivers 〈j,m〉. If a non-faulty process brb-delivers 〈j,m〉, it fol-

lows from the predicate of line 9 that it received the message READY(j,m) from at least (t+ 1) non-

faulty processes. Hence, each of these correct processes broadcast READY(j,m), and consequently

every non-faulty process receives at least (t+ 1) copies of READY(j, v). So, every non-faulty process

broadcast READY(j, v) (at the latest at line 7 if not previously done at line 4). As there are at least

n− t ≥ 2t+1 non-faulty processes, each non-faulty process eventually receives at least 2t+1 copies

of READY(j, v) and brb-delivers the pair 〈j,m〉. (lines 9-11). �Theorem 14

Cost of the algorithm This algorithm uses three consecutive communication steps (each with a

distinct message type), and O(n2) underlying messages (n − 1 in the first communication step, and

2n(n − 1) in the second and third steps). Moreover, the size of the control information added to a

message is log2 n (sender identity).

4.4.3 Benefiting from Message Asynchrony

Due to message asynchrony, it is possible that a process pi receives a message ECHO(j,m) from

several processes before receiving the initial message INIT(j,m). It can even receive ECHO(j,m) from

more than n+t
2 processes before receiving INIT(j,m), which is the predicate required to broadcast the

message READY(j,m). It appears that, in this case, pi can broadcast the message ECHO(j,m) even

if it has not yet received the seed message INIT(j,m). Moreover, it can also broadcast the message

ECHO(j,m) if it has received the message READY(j,m) from (t+1) processes (which is the predicate

used in Fig. 4.3 to allow pi to broadcast the message READY(j,m) when it has not received enough

messages ECHO(j,m)). This is illustrated in Fig. 4.4.
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pi

INIT(j,m)

︸ ︷︷ ︸
ECHO(j,m) received from more than n+t

2 processes

ECHO(j,m)

or READY(j,m) received from (t + 1) processes

READY(j,m)

Figure 4.4: Benefiting from message asynchrony

operation ND broadcast (mi) is

(1) broadcast INIT(i,mi).

when INIT(j,m) is received do

(M1) if
(
(first reception of INIT(j,−) ∧ (ECHO(j,m) not yet broadcast)

)

(2) then broadcast ECHO(j,m) end if.

when ECHO(j,m) is received do

(3) if
(

ECHO(j,m) received from more than n+t
2

different processes
)

(M2) then if (ECHO(j,m) not yet broadcast) then broadcast ECHO(j,m) end if;

(M3) if (READY(j,m) not yet broadcast) then broadcast READY(j,m) end if

(5) end if.

when READY(j,m) is received do

(6) if
(

READY(j,m) received from (t+ 1) different processes)
)

(M4) then same as lines M2 and M3

(8) end if;

(9) if
(

(READY(j,m) received from (2t+ 1) different processes)

∧ (〈j,m〉 not yet brb-delivered)
)

(10) then BRB deliver 〈j,m〉
(11) end if.

Figure 4.5: Exploiting message asynchrony

It follows that the algorithm presented in Fig. 4.3 can be enriched as described in Fig. 4.5 to benefit

from this possibility of message asynchrony. The lines that are identical in both algorithms are prefixed

with the same number, while the lines that are modified or new are denoted Mx, 1 ≤ x ≤ 4.

4.5 Time and Message-Efficient Byzantine Reliable Broadcast

On the one hand the previous BRB-broadcast algorithm is optimal with respect to the model resilience

parameter t (namely, there is no BRB-broadcast algorithm when t ≥ n/3), and requires just three

communication steps (each associated with a message type (INIT, ECHO, and READY), and 2n2−n+1
messages (not counting the messages that a process sends to itself). On another hand, if t = 0, the

system is reliable, and a broadcast costs a single communication step and (n − 1) messages. Which

raises a natural question on the tradeoff between the model resilience parameter t, and the message

cost.

This section presents an algorithm, from D. Imbs and M. Raynal (2016), which weakens the re-

silience parameter t (it assumes t < n/5 instead of t < n/3), but requires only two communication

steps and n2 − 1 messages (hence it has the same cost as ND-duplicity broadcast).
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4.5.1 A Message-Efficient Byzantine Reliable Broadcast Algorithm

The algorithm is presented in Fig. 4.6. When a correct process wants to brb-broadcast an application

message mi, it simply broadcasts the algorithm message INIT(i,mi) (line 1). On its server side, a

process can receive two types of messages:

• When it receives a message INIT(j,m) (from process pj as the processes are connected by

bidirectional channels), a process pi broadcasts the message WITNESS(j,m) (line 3) if (a) this

message is the first message INIT(j,−) pi has received from pj , and (b) pi has not yet broadcast

a message WITNESS(j,−) (predicate of line 2).

• When a process pi receives a message WITNESS(j,m) (from any process), it does the following:

– If pi has received the same message from “enough-1” processes (where “enough-1” is

(n − 2t), i.e., at least n − 3t ≥ 2t + 1 correct processes broadcast this message), and

pi has not yet broadcast the same message WITNESS(j,m), it does it. This concludes the

“forwarding phase” of pi as far as a message of pj is concerned.

– If pi has received the same message from “enough-2” processes (where “enough-2” means

“at least (n − t) processes”, i.e., the message was received from at least n − 2t ≥ 3t + 1
correct processes), pi locally brb-delivers 〈j,m〉 if not yet done. This concludes the brb-

delivering phase of a message from pj as far as pi is concerned.

operation BRB broadcast (mi) is

(1) broadcast INIT(i,mi).

when INIT(j,m) is received from pj do

(2) if
(
(first reception of INIT(j,−)) ∧ (WITNESS(j,−) not yet broadcast)

)

(3) then broadcast WITNESS(j,m)
(4) end if.

when WITNESS(j,m) is received do

(5) if
(

(WITNESS(j,m) received from (n− 2t) different processes)

(6) ∧ (WITNESS(j,m) not yet broadcast)
)

(7) then broadcast WITNESS(j,m)
(8) end if;

(9) if
(

(WITNESS(j,m) received from (n− t) different processes)

(10) ∧ (〈j,−〉 not yet brb-delivered)
)

(11) then BRB deliver MSG(j,m)
(12) end if.

Figure 4.6: Communication-efficient Byzantine BRB-broadcast in BAMPn,t[t < n/5]

4.5.2 Correctness Proof

Lemma 4. Let INIT(i,m) be a message that is never broadcast by a correct process pi. If Byzantine

processes broadcast the message WITNESS(i,m), no correct process will forward this message at

line 7.

Proof Let us consider the worst case where t processes are Byzantine and each of them broadcasts

the same message WITNESS (i,m). For a correct process pj to forward this message at line 7, the

forwarding predicate of line 5 must be satisfied. But, in order for this predicate to be true at a correct

process pj , this process must receive the message WITNESS (i,m) from (n− 2t) different processes.

As n− 2t > t, this cannot occur. �Lemma 4
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Theorem 15. The algorithm described in Fig. 4.6 implements BRB-broadcast communication abstrac-

tion in the system model BAMPn,t[t < n/5]. Moreover, the brb-broadcast of an application message

by a correct process requires two communication steps and the correct processes send at most (n2−1)
protocol messages.

Proof Proof of the BRB-validity property. Let pi be a correct process that invokes BRB broadcast

(m), and consequently broadcasts the message INIT(i,m) at line 1. The fact that no correct pro-

cess brb-delivers a message from pj that is different from m comes from the following observation.

To brb-deliver a message MSG(i,m′), where m′ �= m, a correct process must receive the message

WITNESS(i,m′) from more than (n − t) different processes (line 9). But if the (at most) t Byzantine

processes forge a fake message WITNESS(i,m′), with m �= m′, this message will never be forwarded

by the correct processes (Lemma 4). As n− t > t, it follows from the predicate of line 9 that the pair

brb-delivered from pi by any correct process cannot be different from 〈i,m〉.

Proof of the BRB-integrity property. This property follows directly from the brb-delivery predicate of

line 10, namely, at most one pair 〈j,m〉 can be delivered by any correct process pi.

Proof of the BRB-no-duplicity property. Let pk be a process that sends at least one message INIT(k,−).
If pk is correct, it sends at most one such message. If it is Byzantine, it may send more. Hence, let us

assume that pk sends INIT(k,m1), INIT(k,m2), ..., INIT(k,m�), where m ≥ 1. For any x ∈ [1..	], let

Qx be the set of correct processes that receive the message INIT(k, vx), which directed them to broad-

cast the message WITNESS(k, vx) at line 3. Due to the fact that only pk can send messages INIT(k,−),
it follows from the reception predicate of line 2 that a correct process can belong to at most one set

Qx. Hence, we have: (x �= y) ⇒ Qx ∩ Qy = ∅. We consider two cases according to the size of the

sets Qx:

• Let us first consider a set Qx such that |Qx| < n−3t. Let pj be any correct process that does not

belong to Qx (hence pj does not process the message INIT(k,mx) at line 3 if it receives it). As

n−t > n−3t, pj does exist. Process pj can receive the message WITNESS(k,mx) (a) from each

process of Qx, and (b) from each of the t Byzantine processes. It follows that pj can receive

WITNESS(k,mx) from at most t+ |Qx| different processes. As t+ |Qx| < n− 2t, the predicate

of line 5 cannot be satisfied at pj , and consequently, pj (i.e., any correct process /∈ Qx) will

never send the message WITNESS(k,mx). Hence, the number of messages WITNESS(k,mx)
received by any correct process can never attain (n− t), from which we conclude that no correct

process brb-delivers the pair 〈k,mx〉. It follows that, if there is a single set (of correct processes)

Qz (i.e., z = m = 1), and this set is such that |Qz| ≥ n − 3t, at most one message MSG(k,−)
may be brb-delivered by a correct process, and this message is then MSG(k,mz).

• Let us now consider the case where there are at least two different sets of correct processes Qx

and Qy, each of size at least (n − 3t). Let us remember that, in the worst case, each of the t
Byzantine processes can systematically play a double game by sending both WITNESS(k,mx)
and WITNESS(k,my) to each correct process without having received the associated message

INIT(k,−). Moreover, in the worst case, we have exactly (n−t) correct processes. (If, in a given

execution, strictly less than t processes are Byzantine, we consider the equivalent execution in

which exactly t processes are Byzantine, and some of them behave like correct processes.) As

both Qx and Qy contain only correct processes, and Qx ∩Qy = ∅, it follows that |Qx|+ |Qy|+
t ≤ n, which implies 2n− 6t+ t ≤ |Qx|+ |Qy|+ t ≤ n, from which we obtain 5t ≥ n, which

contradicts the assumption on t (namely, n > 5t). Consequently, at least one of Qx and Qy is

composed of less than (n−3t) correct processes. It follows from the previous paragraph that the

corresponding pair 〈k,−〉 cannot be brb-delivered by a correct process. As this is true for any

pair of sets Qx and Qy, it follows that, if pk sends several messages INIT(k,m1), INIT(k,m2),
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..., INIT(k,m�), at most one of them can give rise to a set Qx such that |Qx| ≥ n − 3t, and,

consequently, at most one pair 〈k,−〉 can be brb-delivered by any correct process.

Proof of the BRB-termination-1 property. Let pi be a correct process that invokes BRB broadcast(mi)
and consequently broadcasts the message INIT(i,mi) at line 1. It follows that any correct process pj
receives this message. Let us remember that, due to the network connectivity assumption, there is a

channel connecting pi to pj and consequently the message INIT(i,mi) cannot be a fake message forged

by a Byzantine process. Moreover, due to Lemma 4, no message WITNESS(i,m′), with m′ �= m,

forged by Byzantine processes, can be forwarded by a correct process at lines 5-8. Hence, when pj
receives INIT(i,mi), it broadcasts the message WITNESS(i,mi) at line 4. It follows that every correct

process eventually receives this message from (n − t) different processes and consequently locally

brb-delivers the pair 〈i, v〉 at line 11, which proves the property.

Proof of the BRB-termination-2 property.

Let pi be a correct process that brb-delivers the pair 〈k,m〉. It follows that the brb-delivery predicate

of lines 9-10 is true at pi, and consequently, pi received the message WITNESS(k,m) from at least

(n− t) different processes, i.e., from at least n− 2t > t correct processes.

It follows that at least (n− 2t) correct processes broadcast WITNESS(k,m), and consequently the

predicate of line 5 is eventually true at each correct process. Hence, every correct process eventually

broadcasts the message WITNESS(k,m) at line 7, if not yet done before (at line 3 or line 7). As there

are at least (n − t) correct processes, each of them eventually receives WITNESS(k,m) from (n − t)
different processes, and consequently brb-delivers the pair 〈k, v〉 at line 11, which proves the property.

�Theorem 15

Cost of the algorithm The BRB-broadcast of an application message by a correct process gives

rise to (n − 1) protocol messages INIT() (line 1, each of them entailing the simultaneous sending of

(n− 1) protocol messages WITNESS() at line 3 or line 6). Hence, the brb-broadcast of an application

message requires two communication steps, and at most (n2−1) protocol messages are sent by correct

processes.

4.6 Summary

This chapter was on reliable broadcast in systems where processes can commit Byzantine failures

(arbitrary deviations – intentional or not – from their intended behavior). It was first shown that

t < n/3 is a necessary requirement for implementing such a reliable communication abstraction; then

three reliable broadcast algorithms were presented. Their main features are summarized in Table 4.1.

The “message size” column that appears in this table refers to the size of the control information

carried by protocol messages.

Abstraction Figure Com. steps Message size Protocol msgs Constraint on t
ND-broadcast 4.1 2 log2 n (n− 1)(n+ 1) t < n/3

BRB-broadcast 4.3 3 log2 n (n− 1)(2n+ 1) t < n/3
BRB-broadcast 4.6 2 log2 n (n− 1)(n+ 1) t < n/5

Table 4.1: Comparing the three Byzantine reliable broadcast algorithms

The no-duplicity broadcast prevents correct processes from delivering different messages from the

same sender, but, if the sender is faulty, it is possible that a correct process delivers a message while

another correct process never delivers a message from this sender. Reliable broadcast provides the
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application layer with a higher abstraction level, namely, if the sender is faulty, all the correct processes

or none of them deliver a message from it. The first BRB-broadcast algorithm that was presented is

optimal with respect to the resilience parameter t, and requires three communication steps. The second

BRB-broadcast algorithm that was presented assumes a stronger constraint on t, (namely, t < n/5),

but requires only two communication steps. Actually its time and message costs are the same as the

ones required by no-duplicity broadcast.
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4.8 Exercises and Problems

1. Prove correct the improved algorithm of Fig. 4.5.

2. Extend the algorithm presented in Fig. 4.6 so that a process can brb-broadcast, not a single

message, but a sequence of messages, each one being broadcast in a separate BRB-broadcast

instance.

Solution in Section 9.3.



Part III

The Read/Write Register

Communication Abstraction

This part of the book is devoted to the implementation of read/write registers on top of asynchronous

message-passing systems prone to failures. Let us remember that the read/write register is the most

basic object in Informatics. It is even the only object of a Turing machine; hence, it is the object

sequential computing rests on. This part of the book is composed of five chapters:

• Chapter 5 defines a read/write register in the context of concurrency. It presents three semantics

for such an object: regular register, atomic register, and sequentially consistent register. The

chapter also shows that t < n/2 is a necessary requirement to build a read/write register in the

presence of asynchrony and process crashes.

• Chapter 6 is on the implementation of atomic and sequentially consistent read/write registers

in CAMPn,t[t < n/2]. Multi-Writer/Multi-Reader (MWMR) atomic registers are built incre-

mentally from regular registers. Two approaches for building MWMR sequentially consistent

registers are presented.

• Chapter 7 shows how the t < n/2 requirement can be circumvented by the use of failure

detectors. (Failure detectors have been introduced in Section 3.3. They are “oracles” increasing

the computability power of the underlying system by providing information on failures.)

• Chapter 8 presents a specific communication abstraction (called SCD-broadcast), which cap-

tures exactly what is needed to implement atomic or sequentially consistent read/write registers.

It also shows how this communication abstraction can be implemented in CAMPn,t[t < n/2].

• Chapter 9 presents an implementation of atomic read/write registers in the presence of Byzantine

processes. It also shows that such implementations are possible only if t < n/3.
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Chapter 5

The Read/Write Register Abstraction

The read/write register is the most basic object of sequential computing. This chapter introduces it in a

concurrency context, and considers three associated consistency conditions: regularity, atomicity (also

called linearizability), and sequential consistency. Atomicity and sequential consistency define the

family of strong consistency conditions, namely, they require all processes to agree on the same total

order in which they see the read and write operations applied to the registers. After a formalization of

these notions, the chapter shows that atomic read/write registers compose for free while sequentially

consistent registers do not. Then, it shows that the constraint t < n/2 is a necessary condition to

implement a strong consistency condition. It also presents lower bounds on the time needed for a

process to execute a read or a write operation on an atomic or sequentially consistent register. It finally

shows that, for an atomic register, neither the write nor the read operation can be purely local, i.e., each

operation requires some synchronization to terminate. Whereas either the read or the write operation

can be local for sequentially consistent registers.

Keywords Asynchronous system, Atomicity, Composability, Computability bound, Consistency

condition, Linearizability, Linearization point, Necessary condition, Partial order, Process history,

Read/write register, Regular register, Sequential consistency, Total order.

5.1 The Read/Write Register Abstraction

5.1.1 Concurrent Objects and Registers

Concurrent object A concurrent object is an object that can be accessed concurrently by two or

more sequential processes. As it is sequential, a process that invoked an operation on an object must

wait for a corresponding response before invoking another operation on the same (or another) object.

When this occurs, we say that the operation is pending.

While each process can access at most one object at a time, an object can be simultaneously

accessed by several processes. This occurs when two or more processes have pending invocations on

the same object: hence, the name “concurrent object”.

Register object One of the most fundamental concurrent objects is the shared register object (in

short, register). This object abstracts physical objects such as a word, or a set of words, of a shared

memory, a shared disk, etc. A register R provides the processes with an interface made up of two

operations denoted R.read() and R.write(). The first allows the invoking process to obtain the value

of the register R, while the second allows it to assign a new value within the register.

© Springer Nature Switzerland AG 2018
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Type of register According to the value that can be returned by a read operation, several types of

registers can be defined. We consider here two families of registers, in which a read always returns a

value that was written previously:

• The first family is a family of read/write registers that cannot be defined by a sequential speci-

fication. This is the family of regular read/write registers (defined below). The value returned

by a read depends on the concurrency pattern in which is involved the read operation.

• The second family is the family of read/write registers that can be defined by a sequential specifi-

cation. This means that the correct behavior of such a register can be defined by a set made up of

all the allowed sequences of read and write operations (basically, in any of these sequences, each

read operation must return the value written by the closest write operation that precedes it). Two

distinct consistency conditions capture these sequences: atomicity (also called linearizability)

and sequential consistency).

Underlying time notion The definitions that follow refer to a notion of time. This time notion can

be seen as given by an imaginary clock that models the progress of a computation as perceived by an

external omniscient observer. It is accessible neither to the processes nor to the read/write registers.

Its aim is to capture the fact that, from the point of view of an omniscient external observer, the flow

of operations is such that (1) some operation invocations have terminated while others have not yet

started, and (2) some operation invocations overlap in time (they are concurrent). These notions will

be formally defined in Section 5.2.

5.1.2 The Notion of a Regular Register

Definition A regular register is a single-writer/multi-reader (SWMR) register, i.e., it can be written

by a single predetermined process, and read by any process. The definition of a regular register as-

sumes a single writer in order to prevent write conflicts. More precisely, as the writer is sequential, the

write operations are totally ordered (the corresponding sequence of write operations is called the write

sequence). The value returned by a read is defined as follows:

• If the read operation is not concurrent with write operations, it returns the current value of the

register (i.e., the value written by the last write in the current write sequence).

• If the read operation is concurrent with write operations, it returns the value written by one of

these writes or the last value of the register before these writes.

reader

writer

R.write(0) R.write(1) R.write(2)

R.read()→ v′R.read()→ v

Figure 5.1: Possible behaviors of a regular register

Example and the notion of a new/old inversion The definition of a regular register is illustrated in

Fig. 5.1 where a writer and a single reader are considered. The notation “R.read() → v” means that

the read operation returns the value v. As far as concurrency patterns are concerned, the durations of

each operation are indicated on the figure by double-headed arrows.

The writer issues three write operations that sequentially write into the register R the values 0, 1
and 2. On its side, the reader issues two read operations; the first obtains the value v, while the second

obtains the value v′. The first read is concurrent with the writes of the values 1 and 2 (their executions
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overlap in time); according to the definition of regularity, it can return for v any of the values 0, 1 or

2. The second read is concurrent only with the write of the value 2; hence, it can consequently return

for v′ the value 1 or the value 2.

So, as R is regular, the second read is allowed to return 1 (which has been written before the value

2), while the first read (that precedes it) is allowed to return the value 2 (which has been written after

the value 1). This is called a new/old inversion: in presence of read/write concurrency, a sequence of

read operations is not required to return a sequence of values that complies with the sequence of write

operations. It is interesting to notice that, if we suppress R.write(2) from the figure, v is restricted to

0 or 1, while v′ can only be the value 1 (and, as we are about to see, the register then behaves as if it

was atomic).

A regular register has no sequential specification It is easy to see that, due to the possibility of

new/old inversions, a regular register cannot have a sequential specification. To this end let us consider

the execution of a regular register as depicted in Fig. 5.2, which presents a new/old inversion.

reader

writer

R.write(0) R.write(1) R.write(2)

R.read()→ 2 R.read()→ 1

Figure 5.2: A regular register has no sequential specification

When considering read/write registers, the read-from order relation associates the write operation

that wrote the value read with each read operation. This relation is depicted by the dashed arrows in

Fig. 5.2.

If we want to totally order the read and write operations, issued by the processes, in such a way

that the sequence obtained belongs to the specification of a sequential register, we need to place first

all the write operations and then the read operations issued by the reader. This is due to the fact that

R.write(2) precedes R.read() → 2. On the other hand, as the read is sequential, it imposes a total

order on its read operations (called process order), and we then obtain the sequence

R.write(0), R.write(1), R.write(2), R.read()→ 2, R.read()→ 1,

which does not belong to the specification of a sequential register.

Why regular registers? While regular registers do not appear in shared memory systems, they can

be built on top of message-passing systems. As we will see in the next chapter, they allow for an

incremental construction of registers defined by a sequential specification, which are nothing other

than regular registers without new/old inversions.

5.1.3 Registers Defined from a Sequential Specification

The notion of an atomic register There are two main differences between regularity and atomicity,

namely, an atomic register (a) can be a multi-writer/multi-reader (MWMR) register and (b) does not

allow for new/old inversions (i.e., it has a sequential specification). Let us notice that an SWMR

read/write register is also a regular register. More precisely, an atomic register is defined by the

following properties:

• All the read and write operations appear as if they have been executed sequentially. Let Ŝ
denote the corresponding sequence (for consistency purposes, we use here the same notations

as the ones used in Section 5.2, where the notion of atomicity is formalized).
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• The sequence Ŝ respects the time order of the operations (i.e., if op1 terminated before op2
started, then op1 appears before op2 in Ŝ).

• Each read returns the value written by the closest preceding write in the sequence Ŝ (or the

initial value if there is no preceding write operation).

The corresponding sequence of operations Ŝ is called a linearization of the register execution. Let

us notice that concurrent operations can be ordered arbitrarily as long as the sequence obtained is

a linearization. Hence, it is possible that an execution has several linearizations. This captures the

non-determinism inherent in a concurrent execution.

Intuitively, this definition states that everything must appear as if each operation has been exe-

cuted instantaneously at some point on the time line (of an omniscient external observer) between its

invocation (start event) and its termination (end event). This will be formalized in Section 5.2.

Omniscient observer’s time

Here R = 1 Here R = 2Here R = 3

R.write(1) R.write(2)

R.write(3) R.read()→ 2

R.read()→ 2R.read()→ 1

p1

p2

p3

Figure 5.3: Behavior of an atomic register

Example of an atomic MWMR register execution An example of an execution of an MWMR

atomic register accessed by three processes is described in Fig. 5.3. (Two dashed arrows are asso-

ciated with each operation invocation.) They meet at a point on the “real time” line at which the

corresponding operation could have instantaneously occurred. These points on the time line must de-

fine a linearization of the operations. In the example, everything appears as if the operations have

been executed according to the following linearization, where the subscript index associated with each

operation denotes the process that invoked the operation:

R.write2(1), R.read1()→ 1, R.write3(3), R.write2(2), R.read1()→ 2, R.read3()→ 2.

During another execution with the same concurrency pattern, the concurrent operations R.write(3)
and R.write(2) could be ordered the other way. In this case, the last two read operations should return

the value 3 in order that the register R behaves atomically.

When we consider the example described in Fig. 5.1 with v = 2 and v′ = 1, there is a new/old

inversion, and consequently the register R does not behave atomically. Differently, if (1) either v = 0
or 1 and v′ = 1 or 2, or (2) v = v′ = 2, there would be no new/old inversion, and consequently the

behavior of the register would be atomic.

The notion of a sequentially consistent register A sequentially consistent read/write register is a

weakened form of an atomic register, which satisfies the following three properties:

• All the read and write operations appear as if they have been executed sequentially; let Ŝ be the

corresponding sequence.
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• The sequence Ŝ respects the process order relation, i.e., for any process pi, if pi invokes op1
before op2, then op1 must appear before op2 in the sequence Ŝ.

• Each read returns the value written by the closest preceding write in Ŝ (or the initial value if

there is no preceding write operation).

Hence, while the order of the operations in the sequence Ŝ must respect the time of an omniscient

external observer in the definition of an atomic register, the sequence Ŝ is required to respect only the

process order relation in the definition of a sequentially consistent register.

R.write(1) R.read()→ 1

R.write(2) R.read()→ 2

Logical time time

Here R = 2 Here R = 1

p1

p2

Figure 5.4: Behavior of a sequentially consistent register

Example of a sequentially consistent MWMR register execution An example of an execution of

an MWMR atomic register accessed by two processes is described in Fig. 5.4. The corresponding

sequence Ŝ respecting process order is the following one:

R.write2(2), R.read2()→ 2, R.write1(1), R.read1()→ 1.

It is easy to see that sequential consistency replaces the “physical” time of an omniscient global ob-

server with a logical time. Hence, any atomic execution of a register is also sequentially consistent.

5.2 A Formal Approach to Atomicity and Sequential Consistency

This section formalizes the notions of atomic read/write register and sequentially consistent register.

As well as eliminating possible ambiguities (due to the use of spoken/written languages), formalization

provides us with a precise framework that allows us to reason and prove a fundamental composability

property associated with atomicity (this property will be presented in Section 5.3).

5.2.1 Processes, Operations, and Events

Processes and operations As already indicated, each register R provides the processes with two

operations R.write() and R.read(). The notation R.op(arg)(res) is used denote any operation on a

register R, where arg is the input parameter (empty for a read, and the value v to be be written for a

write), and res is the response returned by the operation (ok for a write, and the value v obtained from

R for a read operation). When there is no ambiguity, we talk about operations where we should be

talking about operation executions.
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Events The execution of an operation op(arg)(res) on a register R by a process pi is modeled by

two events:

• The invocation event occurs when pi invokes (starts executing) the operation R.op(). It is de-

noted inv[R.op(arg) by pi].

• The reply event occurs when pi terminates (returns from) the operation R.op(). It is denoted

resp[R.op(res) by pi], and is also called matching reply with respect to inv[R.op(arg) by pi].

We say that these events are generated by process pi and associated with register R.

5.2.2 Histories

Representing an execution as a history of events This paragraph formalizes what we usually have

in mind when we use the word execution or run.

As simultaneous (invocation and reply) events generated by sequential processes are independent,

it is always possible to order simultaneous (concurrent) events in an arbitrary way without altering

the behavior of an execution. This makes it possible to consider a total order relation on the events

(denoted <H ), which abstracts the time order in which the events do actually occur (i.e., the time of

the omniscient external observer). This is precisely how executions are formally captured.

Hence, the interaction between a set of sequential processes and a set of shared registers is modeled

by a sequence of invocation and reply events, called a history (sometimes also called a trace), and

denoted Ĥ = (H,<H) where H is the set of events generated by the processes and <H a total order

on these events.

The notation Ĥ|pi (Ĥ at pi) denotes the subsequence of Ĥ made up of all the events generated by

process pi. It is called the local history at pi.

As a simple example, Fig. 5.5 describes the history (the sequence of 12 events e1, . . . , e12) associ-

ated with the execution depicted in Fig. 5.3. (Only the first four events are described explicitly.)

R.read()→ 1

History Ĥ

pi

pj

pk

inv[R.write(1) by pj]
resp[R.write()(ok) by pj]

inv[R.read() by pi]

resp[R.read()(1) by pi]

e1 e3 e5e2 e4 e6 e8e7 e9 e10 e12e11

R.read()→ 2

R.write(3) R.read()→ 2

R.write(1) R.write(2)

Figure 5.5: Example of a history

Equivalent histories Two histories Ĥ and Ĥ ′ are said to be equivalent if they have the same local

histories, i.e., for each pi, Ĥ|pi = Ĥ ′|pi. That is, equivalent histories are built from the same set of

events (remember that an event includes the name of an object, the name of a process, the name of an

operation, and its input or output parameter).



Chapter 5. The Read/Write Register Abstraction 83

Well-formed histories As we consider histories generated by sequential processes, we restrict our

attention to the histories Ĥ such that, for each process pi, Ĥ|pi (local history at pi) is sequential: it

starts with an invocation, followed by its matching reply, followed by another invocation (on the same

or another register), etc. We say in this case that Ĥ is well-formed.

Partial order on operations A history Ĥ induces an irreflexive partial order on its operations as

follows. Let op = X.op1() by pi and op′ = Y.op2() by pj be two operations. Operation op precedes

operation op′ (denoted op→H op′) if op terminates before op′ starts, where “terminates” and “starts”

refer to the time line abstracted by the <H total order relation. More formally:

(
op→H op′

) def
=

(
resp[op] <H inv[op′]

)
.

Two operations op and op′ are said to overlap (as already seen, we also say they are concurrent) in

a history Ĥ if neither resp[op] <H inv[op′] nor resp[op′] <H inv[op]. Notice that two overlapping

operations are such that ¬(op→H op′) and ¬(op′ →H op).
The partial order generated by the execution described in Fig. 5.3 is given in Fig. 5.6.

R.read1()→ 1

R.write2(2)

R.write3(3)

R.read1()→ 2

R.read3()→ 2

R.write2(1)

Figure 5.6: Partial order on the operations

Sequential history A history Ĥ is sequential if its first event is an invocation, and then (1) each

invocation event is immediately followed by its matching reply event, and (2) each reply event is

immediately followed by an invocation event, until the execution terminates (if it is not infinite).

If Ĥ is a sequential history, it has no overlapping operations, and consequently the order →H on

its operations is a total order. A history Ĥ that is not sequential is concurrent.

A sequential history models a sequential multiprocess execution (there are no overlapping opera-

tions), while a concurrent history models a concurrent multiprocess execution (there are overlapping

operations). An important point of a sequential history lies in the fact that one can reason about ex-

ecutions at the granularity level defined by its operations (instead of being obliged to reason at the

granularity level of its underlying events).

Legal history Given a sequential history Ŝ and a register R, let Ŝ|R (Ŝ at R) denote the subsequence

of Ŝ made up of all events involving only register R. (Notation Ŝ|R is similar to Ŝ|pi: in both cases

it denotes the subsequence of Ŝ made up of all events involving only register R or process pi.) Let us

notice that, as Ŝ is a sequential history, each Ŝ|R is also a sequential history.

We say that a sequential history Ŝ is legal if, for each register R, the sequence Ŝ|R is such that

each of its read operations returns the value written by the closest preceding write in Ŝ|R (or the initial

value of R if there is no preceding write).
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5.2.3 A Formal Definition of Atomicity

Atomic history We define here atomicity for histories without pending operations, i.e., each invoca-

tion event of Ĥ has a matching reply event in Ĥ . (Extending the definition to histories with pending

operations is left as an exercise.) A register history Ĥ is atomic if there is a “witness” history Ŝ such

that:

1. Ĥ and Ŝ are equivalent,

2. Ŝ is sequential and legal, and

3. →H⊆→S .

The definition above states that for a history Ĥ to be atomic, there must be a permutation Ŝ
(witness history) of Ĥ , which satisfies the following requirements. First, Ŝ is composed of the same

set of events as Ĥ [item 1]. Second, Ŝ is sequential (i.e., an interleaving of the process histories at

the granularity of complete operations) and legal (i.e., it respects the sequential specification of each

register) [item 2]. Notice that, as Ŝ is sequential, →S is a total order. Finally, Ŝ also has to respect

the occurrence order of the operations as defined by →H [item 3]. Ŝ represents a history that could

have been obtained by executing all the operations, one after the other, while respecting the occurrence

order of all the non-overlapping operations. Such a sequential history Ŝ constitutes what we called

before a linearization of Ĥ .

Remark on non-determinism It is important to notice that the notion of atomicity inherently in-

cludes a form of non-determinism in the sense that, given a history Ĥ , several linearizations of Ĥ
might exist.

Linearization point The very existence of a linearization of an (atomic) history Ĥ means that each

operation of Ĥ could have been instantaneously executed at a point on the time line (as defined by

the total order <H ) that lies between its invocation and reply time events. Such a point is called the

linearization point of the corresponding operation. (The points in Fig. 5.3 represent the linearization

points of the operations issued by the processes.)

One way of proving that all the histories generated by an algorithm are atomic consists in identify-

ing a linearization point for each of its operations. These points have to (1) respect the time occurrence

order of the non-overlapping operations and (2) be consistent with the sequential specification of the

object.

5.2.4 A Formal Definition of Sequential Consistency

As already indicated, sequential consistency is a weakened form of atomicity in which, when looking

at the witness sequence Ŝ, the compliance with respect to real-time (→H⊆→S) is replaced by the

compliance to process order only.

A register history Ĥ is sequentially consistent if there is a “witness” history Ŝ such that:

1. Ĥ and Ŝ are equivalent, and

2. Ŝ is sequential and legal.

Let op1 →i op2 if both the operations op1 and op2 have been issued by pi, with op1 before op2.

Trivially, for any pi, we have →i⊂→H . To parallel the third item of the definition of atomicity, we

could include the following additional property ∀i : →i⊆→S in the definition of sequential consis-

tency. But, this is not necessary as this property is already included in item 1, which states that Ĥ and

Ŝ are equivalent (i.e., ∀i : Ĥ|pi = Ŝ|pi).
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5.3 Composability of Consistency Conditions

5.3.1 What Is Composability?

Definition Let P be any property defined on a set of objects. As already indicated, P is composable

if the set of objects as a whole satisfies the property P whenever each object taken alone satisfies P .

Hence, composability is an important concept that states that objects can be composed for free. As we

are about to see, atomicity is composable while sequential consistency is not.

Why composability is important Composability is important both when one has to reason about

algorithms that access shared registers, and when one has to implement shared registers.

• From a theoretical point of view, composability means that we can keep reasoning sequentially

independently of the number of atomic registers involved in the computation. Namely, we can

reason on a set of registers as if they were a single atomic object. We can reason in terms of

witness sequences, not only for each register separately, but also on all the registers as if they

were a single atomic object.

As an example, let us consider an application composed of processes that share two atomic

registers R1 and R2. Then, the composite object [R1, R2], that provides the processes with

the four operations: R1.write(), R1.read(), R2.write(), and R2.read(), behaves atomically

(everything appears as if one operation at a time was executed, and the projection of this global

sequence on the operations of R1 – resp. R2 – is a witness sequence for R1 – resp. R2 –).

• From a practical point of view, composability means modularity. This has several advantages.

On the one side, each atomic register can be implemented in its own way: the implementation

of one atomic register is not required to interfere with the implementation of the other atomic

registers.

On the other side, as soon as we have an algorithm that implements an atomic register (e.g., in

a message-passing system as we will see in the next chapter), we can use multiple independent

instances of it, one for each register, and the system will behave correctly without any additional

control or synchronization.

To summarize, as atomicity is composable, atomic registers compose for free (i.e., their composition

is at no additional cost).

5.3.2 Atomicity Is Composable

This section shows that atomicity is composable. Intuitively, this comes from the fact that it involves

the “same real-time” time occurrence order on non-concurrent operations whatever the registers and

the operations issued by the processes. As we will see, this appears clearly in the proof that follows.

Actually, the following theorem is correct not only for the atomic registers, but more generally for

any object that is atomic (such as a stack or a queue). It is consequently formulated and proved on

an object basis (as we have previously seen, an atomic register is a particular object that provides the

processes with a read and a write operation and is defined by a sequential specification).

Theorem 16. A history Ĥ is atomic if, and only if, for each object X involved in Ĥ , Ĥ|X is atomic.

Proof The “⇒” direction (only if) is an immediate consequence of the definition of atomicity: if Ĥ
is atomic then, for each object X involved in Ĥ , Ĥ|X is atomic. So, the rest of the proof is restricted

to the “⇐” direction.

Given an object X , let ŜX be a linearization of Ĥ|X . It follows from the definition of atomicity

that ŜX defines a total order on the operations involving X . Let →X denote this total order. We

construct an order relation→ defined on the whole set of operations of Ĥ as follows:
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1. For each object X: →X ⊆→, and

2. →H ⊆→.

Basically, “→” totally orders all operations on the object X , according to→X (item 1), while preserv-

ing→H , i.e., the real-time occurrence order on operations (item 2).

Claim C. “→ is acyclic” (i.e.,→ defines a partial order on the set of all the operations of Ĥ).

Assuming this claim, it is thus possible to construct a sequential history Ŝ including all events of

Ĥ and respecting→. We trivially have→⊆→S where→S is the total order on the operations defined

from Ŝ. We have the three following conditions: (1) Ĥ and Ŝ are equivalent (they contain the same

events), (2) Ŝ is sequential (by construction) and legal (due to item 1 above), and (3) →H⊆→S (due

to item 2 above and→⊆→S). It follows that Ĥ is linearizable.

Proof of claim C. We show (by contradiction) that → is acyclic. Assume first that → induces a cycle

involving the operations on a single object X . Indeed, as →X is a total order, in particular transitive,

there are two operations opi and opj on X such that opi →X opj and opj →H opi. We have the

following:

• opi →X opj ⇒ inv[opi] <H resp[opj ] because X is atomic, and

• opj →H opi ⇒ resp[opj ] <H inv[opi],

which shows a contradiction, as <H is a total order on the whole set of events.

It follows that any cycle must involve at least two objects. To obtain a contradiction we show that,

in that case, a cycle in→ implies a cycle in→H (which is acyclic). Let us examine the way the cycle

could be obtained. If two consecutive edges of the cycle are due to either some →X (because of an

object X), or →H (due the total order <H ), then the cycle can be shortened as any of these relations

is transitive. Moreover, opi →X opj →Y opk is not possible for X �= Y , as each operation is on one

object only (opi →X opj →Y opk would imply that opj is on both X and Y ).

resp.[op1] inv.[op2] inv.[op4]resp.[op3]

Total order <H on events

op3→H op4op1→H op2 op2→X op3

Figure 5.7: Developing op1→H op2→X op3→H op4

So, let us consider any sequence of edges of the cycle such that: op1→H op2→X op3→H op4.

We have (see Figure 5.7):

1. op1→H op2⇒ resp[op1] <H inv[op2] (definition of op1→H op2),

2. op2→X op3⇒ inv[op2] <H resp[op3] (as X is atomic), and

3. op3→H op4⇒ resp[op3] <H inv[op4] (definition of op3→H op4).

Combining these statements, we obtain resp[op1] <H inv[op4] from which we can conclude that

op1 →H op4. It follows that all the edges due to the relations →X (associated with every object X)

can be suppressed, and consequently any cycle in → can be reduced to a cycle in →H , which is a

contradiction as→H is an irreflexive partial order. End of proof of claim C. �Theorem 16
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5.3.3 Sequential Consistency Is Not Composable

Theorem 17. Sequential consistency is not composable.

Proof The proof consists in building a counter-example. Let us consider a register R, and its execution

E depicted in Fig. 5.8. This execution is sequentially consistent, namely, the sequence Ŝ

p1

p2

R.write(1)

R.write(2) R.read()→ 1

Figure 5.8: The execution of the register R is sequentially consistent

R.write2(2), R.write1(1), R.read2()→ 1,

satisfies the properties defining sequential consistency (it preserves process order, and belongs to the

sequential specification of a read/write register).

Let us now consider the execution E′ of the register R′ depicted in Fig. 5.9.

p1

p2
R′.write(a)

R.read()→ aR′.write(b)

Figure 5.9: The execution of the register R′ is sequentially consistent

This execution is sequentially consistent, namely, the sequence Ŝ′

R.write1(b), R.write2(a), R.read1()→ a,

satisfies the property defining sequential consistency.

Let us now consider an execution E + E′ involving both R and R′, as described in Fig. 5.10.

p1

p2

R.read()→ 1R.write(2)

R.write(1) R′.write(b) R′.read()→ a

R′.write(a)

Figure 5.10: An execution involving the registers R and R′

This execution is the “union” of the previous executions E and E′, and each of its projections on

R and R′ are trivially sequentially consistent. But, there is no way to order all the operations so that

both the projections of R and R′ are sequentially consistent. �Theorem 17

It is easy to see, from the previous proof, that each register considers its own “logical time” in

which its execution is correct. But as these logical times are independent, they cannot be combined,

which prevents sequential consistency from being composable. The “real-time” reference on which

atomicity is based allows it to be composable (all registers considers the same reference time).
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5.4 Bounds on the Implementation of Strong Consistency Conditions

5.4.1 Upper Bound on t for Atomicity

Atomic registers can “easily” be implemented in failure-free asynchronous message-passing systems,

i.e., in the very constrained system model CAMPn,t[t = 0]. Hence, from both a practical and com-

putability point of view, a fundamental question is the following one: Is it possible to design atomic

register algorithms for any value of t, or is there a threshold on t that cannot be bypassed when one

has to cope with the net effect of asynchrony and process failures?

This section answers this fundamental question by showing that it is impossible to design a dis-

tributed algorithm that builds an atomic register in CAMPn,t[t ≥ n/2]. This proof is based on an

indistinguishability argument, which is common to several impossibility results, namely the fact that

some processes cannot distinguish one execution from another one. In this sense, although it is very

simple, this proof depicts an essential feature that lies at the core of fault-tolerant distributed comput-

ing.

Theorem 18. There is no algorithm that builds an atomic read/write register in the system model

CAMPn,t[t ≥ n/2].

Proof Given t ≥ n/2, let us partition the processes into two subsets P1 and P2 (i.e., P1 ∩ P2 = ∅
and P1 ∪ P2 = {p1, . . . , pn}) such that |P1| = �n/2� and |P2| = �n/2�. Let us observe that

max(|P1|, |P2|) ≤ t, which means that the system model includes executions in which all the pro-

cesses of P1 crash, and executions in which all the processes of P2 crash.

The proof is by contradiction. Let us assume that there is an algorithm A that builds an atomic

register R for t ≥ n/2. Let 0 be the initial value of R. Let us define the following executions (depicted

in Fig. 5.11 where n = 5 and t = 3). Remember that, according to the system model and the previous

assumptions, these executions can happen.

P2 R.read()→ 0

R.write(1)

E1

E0

τreadτwrite

px

︸
︷︷

︸

py

︸︷︷︸

P1

Figure 5.11: There is no atomic register algorithm in CAMPn,t[∅]

• Execution E1. In this execution, all the processes of P2 crash initially (so no process of P2
ever executes a step in E1), and all the processes in P1 are non-faulty. Moreover, a process

px ∈ P1 issues R.write (1), and no other process of P1 invokes an operation. As the algorithm

A is correct (assumption), it satisfies the liveness property and consequently this write operation

does terminate. Let τwrite be a (finite) time after it has terminated.

• Execution E0. In this execution, all the processes of P1 crash initially, the processes of P2 are

non-faulty and do nothing until τwrite. Let us observe that, due to asynchrony, this is possible.

After τwrite, a process py ∈ P2 issues R.read (), and no other process of P2 invokes an opera-

tion. As the algorithm A is correct, this read operation terminates and returns the initial value 0
to py. Let τread be a (finite) time after which this read operation has terminated.
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• Execution E10. This execution is defined as follows (where “the same as” means that in both

executions, the processes issues the same operations and receive the same results at the very

same time):

– No process crashes.

– E10 is the same as E1 until τwrite.

– E10 is the same as E0 until the time τread.

– If any, the messages that the processes of P1 send to the processes of P2 are delayed to be

received after time τread. Similarly, if any, the messages that the processes of P2 send to

the processes of P1 are delayed to be received after time τread. (Remember that, due the

system asynchrony, messages can be delayed during arbitrarily long but finite periods.)

Let us consider the process py ∈ P2. This process cannot distinguish between E0 and E10 until

τread. Hence, as it reads 0 in E0, it has to read the same value in E10; but, as the algorithm A ensures

atomicity, py should read 1 in E10 (the last write that precedes the read operation wrote the value 1).

We obtain a contradiction, from which we conclude that there is no algorithm A with the required

properties. �Theorem 18

5.4.2 Upper Bound on t for Sequential Consistency

This section considers the previous question when the consistency condition is sequential consistency.

It shows that the previous impossibility result still holds when we have to implement x ≥ 2 sequen-

tially consistent registers.

Theorem 19. There is no algorithm that builds two or more sequentially consistent read/write registers

in the system model CAMPn,t[t ≥ n/2].

Proof The proof is similar to the previous one. Given t ≥ n/2, let us partition the processes into two

subsets P1 and P2 (i.e., P1 ∩ P2 = ∅ and P1 ∪ P2 = {p1, . . . , pn}) such that |P1| = �n/2� and

|P2| = �n/2�. Let us observe that max(|P1|, |P2|) ≤ t, which means that the system model includes

executions in which all the processes of P1 crash, and executions in which all the processes of P2
crash.

The proof is by contradiction. Let us assume that there is an algorithm A that builds two sequen-

tially consistent registers R1 and R2 in CAMPn,t[t ≥ n/2]. Let 0 be the initial value of both registers.

Let us define the following executions (depicted in Fig. 5.12 where n = 5 and t = 3). Remember that,

according to the system model and the previous assumptions, these executions can happen.

E1

px

︸
︷︷

︸

py

︸︷︷︸

P1

P2

E2

R1.read()→ 0

R2.read()→ 0

R2.write(2)

R1.write(1)

τ1 τ2

Figure 5.12: There is no algorithm for two sequentially consistent registers in CAMPn,t[t ≥ n/2]



90 5.4. Bounds on the Implementation of Strong Consistency Conditions

• Execution E1. In this execution the processes of P1 are correct while the processes of P2 crash

initially. Moreover, a process px ∈ P1 invokes first R1.write(1) and then R2.read(). As the

algorithm A is correct this read returns the initial value of R2, namely 0.

• Execution E2. In this execution the processes of P1 crash initially, while the processes of P2
are correct, and a process py ∈ P2 invokes first R2.write(2) and then R1.read(). It follows that

this read returns 0 to py.

• Execution E12. This execution merges the executions E1 and E2, where the messages (if any)

from the processes of P1 to the processes of P2 and from the processes of P2 to the processes of

P1 are delayed for an arbitrarily long time. Moreover, all the messages sent inside P1 arrive as

in E1, and all the messages sent inside P2 arrive as in E2.

As no process of P1 can distinguish E12 from E1, the invocation of R2.read() by px returns 0.

For the same reason, the invocation of R1.read() by py returns 0. (Once these read operations

have terminated, the messages from P1 to P2, and the messages from P2 to P1, can be received.)

Considering execution E12, let us list all the possible operation ordering that respect the process

order at px and py. we obtain the following six possible schedules:

R1.write1(1), R2.read1()→ 0, R2.write2(2), R1.read2()→ 0.
R1.write1(1), R2.write2(2), R2.read1()→ 0, R1.read2()→ 0.
R1.write1(1), R2.write2(2), R1.read2()→ 0, R2.read1()→ 0.
R2.write2(2), R1.write1(1), R2.read1()→ 0, R1.read2()→ 0.
R2.write2(2), R1.write1(1), R1.read2()→ 0, R2.read1()→ 0.
R2.write2(2), R2.read2()→ 0, R1.write1(1), R1.read1()→ 0.

As it can be easily checked, none of these schedules defines a history Ĥ in which each read oper-

ation returns the last written value of the read register (in each of them, at least one read operation

returns a value that is incorrect with respect to the specification of a sequential read/write register). A

contradiction which concludes the proof of the theorem. �Theorem 19

5.4.3 Lower Bounds on the Durations of Read and Write Operations

Theorem 20 is due to R. Lipton and J. Sandberg (1988). Theorem 21 and Theorem 22 are due to H.

Attiya and J. Welch (1994).

Cost tradeoff linking read and write operations It is easy to see that an implementation of a

register R in which the write operation would consist in broadcasting the new value of R and updating

the local memory of the invoking process, and a read operation would consist in reading the local

memory of the invoking process, does not work. (Such an implementation would allow a process to

terminate an operation without receiving messages from the other processes.) Hence, the question:

Which is the minimal cost for read or write operations, in terms of the time duration that elapses

between the start event and the end event of the operation?

To answer this question, let us assume that, while local computation takes no time, there is an

upper bound δ on message transfer delays. The system model is no longer asynchronous, but these

timing assumptions are only to study the durations of read and write operations. Let duration(op)
denote the minimal duration needed by the operation op (the physical time between the start event of

op and its end event).

Theorem 20. Any algorithm that builds a sequentially consistent read/write register in CAMPn,t[t <
n/2] provides read() and write() operations such that duration(read) + duration(write) ≥ δ.
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Proof The proof is by contradiction. It is a simple adaptation of the two previous proofs based on

an indistinguishability argument. Assuming duration(read) + duration(write) < δ, let us consider

the following three executions, involving two registers R1 and R2, both initialized to 0. Moreover, all

messages delays are equal to δ in each execution.

px

py

δ > duration(read) + duration(write)

R1.write(1) R2.read()→ 0

R1.read()→ 0R2.write(2)

Figure 5.13: Tradeoff duration(read) + duration(write) ≥ δ

• Let Ex be an execution in which a process px issues R1.write(1), immediately followed by

R2.read(), which returns 0. The other processes execute no operations. As all message delays

are equal to δ > duration(read) + duration(write), it follows that no process knows the

operation R1.writex(1) when px returns from its invocation of R2.readx().

• Let Ey be an execution similar to Ex, in which a process py �= px issues R2.write(1), imme-

diately followed by R1.read(), which returns 0. The other processes execute no operations. As

previously, no process knows the operation R2.writey(1) when py returns from its invocation of

R1.readx().

• Let Exy be the execution merging Ex and Ey as depicted in Fig. 5.13, where px and py invoke

simultaneously their write operations. As δ > duration(read) + duration(write), it follows

that px cannot distinguish Ex from Exy. Consequently its invocation R2.readx() must return 0.

For the same reason, the invocation of R1.ready() must return 0. (The messages arrive too late

to be considered by px and py and affect the values they returned.)

When we list all the schedules of the four operations that can be associated with Exy, which

respect the process order at px and py, we obtain the same as those listed in the proof of The-

orem 19. The fact that none of them respects the sequential specification of both R1 and R2
concludes the proof of the theorem.

�Theorem 20

As an atomic register is also a sequentially consistent register, we have the following corollary.

Corollary 1. Any algorithm that implements an atomic read/write register in CAMPn,t[t < n/2]
provides read() and write() operations such that duration(read) + duration(write) ≥ δ.

Lower bounds on read and write operations for an atomic register In addition to the maximal

message transfer delay δ, let us consider the uncertainty u ≤ δ on message transfer delays, defined

as follows. Any message transfer delay belongs to the time interval [(δ − u)..δ]. The two theorems

that follow establish lower bounds on the duration of read and write operations when one has to build

atomic registers. Neither δ nor u is known by the processes.

Theorem 21. Any algorithm that implements an atomic read/write register in CAMPn,t[t < n/2] is

such that duration(write) ≥ u/2.
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Proof The proof is by contradiction. Let us assume that there is an algorithm A that implements an

MWMR atomic register and its operation write() is such that duration(write) < u/2. We consider

two of its executions.

Execution E1. Let us consider the execution E1 depicted at the top of Fig. 5.14. This figure considers

δ = 5 and u = 4 (but the reasoning does not depend on these specific numerical values).

Process p1 invokes R.write(1) at time 0, which terminates before time u
2 . Then, at time u

2 , process

p2 invokes R.write(1), which terminates before time u. Finally, at time u, p3 invokes R.read(). As

the register R is atomic, this read returns the value 2. Moreover, in this execution, the message delays

are the following ones:

• δ for the messages sent by p1 to p2,

• δ − u for the messages sent by p2 to p1, and

• δ − u
2 for all the other messages.

Let us observe that this execution respects both timing assumptions on message delays, and the as-

sumption duration(write) < u
2 .

R.write(2)

R.read()→ 2

p1

p1

p2

p2

p3

p3

R.write(1)

R.write(1)

R.read()→ 2

R.write(2)

︸
︷︷

︸
︸

︷︷
︸

E1

E2

δ = 5

δ = 5u
2 = 2 u = 4

δ − u = 1

δ − u
2 = 3

0

Figure 5.14: duration(write) ≥ u/2

Execution E2. Let us now consider the execution E2 depicted at the bottom of Fig. 5.14. This execu-

tion differs from E1 as follows: the operation R.write(1) issued by p1 is shifted later by u
2 (hence, it

starts at time u
2 and terminates before time u) while the operation R.write(2) issued by p2 is shifted

earlier by u
2 (hence, it starts at time 0 and terminates before time u

2 ). As the shift between the write

operations is equal to u, the message delays are modified as follows:

• δ − u for the messages sent by p1 or received by p2,

• δ for the messages sent by p2 or received by p1, and

• unchanged for all other messages.

As in E1, let us observe that this execution respects both timing assumptions on message delays, and

the assumption duration(write) < u
2 . Moreover,
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• the time that elapses between p1 terminates R.write(1) and the time at which it receives a mes-

sage from p2 is the same as in E1,

• the time that elapses between p2 terminates R.write(2) and the time at which it receives a mes-

sage from p1 is the same as in E1, and

• the times at which p3 receives messages from p1 and p2 are the same as inE1.

It follows that p3 cannot distinguish E1 from E2, and consequently returns the same result as in E1,

while it should return 1 to ensure atomicity of register R, which completes the proof of the theorem.

(Let us notice that E2 is correct with respect to sequential consistency; hence, the proof does not

extend to sequential consistency.) �Theorem 21

Theorem 22. Any algorithm that implements an atomic read/write register in CAMPn,t[t < n/2] is

such that duration(read) ≥ u/4.

Proving this theorem constitutes Problem 2 of Section 5.7.

5.5 Summary

This chapter first defined the concept of a read/write register in the context where registers can be con-

currently accessed by several processes. To this end, it presented three consistency conditions which

can be associated with a read/write register: regularity, atomicity (also called linearizability), and se-

quential consistency. Regularity addresses the case where the semantics of the register is not defined

by a sequential specification, while the two other consistency conditions address the case where the

semantics of the register is defined by a sequential specification. These consistency conditions differ

in the fact that atomicity considers a single global time frame (usually called the “real-time” of an

external omniscient observer) for all the registers, while sequential consistency considers that each

register has its own time notion. As we have seen, this has a fundamental impact on read/write regis-

ters: atomic read/write registers are composable while sequentially consistent read/write registers are

not. This chapter also presented a t-resilience limit and lower bounds on the time it takes to execute a

read or a write operation when one has to implement an atomic or sequentially consistent register in

an asynchronous message-passing system prone to process crashes.

5.6 Bibliographic Notes

• The notion of a regular register was introduced by L. Lamport [259]. The notion of an atomic

read/write object (register), as studied here, was investigated and formalized by L. Lamport

in the same paper. (L. Lamport also introduced the notion of a safe register that is a weaker

notion than a regular register. This notion has not been addressed and developed here because

its interest is limited in the context of message passing systems.)

A more hardware-oriented investigation of atomic registers has been undertaken by J. Misra

[288]. An extension of the regularity condition to MWMR registers is described in [391].

• The generalization of the atomicity consistency condition to any object defined by a sequential

specification (set of traces) was developed by M. Herlihy and J. Wing under the name lineariz-

ability [216].

• The notion of composability on consistency conditions and the theorem stating that atomicity

is a local property are due to M. Herlihy and J. Wing. In their paper [216] composability is

called “locality”. As this term has several meanings in distributed computing, we used the term

“composability” which seems more appealing.

• The notion of sequential consistency is due to L. Lamport [257].
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• It is important to notice that, unlike atomicity, sequential consistency and most of the consistency

conditions encountered in database concurrency control [61, 340] do not satisfy the composabil-

ity property. This means that, ensuring sequential consistency on several registers requires that

their implementation algorithms cooperate in one way or another. Their composition is not given

for free. Such cooperation algorithms suited to failure-free systems are presented in [368].

• Distributed algorithms implementing read/write registers with different semantics (atomicity, se-

quential consistency, normality, and the weaker causal consistency condition) in failure-free sys-

tems, and relations linking these consistency conditions can be found in many articles (e.g., [3,

24, 42, 112, 186, 267, 291, 361, 372]) and in textbooks such as [43, 368].

• Theorem 20 is due to R. Lipton and J. Sandberg [269]. Theorem 21 and Theorem 22 are due to

H. Attiya and J. Welch [42].

• On the computability power of read/write registers in sequential computing, the reader can con-

sult the original paper [408], or one of the many books on sequential computability (e.g., [210,

220, 221, 294, 394, 397]).

5.7 Exercises and Problems

1. Design an algorithm that builds a single sequentially consistent register in CAMPn,t[∅].
2. Prove Theorem 22.

Solution in [42, 43].

3. Before proceeding to the next chapter, try to design a distributed algorithm implementing a

regular register in CAMPn,t[t < n/2].



Chapter 6

Building Read/Write Registers

Despite Asynchrony and

Less than Half of Processes Crash

(t < n/2)

This chapter is on the construction of multi-writer multi-reader registers in asynchronous message-

passing systems prone to the crash of a minority of processes (system model CAMPn,t[t < n/2]). It

first considers atomic registers for which it adopts an incremental presentation, with three construc-

tions, each one extending the previous one. The first one builds a single-writer multi-reader (SWMR)

regular register, which is extended by the second construction to obtain a single-writer multi-reader

(SWMR) atomic register. The third one consists in a simple extension of the second one to obtain a

multi-writer multi-reader (MWMR) atomic register. The chapter then addresses the construction of

sequentially consistent registers. It presents two algorithmic approaches for building MWMR sequen-

tially consistent registers, one suited to the system model CAMPn,t[t < n/2], the other one for the

same model enriched with a total order broadcast abstraction. Let us remember that atomicity and

sequential consistency define the class of strong consistency conditions, which means that their defi-

nitions rely on the existence of a total order on the read and write operations issued by the processes.

Keywords Acknowledgment, Asynchronous system, Atomic register, Client, Composability, Ma-

jority, Process crash failure, Read must write, Read/write register, Regular register, Sequentially con-

sistent register, Server, Two-phase algorithm.

6.1 A Structural View

Global architecture The structure of all the algorithms implementing a shared read/write register

REG is described in Fig. 6.1. The register is implemented collectively by the n processes, which

manage local data structures and send/receive messages.

Local data structures The local data structures managed by a process pi are:

• a local register reg i which contains the last value written into REG as known by pi (this is not

necessarily the last value written into REG from a “real-time” point of view), and

• a set of control variables, whose appropriate management ensures that the invocations of the

REG .read() operation issued by pi return correct values, where “correct” refers to the consid-

ered consistency condition.

© Springer Nature Switzerland AG 2018
M. Raynal, Fault-Tolerant Message-Passing Distributed Systems, 
https://doi.org/10.1007/978-3-319-94141-7_6

95

https://doi.org/10.1007/978-3-319-94141-7_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94141-7_6&domain=pdf


96 6.2. Building an SWMR Regular Read/Write Register in CAMPn,t[t < n/2]

p1 pi pn

application processes

underlying network

local local local

distributed read/write

shared memory abstraction

memory memory memory

Figure 6.1: Building a read/write memory on top of CAMPn,t[t ≤ n/2]

On the algorithm side: both client and server The local algorithm executed by each process pi
consists of two parts:

• a client side composed of two local algorithms implementing the operations REG .read() and

REG .write(), and

• a server side defining the processing associated with each message reception.

At the implementation level, a process may send messages both in its client role and its server

role. Let us remember that “broadcast MSG(m)”, where MSG is a message type and m a message

content, is a shortcut for the statement “for all j ∈ {1, ..., n} do send MSG(m) to pj end for.” This

macro-operation is not reliable: if the invoking process crashes while executing it, an arbitrary subset

of processes (not known in advance, and possibly empty) receive the message.

Reminder: atomicity is composable We saw in the previous chapter that atomicity is composable;

this means that we have the following modularity property.

Distinct atomic read/write registers can be implemented either by a simple multiplexing of the

same implementation algorithm, or by different algorithms (one for each register), and this is at zero

cost. This means that these implementation algorithms do not have to cooperate in order that the whole

execution remains atomic for each of them. Hence, if an atomic register R1 is built by an algorithm

A1 (designed by a system programmer sp1), and another atomic register R2 is built by an algorithm

R2 (designed by another system programmer sp2 �= sp1), an execution involving R1 and R2 remains

atomic for R1 and R2 without requiring to modify A1 or A2. Whatever the number of atomic registers,

the implementation of each of them can remain ignorant of all the other ones.

6.2 Building an SWMR Regular Read/Write Register in CAMPn,t[t <
n/2]

6.2.1 Problem Specification

The notion of a regular register was introduced in Section 5.1.2. A regular register is defined by the

two following properties:

• Safety. This property states which values can be returned by a read operation.

– If an operation REG .read() terminates and its execution was not concurrent with an invo-

cation of REG .write(), it returns the last value written into REG .
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– If an operation REG .read() terminates and its execution was concurrent with one or sev-

eral invocations of REG .write(), it returns a value written by one of these write operations,

or the last value of REG before these concurrent write operations. (Let us remember that,

as the notion of a regular register was defined for SWMR registers, if a read invocation is

concurrent with several write invocations, these write invocations are necessarily consec-

utive.)

• Liveness. Whatever the invoked operation (REG .read() or REG .write()), if the invoking pro-

cess is non-faulty, all its invocations terminate.

6.2.2 Implementing an SWMR Regular Register in CAMPn,t[t < n/2]

Underlying principle The idea that underlies the construction is quite simple. Let pw denote the

single writer process. On the one hand, pw associates a sequence number with each of its write

operations and broadcasts the pair 〈new value, sequence number〉. On the other hand, every process pi
saves the pair with the highest sequence number it has ever seen in its local memory.

Both the safety property (regularity) and the liveness property associated with a regular register

are obtained from the “majority of correct processes” assumption (t < n/2). This is because this

assumption allows a process to always communicate with a majority of processes (i.e., with at least

one non-faulty process) before terminating its current read or write operation. This ensures that, as

any written value is registered by at least one correct process, it cannot be lost.

Local variables Each process pi manages the following local variables:

• As already indicated, reg i is a local data variable that contains the current value (as known by

pi) of the regular register REG .

• wsni is a local control variable that keeps the sequence number associated with the value cur-

rently saved in reg i. As far as pw is concerned, wsnw is also used to generate the increasing

sequence numbers associated with the values written into REG .

• reqsni is a local control variable containing the sequence number that pi has associated with

its last read of REG . (These sequence numbers allow every acknowledgment message to be

correctly associated with the request that gave rise to its sending.)

All the local variables used to generate a sequence number are initialized to 0. The register REG

is assumed to be initialized to some value (say v0). Consequently, all the local variables reg i are

initialized to v0.

The construction An algorithm that builds a regular SWMR register REG is described in Fig. 6.2.

The statement “wait
(

TAG(−, sn,−) received from x processes
)
” means that the invoking process

is blocked until its input buffer contains messages from x different processes, each with type TAG

and carrying the sequence number value sn. When the wait statement terminates these messages are

consumed and suppressed from the input buffer.

When pw invokes REG .write (v), it computes the next sequence number wsnw (line 1), broad-

casts the message WRITE(v,wsnw) (line 2), and waits for corresponding acknowledgments from a

majority of processes before terminating the write operation (line 3). When a process pi receives

such a message, it updates its current pair (reg i,wsni) if wsn ≥ wsni (line 10). If wsn < wsni,

the message is an old message and its content is ignored. In all cases, pi sends an acknowledgment

ACK WRITE REQ(w sn) (line 11) back to pw.

When a process pi invokes REG .read(), it broadcasts a request message READ REQ (reqsni)
where reqsni is a sequence number used to identify each of its read requests (lines 5-6). When a pro-

cess pk receives such a message it sends back to its sender its current value of the register REG , which
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is captured by the pair (regk,wsnk). Then, when pi has received ACK READ REQ (reqsni,−,−) mes-

sages from a majority of processes, it returns the value v it has received, which is associated with the

greatest write sequence number.

operation REG.write (v) is % This code is only for the single writer pw %

(1) wsnw ← wsnw + 1;

(2) broadcast WRITE (v,wsnw);
(3) wait

(
ACK WRITE (wsnw) received from a majority of processes

)
;

(4) return ().
——————————————————————————————

% The code snippets that follow are for every process pi (i ∈ {1, . . . , n}) %

operation REG.read () is % This code is for any process pi %

(5) reqsni ← reqsni + 1;

(6) broadcast READ REQ (reqsni);
(7) wait

(
ACK READ REQ (reqsni,−,−) received from a majority of processes

)
;

(8) let ACK READ REQ (reqsni,−, v) be a message received at the previous

line with the greatest write sequence number;

(9) return (v).

when WRITE (val,wsn) is received from pw do

(10) if (wsn ≥ wsni) then reg i ← val; wsni ← wsn end if;

(11) send ACK WRITE (wsn) to pw.

when READ REQ (rsn) is received from pj do % (j ∈ {1, . . . , n}) %

(12) send ACK READ REQ (rsn,wsni, reg i) to pj .

Figure 6.2: An algorithm that constructs an SWMR regular register in CAMPn,t[t < n/2]

Remark on efficiency When it receives a WRITE (val,wsn) message from the writer pw, a process

pi evaluates the predicate wsn ≥ wsni. Actually this predicate could be strengthened to wsn > wsni

for a process pi �= pw. Using the predicate wsn ≥ wsni allows us to not distinguish pw from the other

processes. (Moreover, it will allow a simple generalization when we will go from an SWMR atomic

register to an MWMR atomic register in Section 6.4.)

The code of the algorithm can be easily modified to save a few messages. When pw executes

REG .write(), it is not necessary for it to send a message to itself. It can instead write y v directly

into regw. Moreover, when pw wants to read REG , it can return directly the current value of regw.

In the same vein, when a process pi (i �= w) invokes REG .read(), it can save the sending of a

message to itself as long as, in addition to the acknowledgment messages it receives, it also considers

its own pair (wsni, reg i) when it computes the value to be returned. In this case, when it waits for

acknowledgments, a process now has to wait for messages from a majority of processes minus one.

Cost It is easy to see that the cost of a read or a write operation is 2n messages. As far as the

time complexity is concerned, let us assume that (a) local computation durations are negligible when

compared to message transit delays, and (b) every message takes one time unit (maximal network la-

tency). The number of “time units” that are needed by an operation actually is the number of sequential

communication steps this operation gives rise to.

An operation thus takes 2 time units (let us remember that the communication graph is complete,

i.e., each pair of processes is connected by an independent bidirectional channel). Hence, the time

complexity (the number of sequential communication steps) does not depend on n.

When the communication graph is not complete The algorithm described in Fig. 6.2 is based

on the assumption that the underlying communication graph is completely connected: any pair of
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processes is connected by a reliable channel.

So, an interesting question is: What does happen when this is not the case? It is relatively easy

to see that the algorithm can be modified in order to work in all the runs in which the communication

graph connecting the non-faulty processes remains strongly connected (i.e., any pair of non-faulty

processes is connected by a path of non-faulty processes and reliable channels). The modification of

the algorithm consists in adding an appropriate routing for the messages. In this case, both the message

complexity and the time complexity depend on the communication graph.

6.2.3 Proof of the SWMR Regular Register Construction

Theorem 23. The algorithm described in Fig. 6.2 constructs an SWMR regular register in the system

model CAMPn,t[t < n/2].

Proof

Proof of the liveness property. We have to prove here that any operation invoked by a non-faulty pro-

cess terminates. Let us notice that the only statement where a process can block forever is a wait()
statement. The fact that no process blocks forever in such a statement follows directly from the four

following observations: (1) a process broadcasts a WRITE() or READ REQ() message (appropriately

identified with a sequence number) before waiting for acknowledgments from a majority of processes,

(2) every WRITE() or READ REQ() message is systematically answered by every non-faulty process,

(3) there is a majority of non-faulty processes, and (4) the channels are reliable.

Proof of the safety property. Let us first observe that, as there is a single writer, write operations

are totally ordered. Moreover, every write operation is identified with a sequence number, and no two

write operations have the same sequence number. To prove the safety property that defines a regular

register, we have to prove that, when a process pi invokes REG .read(), it obtains either the last value

written before the read operation was invoked or a value that is written by a concurrent write operation.

Let wn be the write sequence number associated with the value returned by pi (lines 8-9). Let

x ≥ 0 be the sequence number of the last value written before the operation REG .read () is invoked,

and x + 1, ..., x + y be the sequence numbers of the write operations, if any, that are concurrent

with REG .read() (y = 0 corresponds to the case where there is no write concurrent with the read).

Let READ REQ(rsn) be the read request message generated by REG .read (). The proof consists in

showing that wn ∈ {x, . . . , x+ y}.
As the write of the value associated with x is terminated, it follows from the algorithm that (at

least) a majority of processes pk are such that wsnk ≥ x. As the operation REG .read() obtains

messages ACK READ REQ(rsn,−,−) from a majority of processes, it obtains at least one message

ACK READ REQ(rsn,wn,−) such that wn ≥ x.

On the other hand, due to its very definition, the read operation is not concurrent with write oper-

ations whose sequence numbers are greater than x+ y. This means that the read operation terminated

before the write numbered x + y + 1 is issued by the writer (if such a write is ever issued). Conse-

quently, wn ≤ x+ y, which concludes the proof of the safety property. �Theorem 23

When the writer crashes If the writer crashes outside the write operation, the processes will obtain

the last value it has written. The case where it crashed while executing the write operation is more

interesting. It is possible that the writer pw crashes after sending its new value to less than a majority

of processes. In this case, depending on both asynchrony and the actual crash pattern, it is possible

that, when some processes read, they will always obtain the new value, while others always obtain

the previous value. This does not contradict the definition of a regular register. Actually, if the writer

process crashes during a write operation, that operation may never terminate (it is then concurrent with

all the future read operations).
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It is easy to see that the crash of a process during a read operation has no effect on the behavior

of other processes. This is because a read operation does not entail modifications on local variables of

the other processes.

6.3 From an SWMR Regular Register to an SWMR Atomic Register

6.3.1 Why the Previous Algorithm Does Not Ensure Atomicity

Let us consider the scenario described in Fig. 6.3. There are 5 processes, and none of them crash. The

numbers on horizontal process axes are sequence numbers. The bold line (cutting the axes of all the

processes) is the “write line” associated with the write of the value with sequence number 15. As an

example, let us consider the process pi: before the cut by the write line, reg i contains the value whose

sequence number is 14, and after it contains the value whose sequence number is 15. As far as pj
is concerned, this process receives the message WRITE(−, 15) before the ones carrying the sequence

numbers 11 to 14. Due to asynchrony these messages are late (they have been bypassed by the message

WRITE(−, 15)); they will be discarded by pj when they eventually arrive. Let us remember that the

channels are reliable but are not required to be “first in, first out”.

15
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14 15
pw

px

pi

py

pj

read1

read2

read3

Figure 6.3: Regularity is not atomicity

An ellipse corresponds to a read operation, so there are three reads denoted read1, read2 and

read3. Let us assume that read1 is issued by pi. It obtains the values and the sequence numbers of

the set of the three processes pw, px and itself, which constitutes a majority. The associated sequence

numbers are 15, 12, and 14. It follows that read1 returns the value whose sequence number is 15. If

we consider read3, it is easy to see that it returns the value whose sequence number is 15. Let us now

consider read2. It obtains the sequence numbers 14, 14 and 10, and consequently returns the value

whose sequence number is 14.

When we look at Fig. 6.3 from an operation duration point of view, we see that, while read1
terminated before read2 started, it obtained the new value while read2 obtained the old value. There is

a new/old inversion. Consequently, the algorithm described in Fig. 6.2 does not ensure the atomicity

consistency property.

6.3.2 From Regularity to Atomicity

The key to obtaining atomicity: force a read to write A way to enrich the previous algorithm to

obtain an algorithm that guarantees atomicity consists in preventing new/old inversions. This can be

easily realized as follows:

• First (as shown in Fig. 6.2), force a process pi to obtain pairs 〈value, sequence number〉 from a

majority of processes. Let 〈v, sn〉 be the pair with the highest sequence number obtained by pi.
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• Then force process pi to write the value v it is about to return. This ensures that, when the read

terminates, a majority of processes have a value as recent as v in their local memory.

The parts of the algorithm described in Fig. 6.2 that are modified to go from regularity to atomicity

are the code of the read operation and the snippet associated with the reception of a message WRITE().

They are described in Fig. 6.4. The modified lines are suffixed by “M”. The new lines are denoted

“Nx” where x is an integer.

operation REG .read () is % This code is for any process pi %

(5) reqsni ← reqsni + 1;

(6) broadcast READ REQ (reqsni);
(7) wait

(
ACK READ REQ (reqsni,−,−) received from a majority of processes

)
;

(8) let ACK READ REQ (reqsni,msn, v) be a message received at the previous

line with the greatest write sequence number;

(N1) broadcast WRITE(v,msn);
(N2) wait (ACK WRITE (msn) received from a majority of processes);

(9) return (v).

when WRITE (val,wsn) is received from pj do % (j ∈ {1, . . . , n}) %

(10) if (wsn ≥ wsni) then reg i ← val; wsni ← wsn end if;

(11M) send ACK WRITE (wsn) to pj .

Figure 6.4: SWMR register: from regularity to atomicity

Thanks to this embedded write of the read value, if the invoking process pi does not crash while

executing the read, a majority of the processes will have a value with a sequence number greater than

or equal to sn, where sn is the sequence number of the value it is about to return. It is easy to see

that this prevents new/old inversions from occurring. If pi crashes before returning from the read

operation, the WRITE() message it has sent to pj (if any) is taken into account by pj only if it carries

a value not older than the one kept in regj . It follows that a process that crashes during a read cannot

create inconsistency. Its only possible effect is to refresh the content of local variables with more up

to date values.

Finally, as now the writer is no longer the only process which send messages WRITE(), the process-

ing of these messages has to be slightly modified: the ACK WRITE REQ() message is systematically

sent to the sender of the WRITE() message (line 11M)

6.4 From SWMR Atomic Register to MWMR Atomic Register

The algorithm presented below is due to H. Attiya, A. Bar-Noy, and D. Dolev (1995). It is often named

ABD in the literature.

6.4.1 Replacing Sequence Numbers by Timestamps

To go from a single writer atomic register to a multi-writer atomic register, the new problem to solve

is allowing the processes to share a single sequence number generator for the values they write into

REG . A simple way to do it is to use the set of local variables {wsni}1≤i≤n as follows.

When a process pi wants to write, it broadcasts a message WRITE REQ(reqsni) in order to obtain

the current sequence numbers wsnj of a majority of processes. It then adds 1 to the the maximal

value it has received and associates this new sequence number with the value v it wants to write. Let

us observe that, now, the local variable reqsni is used by pi to associate an identity to both its write

requests and its read requests.

Of course, this does not prevent several processes from associating the same sequence number

with their writes. (Let us notice that, when this occurs, the corresponding writes are concurrent.) This
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can be solved, by associating a timestamp (instead of a “unidimensional” sequence number) with each

write operation.

A timestamp is a pair 〈logical date, process identity〉. Scalar timestamps were introduced by L.

Lamport (1978). The two fundamental properties of timestamps are the following:

• the local clock of each process pi increases with respect to its individual progress and the

progress of all the other processes, and

• the whole set of timestamps generated by a computation define a total order causally consistent

with the flow of messages exchanged by all processes.

The first element of a timestamp is a date, and its second element is a location (process identity). Let

〈sn1, i〉 and 〈sn2, j〉 be two timestamps. The timestamp total order is defined as follows (lexicograph-

ical ordering):

〈sn1, i〉 < 〈sn2, j〉 ≡
(
(sn1 < sn2) ∨ (sn1 = sn2 ∧ i < j)

)
.

6.4.2 Construction of an MWMR Atomic Register

The ABD construction The algorithm building an MWMR atomic register REG in CAMPn,t[t <
n/2] is described in Fig. 6.5. All the processes now have the same code and the same initialization of

all their local variables. They differ only in their identity.

Each process manages a new local variable 	w i (last writer) that contains the identity of the process

that issued the write of the value currently saved in reg i (	w i can be initialized to any process identity,

e.g., 1). The timestamp of the value in reg i is consequently the pair 〈wsni, 	w i〉. The code associated

with the reception of a WRITE(val,wsn) message now takes into account the timestamp of the value

that is about to be written, instead of its sequence number only.

In the construction of a single-writer register, the values taken by a local variable wsni are a subset

of the values taken by the local variable wsnw (where pw is the writer), which increases by step equal

to 1. Whereas in the construction of a multi-writer register, it is possible that no local variable wsni

always increases by a step equal to 1. When it issues a new write, a process associates the greatest

value of wsn it knows plus one with the value it writes (lines 4-5). Hence, the construction of a multi-

writer register replaces the sequence numbers used in the construction of a single-writer register by

logical dates whose progress complies with the causality relation defined from the local progress of

each process and the control flow generated by message exchanges (captured by the relation “ →M”

defined in Section 2.2.2).

Observe that now, not only the read/write request messages and their acknowledgments are tagged

with a request sequence number defined by the requesting process, but the write messages also are

tagged the same way. This allows for an unambiguous identification of the write acknowledgments

sent to a writer.

On two-phase algorithms The algorithms implementing the REG .write () and REG .read () op-

erations have exactly the same structure: they first broadcast a request to obtain more recent control

information, do local computation, and finally issue a second broadcast to write a value.

This structure is encountered in a lot of distributed algorithms called distributed two-phase algo-

rithms. These phases refer to communication. The first phase consists in acquiring information on the

system state, while (according to the information obtained and some local computation) the second

phase consists in updating the system state.

6.4.3 Proof of the MWMR Atomic Register Construction

Lemma 5. The execution of REG .write () or REG .read () by a non-faulty process always terminates.
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operation REG.write (v) is

(1) reqsni ← reqsni + 1;

% Phase 1: acquire information on the system state %

(2) broadcast WRITE REQ (reqsni);
(3) wait(ACK WRITE REQ (reqsni,−) received from a majority of processes);

(4) let msn be the greatest sequence number previously received

in an ACK WRITE REQ (reqsni,−) message;

% Phase 2 : update system state %

(5) broadcast WRITE (reqsni, v,msn+ 1, i);
(6) wait (ACK WRITE (reqsni) received from a majority of processes);

(7) return().

operation REG.read () is

(8) reqsni ← reqsni + 1;

% Phase 1: acquire information on the system state %

(9) broadcast READ REQ (reqsni);
(10) wait ( ACK READ REQ (reqsni,−,−,−) received from a majority of processes);

(11) let 〈msn,m�w〉 be the greatest timestamp received in

an ACK READ REQ (reqsni,−,−,−) message;

(12) let v be such that ACK READ REQ (req sni,msn,m�w , v) has been received;

% Phase 2 : update system state %

(13) broadcast WRITE (reqsni, v,msn,m�w);
(14) wait (ACK WRITE (reqsni) received from a majority of processes);

(15) return (v).

when WRITE (rsn, val,wsn, �w) is received from pj do % j ∈ {1, . . . , n} %

(16) if〈wsn, �w〉 ≥ (wsni, �w i) then regi ← val; wsni ← wsn; �w i ← �w end if;

(17) send ACK WRITE (rsn) to pj .

when READ REQ (rsn) is received from pj do % j ∈ {1, . . . , n} %

(18) send ACK READ REQ (rsn,wsni, �w i, regi) to pj .

when WRITE REQ (rsn) is received from pj do % j ∈ {1, . . . , n} %

(19) send ACK WRITE REQ (rsn,wsni) to pj .

Figure 6.5: Construction of an atomic MWMR register in CAMPn,t[t < n/2] (code for any pi)

Proof The reasoning is exactly the same as the one stated in the proof of Theorem 23 where the

case of the SWMR regular register was considered. We repeat it here only to make the proof self-

contained. The fact that no process blocks forever in a wait statement follows directly from the four

following observations: (1) a process broadcasts a request message (identified with a proper sequence

number) before waiting for acknowledgments from a majority of processes, (2) every request message

is systematically answered by every non-faulty process, (3) there is a majority of non-faulty processes,

and (4) the channels are reliable. �Lemma 5

Notion of an effective operation An effective read operation is such that the invoking process does

not crash while executing it. An effective write operation is a write operation such that either the

invoking process does not crash while executing it, or if it does crash the value it writes is returned by

an effective read.

The timestamp of an effective REG .write () operation is the timestamp it associates with the value

it writes (as defined at line 5). The timestamp of an effective REG .read () operation is the timestamp

associated with the value it returns (the pair 〈msn,m	w〉 computed at line 11).

An effective write is a write whose value is taken into account by at least one process. Let us

observe that all write operations issued by non-faulty processes are effective. On the other hand, some

of the write operations whose invoking processes crash during their invocation are effective, while
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others are not.

Lemma 6. Let w1 and w2 be two effective write operations timestamped 〈sn1, id1〉 and 〈sn2, id2〉,
respectively. w1 �= w2 ⇒ 〈sn1, id1〉 �= 〈sn2, id2〉.

Proof Let us first observe that if w1 and w2 are issued by different processes, the second field of their

timestamps are different, and the lemma follows. So, let us consider that w1 and w2 are issued by the

same process pi, 〈sn1, i〉 being the timestamp of w1, and 〈sn2, i〉 being the the timestamp of w2.

Without loss of generality, let us assume that w1 is executed first. As pi is sequential, it follows

that w1 has terminated when it issues w2, from which we conclude that a majority of processes pj are

such that 〈wsnj , 	w j〉 ≥ 〈sn1, i〉 when w1 terminates.

Let us now consider the first phase of w2. During this phase, pi collect values wsn from a majority

of processes. As any two majorities intersect, it follows that at least one of these wsn values is greater

than or equal to sn1. Finally, the lemma follows from the fact that sn2 is set to a value greater than

the greatest sequence number received (lines 4-5). �Lemma 6

Lemma 7. Let op1 and op2 be two effective operations timestamped 〈sn1, id1〉 and 〈sn2, id2〉, re-

spectively, such that op1 terminates before op2 starts. We have:

If op1 is a read or a write operation and op2 is a read operation, then 〈sn1, id1〉 ≤ 〈sn2, id2〉.
If op1 is a read or a write operation and op2 is a write operation, then 〈sn1, id1〉 < 〈sn2, id2〉.

Proof The proof of this lemma uses Lemma 6 and is similar to it. The only difference is that, while a

write operation increases a wsn value, a read operation does not. A development of a complete proof

is left to the reader as an exercise. �Lemma 7

Lemma 8. There is a total order Ŝ on all the effective operations (i) that respects their real-time

occurrence order, and (ii) is such that any read operation obtains the value written by the last write

operation that precedes it in Ŝ.

The notion of “real-time occurrence order” was defined in Section 5.2 of the previous chapter. An

operation op1 precedes an operation op2 if the response event of op1 appears before the invocation

event of op2 in the event history Ĥ = (H,<H) that models the corresponding execution.

Proof Let us consider the total order Ŝ on all the effective operations defined as follows. The op-

erations are first ordered in Ŝ according to their timestamps. As all the write operations are totally

ordered by their timestamps (Lemma 6), it follows that, if two operations have the same timestamps,

one of them is necessarily a read operation. If a read and a write have the same timestamps, the write is

ordered in Ŝ before the read. If two reads have the same timestamp, the one that starts first is ordered

in Ŝ before the other one. (The first is the one whose invocation event appears first in the associated

history Ĥ .)

Given this total order Ŝ, we show that it is a witness sequence (or linearization) of the execution.

• Proof of property (i). Let op1, timestamped 〈sn1, id1〉, and op2, timestamped 〈sn2, id2〉, be

effective read or write operations such that op1 terminates before op2 starts. Due to Lemma 7,

we have 〈sn1, id1〉 ≤ 〈sn2, id2〉 if op2 is a read operation, and 〈sn1, id1〉 < 〈sn2, id2〉 if op2

is a write operation. We conclude from the way Ŝ is built (from both the order on the operations

defined by their timestamps and the order on the response/invocation events), that op1 is ordered

before op2 in Ŝ.

• Proof of property (ii). Let read be a read operation that returns a value v timestamped 〈sn, j〉.
We conclude that v has been written by pj after it has computed the write sequence sn. The fact

that read obtains the value of the last preceding write in Ŝ follows directly from the way Ŝ is

built and the fact that no two written values have the same timestamp (Lemma 6).
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�Lemma 8

Theorem 24. The algorithm described in Fig. 6.5 constructs an MWMR atomic read/write register in

the system model CAMPn,t[t < n/2].

Proof The proof follows from Lemma 5 (liveness) and Lemma 8 (safety). �Theorem 24

6.5 Implementing Sequentially Consistent Registers

6.5.1 How to Address the Non-composability of Sequential Consistency

Reminder on the non-composability of sequential consistency We saw in Section 5.3.3 that, un-

like atomicity, sequential consistency is not a composable consistency condition. From an algorithmic

point of view, this means the following. Considering the system model CAMPn,t[t < n/2] (where

sequential consistency can be implemented), let A1 be an algorithm that implements a sequentially

consistent register REG1 in CAMPn,t[t < n/2], and let A2 be another algorithm that implements a

sequentially consistent register REG2 in the same system. Moreover, A1 and A2 are independent in

the sense they do not communicate and neither of them knows the code of the other.

Let us consider the composite read/write register R12, which is made up of the four opera-

tions R12.write1(), R12.read1(), R12.write2(), R12.read2(), where R12 is implemented by REG1
and REG2, REG1 being implemented by A1, and REG2 being implemented by A2. The non-

composability of sequential consistency states that such an implementation does not provide a sequen-

tially consistent composite read/write register R12.

How to implement composite sequentially consistent registers One way to implement compos-

able sequentially consistent registers consists in using the same underlying physical or logical time

frame for all the registers. This provides a kind of “GCD” on which the implementation of all the

registers relies. We present two such approaches in the following sections: the first one relies on a

total order broadcast abstraction, whereas the second one relies on the use of a common logical time.

6.5.2 Algorithms Based on a Total Order Broadcast Abstraction

Total order broadcast abstraction Total order broadcast (TO-broadcast) provides the processes

with two operations, denoted TO broadcast (m) and TO deliver (m). It is CO-broadcast plus the

following property: if a process to-delivers a message m before a message m′, no process to-delivers

m′ before m. Piecing together CO-broadcast (defined in Section 2.2), and the previous property on

message deliveries, we obtain the following set of properties which define TO-broadcast. It is assumed,

without loss of generality, that all messages are different.

• TO-validity. If a process to-delivers a message m, then m has been previously to-broadcast.

• TO-integrity. A process to-delivers a message m at most once.

• TO-order. If a process to-delivers a message m before a message m′, no process to-delivers m′

before m.

• TO-causal precedence. If a message m causally precedes a message m′, no process to-delivers

m′ before m (message causal precedence is defined in Section 2.2.2).

• TO-termination. (1) If a non-faulty process to-broadcasts a message m, or (2) if a process to-

delivers a message m, then each non-faulty process to-delivers the message m.
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Hence, all correct processes to-deliver the same sequence of messages, which includes at least the mes-

sages they to-broadcast, and this sequence of messages respects message causal precedence. More-

over, each faulty process to-delivers a prefix of this sequence.

The fact that there is a single message delivery order creates a “GCD” from which composite

sequentially registers can be built. It follows that TO-broadcast-based implementations of a set of

sequentially consistent registers can be envisaged, all using the same (causally consistent) total order

on message deliveries to order their write operations.

On the implementability of TO-broadcast TO-broadcast cannot be implemented in CAMPn,t[t <
n/2]. This system model must be enriched with appropriate computability assumptions before TO-

broadcast can be built. Basically, the processes must agree on a total order on messages in which

each of them will to-deliver them. This is a fundamental agreement problem, which requires specific

computability assumptions (this problem will be addressed in Part IV of the book).

6.5.3 A TO-broadcast-based Algorithm with Local (Fast) Read Operations

Each process pi maintains a local copy of each register, xi for register X , yi for register Y , etc. The

algorithm is depicted in Fig. 6.6,

When a process pi invokes X.write(v), it to-broadcasts the message SEQ CONS(i,X, v) (line 1),

and waits until it to-delivers it (line 2). When this occurs, it terminates its write operation (line 3).

However, a read is purely local (hence the name “fast” read). When a process pi invokes Y.read(), it

simply returns the current value of its local register yi (line 4).

When a process pi to-delivers a message SEQ CONS(j, Z, v) (write of v in Z by pj) it first assigns

the value v to its local representation of Z (line 5). Then, if it is the writer of Z, it sets donei to true,

which allows its write to terminate.

operation X.write(v) is % X is any register %

(1) TO broadcast SEQ CONS(i,X, v);
(2) receivedi ← false; wait (receivedi);
(3) return().

operation Y.read() is % Y is any register %

(4) return(yi).

when SEQ CONS(j, Z, v) is to-delivered do

(5) zi ← v;

(6) if (j = i) then receivedi ← true end if.

Figure 6.6: Fast read algorithm implementing sequential consistency (code for pi)

Let δ be an upper bound on the time it takes to to-deliver a message SEQ CONS(). The previous al-

gorithm (and the next one) constitutes an illustration of Theorem 20, which states that duration(read)+
duration(write) ≥ δ. Here we have duration(read) = 0 and duration(write) = δ. (The algorithm

presented in Section 6.5.4 is such that duration(read) = δ and duration(write) = 0.)

Let CAMPn,t[t < n/2, TO-broadcast] denote the system model CAMPn,t[t < n/2] enriched

with the TO-broadcast abstraction.

Theorem 25. The algorithm describe in Fig. 6.6 builds sequentially consistent registers in the system

model CAMPn,t[t < n/2, TO-broadcast].

Proof All read operations trivially terminate. The fact that all write operations issued by a correct

process terminate follows from the termination property of TO-broadcast.
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As far as safety is concerned, let
ww−→ be the total order on write operations built by the TO-

broadcast abstraction. Due to the properties of TO-broadcast,
ww−→ contains at least all the write oper-

ations issued by the correct processes, and respects all process orders. We construct a sequence Ŝ on

all operations by enriching
ww−→ with the read operations as follows.

pi

SEQ CONS(j,X, vj) SEQ CONS(k, Y, vk)

yi← vkxi← vj

SEQ CONS(�, Z, v�)

zi← v�

Z.read()→ v�

Figure 6.7: Benefiting from TO-broadcast

Let SEQ CONS(j,X, vj) and SEQ CONS(k, Y, vk) be the messages associated with any two write

operations which are consecutive in
ww−→. Due to the TO-broadcast abstraction, any process to-delivers

first SEQ CONS(j,X, vj) and then SEQ CONS(k, Y, vk). For any process pi let us add (while respecting

its process order as defined by its code) all the read operations it issued between the time it to-delivered

SEQ CONS(j,X, vj) and the time it to-delivered SEQ CONS(k, Y, vk) (Fig. 6.7). It follows from the

algorithm that all these read operations obtain the last value written in the corresponding registers X ,

Y , Z, etc., where the meaning of last is with respect to the total order
ww−→. Hence, the total order Ŝ we

obtain includes the read and write operations issued by all processes, and this total order is such that no

read operation obtains an overwritten value, which concludes the proof of the theorem. �Theorem 25

6.5.4 A TO-broadcast-based Algorithm with Local (Fast) Write Operations

Fast write operations Instead of forcing a write operation issued by a process pi to terminate only

when pi to-delivers the corresponding SEQ CONS() message, it is possible to have a fast write im-

plementation in which write operations never have to wait. The synchronization price for obtaining

sequential consistency then has to be paid by the read operations.

The corresponding fast write algorithm and the previous fast read algorithm are dual. This duality

offers a choice when one has to implement sequentially consistent registers. The fast write algorithm

is more appropriate for write-intensive applications, while the fast read algorithm is more appropriate

for read-intensive applications.

The fast write algorithm As previously, each process pi maintains a copy xi of each sequentially

consistent read/write register X it has to build. Moreover, each process pi maintains a counter, denoted

nb writei and initialized to 0, of the number of messages SEQ CONS() it has to-broadcast and not yet

to-delivered (lines 1, 4, and 7). A read invoked by pi is allowed to terminate only after pi has to-

delivered all the messages it has previously to-broadcast. When this occurs, the values written by pi
are in its past, and consequently (as in the fast read algorithm) pi sees all its write operations.

Theorem 26. The algorithm describe in Fig. 6.8 builds sequentially consistent registers in the system

model CAMPn,t[t < n/2, TO-broadcast].

Proof As in Theorem 25, the proof consists in including the read operations at appropriate locations

in the total order
ww−→ built by the TO-broadcast abstraction on the write operations. When a process

issues a read operation, all its previous write operations have been applied to its local copies of the

registers, and, due to TO-broadcast, have also been applied to all the write operations issued by the

other processes which are ordered before its last write (see Fig. 6.7 where SEQ CONS(j,X, vj) is

replaced by SEQ CONS(i,X, v)). The rest of the proof is then the same as in Theorem 25. �Theorem 26
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operation X.write(v) is

(1) nb writei ← nb writei + 1;

(2) TO broadcast SEQ CONS(i,X, v);
(3) return().

operation Y.read() is

(4) wait (nb writei = 0);
(5) return(yi).

when SEQ CONS(j, Z, v) is to-delivered do

(6) zi ← v;

(7) if (j = i) then nb writei ← nb writei − 1 end if.

Figure 6.8: Fast write algorithm implementing sequential consistency (code for pi)

A sequentially consistent queue with a fast enqueue operation An interesting property of the pre-

vious TO-broadcast-based fast write algorithm lies in the fact that its skeleton (namely, TO-broadcast

and a fast write operation) can be used to design an algorithm implementing an unbounded sequentially

consistent queue with a fast enqueue operation.

Such a construction is presented in Fig. 6.9. The operations on a queue Q are denoted enqueue()
and dequeue(). It is assumed that an invocation of Q.enqueue() returns a special value (e.g., ε) when

the queue is empty. At each process pi, the queue Q is represented by the local variable qi. The

algorithm assumes that the default value ⊥ can neither be enqueued, nor represent the empty stack.

The text of the algorithm is self-explanatory.

operation Q.enqueue(v) is

(1) TO broadcast SEQ CONS(i, Q,enq, v);
(2) return().

operation Q.dequeue() is

(3) resulti ← ⊥;

(4) TO broadcast SEQ CONS(i, Q,deq,−);
(5) wait (resulti �= ⊥);
(6) return(resulti).

when SEQ CONS(j, Y, op, v) is to-delivered do

(7) if (op =enq)
(8) then enqueue v at the head of qi
(9) else r ← value dequeued from the tail qi
(10) if (i = j) then resulti ← r end if

(11) end if.

Figure 6.9: Fast enqueue algorithm implementing a sequentially consistent queue (code for pi)

6.5.5 An Algorithm Based on Logical Time

The algorithm presented in this section provides each process pi with a logical clock 	ci, such that

the set of local clocks {	ci}1≤i≤n allows each process to associate a timestamp (as defined in Sec-

tion 6.4.1) with each written value, as done in the ABD algorithm building an MWMR atomic register

(see Section 6.4.2).

This algorithm is due to N. Ekström and S. Haridi (2016). It is described in Fig. 6.10. To keep

its presentation as simple as possible, and to help understand how it differs from the MWMR ABD

algorithm, the local variables and the message types with the same meaning in both algorithms are

given the same names.
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To simplify the writing of the algorithm, and without loss of generality, we assume that the majority

computed by any process pi at line 15 includes its message ACK WRITE(). And, similarly, the majority

it computes at line 21 includes its message ACK READ REQ().

Let us remember that the operation broadcast TAG () is not reliable. If a process crashes during its

invocation, the message is received by an arbitrary (possibly empty) subset of processes.

operation X.write (v) is

(1) reqsni ← reqsni + 1; donei ← false;

(2) �ci ← �ci + 1; ts ← 〈�ci, i〉;
(3) broadcast WRITE (reqsni, �ci, X, ts, v); % here X is an index %

(4) wait (donei);
(5) return().

operation X.read () is

(6) reqsni ← reqsni + 1; donei ← false;

(7) �ci ← lci + 1; rri ← X;

(8) broadcast READ REQ (reqsni, �ci, X);
(9) wait (donei);
(10) return(vali).

when WRITE (rsn, lc, Y, ts, v) is received from pj do

(11) �ci ← max(�ci, �c) + 1;

(12) if (ts > tsti[Y ]) then regi[Y ] ← v; tsti[Y ] ← ts end if;

(13) send ACK WRITE (rsn, �ci) to pj .

when ACK WRITE (rsn, �c) with (rsn = reqsni) is received from pj do

(14) �ci ← max(�ci, �c) + 1;

(15) if (ACK WRITE (reqsni,−) received from a majority of processes)

(16) then reqsni ← reqsni + 1; donei ← true

(17) end if.

when READ REQ (rsn, �c, Y ) is received from pj do

(18) �ci ← max(�ci, lc) + 1;

(19) send ACK READ REQ (rsn, �ci, regi[Y ], tsti[Y ]) to pj .

when ACK READ REQ (rsn, �c, w, tst) with (rsn = reqsni) is received from pj do

(20) �ci ← max(�ci, �c) + 1;

(21) if (ACK READ REQ (rsn,−,−,−) received from a majority of processes)

(22) then reqsni ← reqsni + 1;

(23) let vali = value associated with the greatest timestamp mts
in the previous messages ACK READ REQ (rsn,−,−,−);

(24) regi[rri] ← vali; tsti[rri] ← ts;

(25) broadcast WRITE (reqsni, �ci, rri, vali,mst)
(26) end if.

Figure 6.10: Construction of a sequentially consistent MWMR register in CAMPn,t[t < n/2] (code

for pi)

Local variables at a process pi Each process pi manages the following local variables:

• 	ci is a Lamport logical clock. Initialized to 0, it is increased by 1 each time pi invokes a read

or write operation (lines 2 and 7). Moreover, each message carries its current value, which is

used to update (if needed) the logical clock of the receiver process (lines 11, 14, 18, and 20). It

follows that logical clocks increase according to operation invocations and message exchanges.

• reqsni is an integer variable, initialized to 0 and used to associate a sequence number with each

operation issued by pi.
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• donei is a Boolean used by pi to manage its local synchronization. It is set to false when pi
starts a new operation (lines 1 and 6) and reset to true (lines 16) when the operation is allowed

to terminate (lines 4 and 9).

• rri contains the index associated with the last register X read by pi. It is assumed that each of

the registers that are built (denoted X , Y , etc.) is identified by an index. This allows us to use

an array notation, as shown by the next items.

• regi[X] is a local variable containing the value of the register X as known by pi.

• tsti[X] is a local variable containing the timestamp of the value currently saved in regi[X].

• vali is a local variable containing the value to be returned by the current read operation of pi (if

any).

Algorithm implementing the operation X.write (v) When a process pi invokes X.write (v), it first

builds a new timestamp ts = 〈	ci, i〉 it associates with the value v (line 2); hence, ts is the identity

of v. Then, pi broadcasts the message WRITE (reqsni, 	ci, X, ts, v) to inform the other process. This

generates the write message exchange pattern described in Figure 6.11.

ACK WRITE(reqsn i, �c)

done i ← true (line16)

ACK WRITE(reqsn i, �c) received from a majority

X.write (v)
pi

WRITE(reqsn i, �ci, X, ts, v)

WRITE(reqsn i, �ci, X, ts, v)

Figure 6.11: Message exchange pattern for a write operation

On its server side, when a process pi receives a message WRITE (rsn, 	c, Y, ts, v) from a process

pj , it does the following. If the timestamp ts associated with v is higher than the last one it knows for

the register Y (line 12), pi stores v and ts in regi[Y ] and tsti[Y ], respectively (ts > tsti[Y ] means

that v is more recent than regi[Y ], from the global time point of view defined by the local logical

clocks {lci}1≤i≤n). Finally, whatever the value of the predicate ts > tsti[Y ], pi sends the message

ACK WRITE (rsn, 	ci) (line 13) back to pj . The systematic sending of this message is necessary to

guarantee that pj will receive ACK WRITE (rsn,−) from a majority of processes.

When, pi receives a message ACK WRITE (rsn,−) such that rsn = reqsni, this message is re-

lated to its pending write (or read, see below) request. When it has received this message ACK WRITE

(rsn,−) from a majority of processes (line 15), pi can set donei to true to terminate its pending oper-

ation (line 16). In this case, it also increases reqsni, so that in the future all the messages ACK WRITE

(rsn ′,−) (and ACK READ REQ (rsn ′,−,−,−)) where rsn ′ < reqsni will be discarded.

A main difference with the ABD write algorithm The main difference in the design of the ABD

algorithm (Fig. 6.5), which implements atomicity, and the algorithm of Fig. 6.10, which implements

sequential consistency, lies in the following observation:

• The write operation of the ABD algorithm requires the invoking process pi to first execute a

message exchange with the other processes. The aim of this communication phase is to com-

pute the timestamp of the value v that pi wants to write (lines 2-4 in Fig. 6.5). Only after

this message-involving computation, is process pi allowed to broadcast the associated message

WRITE() carrying v and its timestamp (line 5-6 in Fig. 6.5). It follows that the timestamp associ-

ated with a value is as up-to-date as possible. Hence, the write operation requires two round-trip

communication steps. This is the price paid by ABD to obtain atomicity of MWMR registers.
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• In the write algorithm of Fig. 6.10, a process pi defines the timestamp of the value v it wants to

write without communicating with the other processes (line 2). It defines it only from the current

value of its logical clock 	ci (whose value increases when protocol messages are received). It

follows that this write operation (which implements MWMR sequentially consistent registers)

requires a single round-trip communication step.

Algorithm implementing the operation Y.read () When a process pi invokes X.read (), it increases

its logical clock, registers the index of X in rri for a later use (lines 7 and 24), and broadcasts the

message READ REQ (reqsni, 	ci, X), which entails a message exchange pattern that will provide it

with a value to return (line 8).

When a process pi receives READ REQ (rsn, 	c, Y ) from a process pj , it updates its local clock

(line 18), and sends its local view of what it knows on Y back to pj , i.e., the values of regi[Y ] and

tsti[Y ] carried in a message tagged ACK READ REQ (line 19).

Let us observe that the request sequence number rsn associated with the read of a register is

carried by all the protocol messages generated by this read, namely, READ REQ (rsn,−, Y ) (line 8),

and ACK READ REQ (rsn,−, regi[Y ], tsti[Y ]) (line 19).

Any message ACK READ REQ (rsn,−,−,−) received by pi, where rsn = reqsni, is related to

its pending read operation, say X.read(). The index of the high level register X has been previously

saved in rri (line 7). When it has received such a message from a majority of processes, pi computes

the value vali associated with the greatest timestamp mts carried by these messages (line 23); vali
is the value it will return at line 10 as result of its read. As the value inquiry phase is finished, pi
updates reqsni, so that all messages with a smaller value will be discarded. But, before returning vali,
pi has to guarantee the whole execution will be sequential consistent (all operations must appear as

having been executed sequentially, while respecting each process order and the sequential semantics

of every register). To this end, pi saves the values regi[X] and tsti[X] in its local memory (line 24),

and broadcasts a message WRITE (reqsni, 	ci, X, vali,mts), so that a majority of processes will have

a value of X as recent as vali (with respect to logical time) when the read of pi terminates.

pi

READ REQ(reqsn i, �ci, X)

READ REQ(reqsn i, �ci, X)

write phase

ACK READ REQ(reqsn i, �c, w, tst)

returned value vali is determined (line 23)

ACK READ REQ(reqsn i, �c,−,−) received from a majority

done i ← true (line 16)

Figure 6.12: First message exchange pattern for a read operation

The message exchange pattern generated by a read is represented in Fig. 6.12. As we can see, it

costs two round-trip communication steps, i.e., the same as the MWMR ABD algorithm.

Timestamp of a write operation and a written value Let the timestamp of an operation X.write()
invoked by a process pi be the pair 〈	c, i〉, where 	c is the value of its logical clock computed at line 2

of the invocation. This timestamp is also associated with the value v written by pi. Using a functional

notation, we write ts(X.write(v)) = ts(v) = 〈	c, i〉.

Physical time vs logical time It is important to see that the total order on write operations defined by

their timestamps does not necessarily comply with the physical time at which operations are invoked.
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(Hence, this total order on write operations is different from the TO-broadcast-based total order on

write operations defined and used in proof of Theorem 25.)

pi

X.write (v)

pj
�cj = 0

�cj ← �cj + 1

X.write (v)

Figure 6.13: Logical time vs. physical time for write operations

Let us consider the execution described in Fig. 6.13, which involves two processes and a single

register X . Let us assume that when pi issues X.write (v) we have ts(v) = ts(X.writei (v)) =
〈100, i〉 (	ci increased due to message receptions or previous operation invocations issued by pi).
However, the messages to pj are very slow, and pj has not yet received any messages when it invokes

X.write (v′). We then have ts(X.write (v′)) = ts(v′) = 〈1, j〉. When this occurs, the algorithm

is such that the operation X.writej (v′) appears to be overwritten by X.writei (v) (or another write

operation).

6.5.6 Proof of the Logical Time-based Algorithm

Preliminaries definitions and basic properties The following definitions and properties refer to

notions defined in Section 5.2:

• The logical date of the invocation event of an operation op, denoted 	d(inv(op)), is the value

of the local clock of the invoking process just after it executed line 2 or 7.

• Similarly, the logical date of the reply event of an operation op, denoted 	d(resp(op)), is the

value of the local clock of the invoking process just after line 16 before terminating op.

• Ĥ being an execution history, LIN (Ĥ) is a predicate which is true if and only if Ĥ is lineariz-

able. Similarly, SC (Ĥ) is true if and only if Ĥ is sequentially consistent.

• For any history Ĥ , the following properties have been proved in previous chapters. Let X be

any register. (Reminder: Ĥ|X is the projection of Ĥ on the register X .)

– Property P1. LIN (Ĥ)⇔ ∀X : LIN (Ĥ|X). (Atomicity is composable.)

– Property P2. LIN (Ĥ)⇒ SC (Ĥ). (Atomicity is stronger than sequential consistency.)

• Ĥ being an execution history, let Ĥ�d be the history with the same events as Ĥ , but ordered

according to the values of their timestamps. The timestamp of an event is the pair composed of

its logical date and the identity of the invoking process.

As logical time is monotonically increasing at each process pi, we have Ĥ|pi = Ĥ�d |pi (both

local histories Ĥ|pi and Ĥ�d |pi are the same sequence of events). Consequently, Ĥ and Ĥ�d

are equivalent, denoted here Ĥ  Ĥ�d (no process can distinguish Ĥ and Ĥ�d ), from which we

obtain the following property.

– Property P3. SC (Ĥ)⇔ SC (Ĥ�d ).

• The next property follows directly from P1, P2, and P3.

– Property P4. ∀X : LIN (Ĥ�d |X)⇒ LIN (Ĥ�d )⇒ SC (Ĥ�d )⇒ SC (Ĥ).
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• The next property, where op1 and op2 are two operations, follows the progression of logical

time.

– Property P5.
(
resp(op1) <H�d inv(op2)

)
⇒

(
	d(resp(op1)) ≤ 	d(inv(op2))

)
.

Proof methodology The previous properties allow a compositional reasoning, namely, due to P4, as

soon as we have LIN (Ĥ�d |X) for any register X , we can conclude SC (Ĥ).

Timestamp of a read operation Let the timestamp of an operation X.read() invoked by a process pi
be the pair tst, obtained by pi at line 23 (where the messages ACK READ REQ (rsn,−,−,−) are such

that the request sequence number rsn was the one generated at line 6 by the invocation of X.read()).
Hence, ts(X.read()) = ts(vali), where vali is the value returned by pi as result of its read invocation.

Lemma 9. Given an execution Ĥ of the algorithm in Fig. 6.10, and considering the associated history

Ĥ�d |X (projection of Ĥ�d on a register X), let op1 be a read or write operation on X , and read2 a

read operation on X .
(
resp(op1) <H�d |X inv(read2)

)
⇒

(
ts(op1) ≤ ts(read2)

)
.

Proof The proof is illustrated in Fig. 6.14. Let pi be the process that invokes op1. When it terminates

op1, pi has previously received messages ACK WRITE (sni,−) (where sni is the sequence number

associated with op1 by pi) from a majority of processes (line 15). Let Qi be this majority set of

processes. Let pj be the process that invokes read2. During its first communication phase, it receives

messages ACK READ REQ (snj,−,−,−) from a majority of processes, where snj is the sequence

number associated with read2 by pj (line 21). Let Qj be this majority set of processes. As any two

majority sets intersect there is a process pk ∈ Qi ∪Qj .

Let ei be the event in which pk processes pi’s WRITE (sn,−) message, and ej be the event where

pk processes pj’s ACK READ REQ(snj,−,−,−) message. Due to the local clock updates entailed by

message exchanges we have 	d(ei) < 	d(resp(op1)) (lines 13-14), and 	d(inv(read2)) < 	d(ej)
(lines 18-20). As, due to P5, we have 	d(resp(op1)) ≤ 	d(inv(read2)), we obtain 	d(ei) < 	d(ej),
which means that pk processes ei before ej . Consequently pk sent first the message ACK WRITE

(sni,−) to pi (line 13), and later the message ACK READ REQ (snj,−, tstk[X],−) to pj (line 19).

After event ei during which pk processed the message WRITE (sni,−, X, tsi,−), due to line 12

we have tstk[X] ≥ tsi. Hence, the message sent by pk to pj (event ej) is such that tsk ≥ tstk[X] ≥
tsi. As read2 is assigned a timestamp equal to the greatest one from the messages ACK READ REQ

(snj,−,−,−) sent by the processes of Qj (line 15), we have ts(read2) ≥ tsk ≥ tsi.

pi

pj

pk

ACK READ REQ (snj,−,−,−)

X.op1

ts ≤ tstk[X ] ≤ tsk

ACK READ REQ (snj,−,−, tsk)

X.read2 ()READ REQ (snj,−, X)

ACK WRITE (sni,−)
WRITE (sni,−, X, tsi,−)

tstk[X ] ≥ tsi

ejei

Figure 6.14: An execution Ĥ�d |X in which resp(op1) <H�d |X inv(read2)

If op1 is a write operation, its timestamp is tsi (line 2). If op1 is a read operation, its timestamp

is the one of the value it writes (lines 23-25), i.e., tsi. In both cases, we have ts(op1) ≤ ts(read2).
�Lemma 9
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Lemma 10. Given an execution Ĥ of the algorithm in Fig. 6.10, we have ∀X : LIN (Ĥ�d |X).

Proof To prove the lemma we have to show that, given any register X , there is a sequential history ŜX

that (i) includes all operations on X that appear in Ĥ , (ii) belongs to the sequential specification of X ,

and (iii) is such that if resp(op1) <H�d inv(op2) (in short op1 <H�d |X op2), then op1 appears before

op2 in ŜX . (Let us insist on the fact that ŜX is defined directly from X , and not as the projection of

“some” history Ŝ on X; hence, the notation ŜX .)

Let ŜX be the following total order on all the read and write operations on X issued by all pro-

cesses:

• All write operations are ordered according to their timestamps. As no two write operations have

the same timestamp, this order is total.

• Each read operation is inserted in the previous order, just after the write operation that has the

same timestamp (i.e., just after the write operation that wrote the value returned by the read). If

several read operations have the same timestamp, they are inserted after the corresponding write

according to the timestamps of their invocation events.

As, by construction, each read operation returns the value written by the closest preceding write

operation, ŜX belongs to the sequential specification of X .

Let us now show that, for any pair of operations op1 and op2, if resp(op1) <H�d |X inv(op2) (i.e.,

op1 <H�d |X op2), we have op1 <SX
op2 (op1 appears before op2 in <SX

). To this end, we proceed

by case analysis.

• Both op1 and op2 are write operations.

Let us first note that the timestamp of a write operation is the timestamp of its invocation event

(defined at line 2).

As the local clock of each process increases at each new event it produces (lines 2, 7, 11, 14, 18,

and 20), it follows that 	d(inv(op1)) = ts(op1) < 	d(resp(op1)). As resp(op1) <H�d |X

inv(op2) (assumption), we have 	d(res(op1)) ≤ 	d(inv(op2)) = ts(op2) from property P5.

Finally, due to transitivity we obtain ts(op1) < ts(op2). Consequently op1 <SX
op2.

• op1 is a read operation and op2 is a write operation.

There is a write0 operation on X such that ts(op1) = ts(write0). As the event inv(write0)
causally precedes the event resp(op1), we have 	d(inv(write0)) < 	d(resp(op1)). Moreover,

as resp(op1) <H�d |X inv(op2) (assumption), we obtain 	d(inv(write0)) < 	d(inv(op2))
from transitivity and property P5. It then follows from the previous item and transitivity that

ts(op1) = ts(write0) = 	d(inv(write0)) < 	d(inv(op2)) = ts(op2). Consequently op1 <SX

op2.

• op1 is a write operation and op2 is a read operation.

From the assumption resp(op1) <H�d |X inv(op2) and Lemma 9, we have ts(op1) ≤ ts(op2).
Consequently op1 <SX

op2.

• Both op1 and op2 are read operations.

As in the previous item, we have ts(op1) ≤ ts(op2).

– If ts(op1) < ts(op2), we trivially have op1 <SX
op2.

– If ts(op1) = ts(op2), it follows from resp(op1) <H�d |X inv(op2) (assumption) and

property P5 that 	d(resp(op1)) ≤ 	d(inv(op2)). As 	d(inv(op1)) < 	d(resp(op1)),
we have 	d(inv(op1)) < 	d(inv(op2)). Consequently the read operation op1 is ordered

before the read operation op2 in Ĥ , i.e., op1 <SX
op2.

To terminate the proof, it remains to show that ŜX  Ĥ�d |X (i.e., ŜX and Ĥ�d |X are equivalent:

each process pi executes the very same sequence of operations on X in ŜX and Ĥ�d |X). Let us con-

sider two operations op1 and op2 of a process pi. As pi is sequential, we have either resp(op1) <H�d |X
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inv(op2) or resp(op2) <H�d |X inv(op1). Assume resp(op1) <H�d |X inv(op2) to fix notations.

Due to the management of Lamport logical clocks we have 	d(inv(op1)) < 	d(resp(op1)) <
	d(inv(op2)). The previous case analysis has shown that op1 and op2 are ordered the same way

in Ĥ�d |X and ŜX , which concludes the proof of the lemma. �Lemma 10

Lemma 11. For any register X , if a correct process invokes X.write () or X.read (), it terminates.

Proof Let pi be a process that invokes X.write () and does not crash during its invocation. It sends

the message WRITE (reqsni,−,−,−,−) to all the processes (line 3), and at least (n − t) processes

answer by sending ACK WRITE (rsn,−) back to pi, where rsn = reqsni (line 13). Hence, pi receives

messages ACK WRITE (rsn,−) from at least (n − t) processes, i.e., from a majority of processes (as

n− t > n/2). It follows that the write operation terminates.

For a correct process that invokes X.read (), the previous reasoning can be applied twice: once

to the messages READ REQ (reqsni,−,−) and ACK READ REQ (rsn,−,−), sent at lines 8 and 19,

and a second time to the messages WRITE (reqsni,−,−,−,−) and ACK WRITE (reqsni,−) sent at

lines 25 and 13. �Lemma 11

Theorem 27. The algorithm described in Fig. 6.10 builds sequentially consistent read/write registers

in the system model CAMPn,t[t < n/2].

Proof The proof follows from Lemma 10 (safety) and Lemma 11 (liveness). �Theorem 27

6.6 Summary

Starting from a simple algorithm building a regular SWMR read/write register, this chapter first pre-

sented, in an incremental way, an algorithm building an atomic MWMR read/write register in asyn-

chronous message-passing systems prone to a minority of process crashes. Then, it presented a simple

algorithm which builds any number of sequentially consistent registers.

Table 6.1 summarizes features of four of the previous algorithms, which all assume the necessary

condition t < n/2 only. A communication step is a one-to-all/all-to-one (round-trip) communication

pattern. (The fast algorithms implementing sequentially consistent registers presented in Section 6.5.2

require a stronger computability power than the t-resilience condition t < n/2. Namely, they require

the computability power provided by the total order broadcast abstraction, which cannot be imple-

mented in CAMPn,t[t < n/2]).

Algorithm Fig. 6.2 Fig. 6.4 Fig. 6.5 Fig. 6.10

Consistency regularity atomicity atomicity seq. consistency

Concurrency SWMR SWMR MWMR MWMR

Comm. steps: read 1 2 2 2
Comm. steps: write 1 1 2 1

Table 6.1: Cost of algorithms implementing read/write registers

6.7 Bibliographic Notes

• The notion of logical local clocks able to associate dates with the events produced by a dis-

tributed algorithm, so that the dates are in agreement with the event causality relation, was

introduced by L. Lamport in [255].
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• As indicated in the previous chapter, the notions of regular and atomic registers were introduced

by L. Lamport [259].

• The concept of linearizability, which generalizes atomicity to any object defined by a sequential

specification is due to M. Herlihy and J. Wing [216].

• The notion of a sequentially consistent register was introduced by L. Lamport in [257]. Theoret-

ical foundations of sequential consistency can be found in [292, 347, 373]. Algorithms specific

to sequential consistency suited to failure-free systems can be found in [112, 244, 361, 368].

• The construction of an atomic register on top of an asynchronous message-passing system prone

to process crashes was deeply investigated by H. Attiya, A. Bar-Noy and D. Dolev in [36]. Their

basic algorithm is the one presented in Fig. 6.5.

• Other constructions are described in [34, 43, 271, 324]. The algorithm presented in [324] does

not require the messages to carry sequence numbers; it requires four message types only.

• A historical perspective (up to 2010) of the construction of read/write registers is presented

in [35]. Synthetic views are given in [369, 382].

• Algorithms that build an atomic register in dynamic systems (i.e., systems where processes can

enter and leave) are described in [9, 18, 110, 133, 173, 273]. The case of a regular register is

addressed in [47, 381]. The case where registers are network attached disks is analyzed in [16].

• Lots of advanced algorithms that implement an atomic register in asynchronous message-passing

systems prone to crash failures are presented in the literature. These algorithms investigate

mainly lower bounds and the efficiency of read and write operations. Examples of such dis-

tributed algorithms can be found in [110, 140, 148, 203, 205, 323].

• The composability of sequentially consistent read/write registers is investigated from a theoret-

ical point of view in [347].

• The algorithms building sequentially consistent registers based on an underlying total order

broadcast abstraction are due to H. Attiya and J. Welch [42]. The algorithm which relies on

the basic send/receive operations and Lamport’s logical time notion, and its proof, are due to N.

Ekström and S. Haridi [144].

6.8 Exercises and Problems

1. Let us consider the algorithm described in Fig. 6.2, which builds an SWMR regular read/write

register in CAMPn,t[t < n/2]. Consider executions in which the writer process crashes while

it executes REG .write(v) (where the value has never been previously written). Show there are

executions in which:

• Some processes never obtain the value v, while others obtain the value v when they invoke

REG .read(v).

• After some time, all processes obtain the value v.

• No process ever obtains the value v.

Design an algorithm implementing an SWMR atomic register in the system model CAMP3,1[∅]
in which there are four types of protocol messages only, and no message carries sequence num-

bers.

Generalize the previous algorithm to the system model CAMPn, t[t < n/2].

Solution in [324].

2. Prove that the algorithm presented in Fig. 6.9 implements a sequentially consistent queue.

3. Is it possible to design an algorithm implementing a sequentially consistent stack with a fast

pusch() operation using an algorithm similar to the one presented in Fig. 6.9? Motivate your

answer.
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4. Let us consider the algorithm described in Fig. 6.10, which implements sequentially consistent

registers based on Lamport logical time. Let us suppress the simplifying assumption that the

majority used by pi at line 21 does not necessarily include its own message, and let us suppress

line 24. Is the algorithm still correct? Explain your answer.



Chapter 7

Circumventing the t < n/2
Read/Write Register Impossibility:

the Failure Detector Approach

This chapter presents the failure detector class (denoted Σ) that allows us to circumvent the impossi-

bility of building an atomic read/write register in an asynchronous message-passing system in which

half or more processes may commit crash failures (system model CAMPn,t[t ≥ n/2]). (The reader is

referred to Section 3.3 for formal definitions related to failure detectors.) This chapter first introduces

the class Σ, and shows how it allows us to implement an atomic register for any value of t. Then,

it shows that Σ is the failure detector class that provides us with the weakest information on failures

that allows an atomic read/write register to be built despite asynchrony and any number of process

crashes. Finally, the chapter compares the failure detectors classes Σ and Θ on the one side, and Σ
and the URB-broadcast communication abstraction on another side (Θ, introduced in Section 3.4, is

the weakest failure detector class that allows URB-broadcast to be built on top of fair channels in the

presence of any number of process crashes).

Keywords Asynchronous system, Atomic register, Extraction algorithm, Impossibility, Process crash

failure, Quorum failure detector Σ, Uniform reliable broadcast, Weakest failure detector.

7.1 The Class Σ of Quorum Failure Detectors

7.1.1 Definition of the Class of Quorum Failure Detectors

A quorum is a non-empty set of processes. (The majority sets of processes used in the algorithms of

the previous chapter are sometimes called majority quorums.)

The class of quorum failure detectors, denoted Σ, was introduced by C. Delporte, H. Fauconnier,

and R. Guerraoui (2004 and 2010). It contains all the failure detectors that provide each process pi
with a quorum local variable, denoted sigmai, which pi can only read, and such that the set of local

variables {sigmai}1≤n collectively satisfy the intersection and liveness properties stated below. Let

us remember that F denotes the failure pattern associated with a given execution, and Correct(F ) is

the set of processes that do not crash in this failure pattern.

Let us denote sigmaτi the output of Σ at process pi at time τ (using the formalism introduced in

the previous section we have sigmaτi = H(pi, τ)).

• Intersection. ∀i, j ∈ {1, . . . , n}: ∀τ, τ ′ ∈ IN: sigmaτi ∩ sigmaτ
′

j �= ∅.

• Liveness. ∃τ ∈ IN: ∀τ ′ ≥ τ : ∀i ∈ Correct(F ): sigmaτ
′

i ⊆ Correct(F ).
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The intersection property states that any two quorum values intersect, whatever the times at which

they are output. As it has to always be satisfied, this property in called a perpetual property: it is

an invariant provided by Σ. A Σ-based algorithm that aims to build an atomic register will rely on

this invariant to prevent partitioning (and consequently prevent the bad scenario described in the proof

of Theorem 18 from occurring), thereby guaranteeing the required atomicity (safety) property of a

register.

The second property states that, after some finite time, the quorum values output at any non-faulty

process contain only non-faulty processes. These processes are not required to be the same forever.

They can change as long as the intersection property remains satisfied. This property is called an

eventual property: it states that, after some finite time, “something” has to be forever satisfied. Its aim

is to allow a Σ-based algorithm to guarantee that the read and write operations issued by the non-faulty

processes always terminate.

7.1.2 Implementing a Failure Detector Σ When t < n/2

There is a very simple algorithm that builds a failure detector of the class Σ in CAMPn,t[t < n/2]
(Fig. 7.1). Each process pi manages a queue (denoted queuei) that contains the n process identities.

The initial value is any permutation of these identities. Each process broadcasts forever (i.e., until

it crashes, if it ever crashes) ALIVE () messages to indicate it has not crashed. When a process pi
receives such a message from a process pj , it moves j in queuei from its current position to the head

of queuei. Finally, it defines the current value of sigmai as the majority of the processes that are at

the head of queuei.

background task: repeat forever broadcast ALIVE () end repeat.

when ALIVE () is received from pj (j ∈ {1, . . . , n}:

suppress j from queuei; add j at the head of queuei;
sigmai ← the �n+1

2
 processes at the head of queuei.

Figure 7.1: Building a failure detector of the class Σ in CAMPn,t[t < n/2]

The intersection property trivially follows from the fact that any two majorities intersect. As far

as the liveness property is concerned, let c be the number of correct processes. We have c > n/2, i.e.,

c ≥ �n+1
2 �. Let us observe that, after some time, only the c non-faulty processes send messages, and

consequently, only these processes will appear in the first c positions of the queue of any non-faulty

process. The liveness follows immediately from c ≥ �n+1
2 �.

Remark As we have seen, it is possible to build an atomic register in CAMPn,t[t < n/2], and as

we are about to see, it is also possible to build an atomic register in CAMPn,t[Σ]. Hence, it is not

counter-intuitive that a failure detector of the class Σ can be built in CAMPn,t[t < n/2]. Let us also

observe that this algorithm is the same as the one presented in Fig. 3.2, which builds a failure detector

of the class Θ in CAMPn,t[- FC; t < n/2] (a weaker system model than CAMPn,t[t < n/2]).

However, thanks to Theorem 18, and the fact that Σ allows the construction of an atomic register

for any value of t, we can conclude that it is not possible to build a failure detector of the class Σ in

CAMPn,t[∅]. Such a construction requires additional assumptions that the underlying system has to

satisfy. Hence, Σ is more powerful than the assumption “t < n/2”.

The fundamental added value supplied by a failure detector, is that it provides us with the weakest

information on failures the processes have to be provided with in order to build an atomic register. The

model assumption “t < n/2” does not characterize the weakest information on failures that allows the

construction of an atomic register.
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7.1.3 A Σ-based Construction of an SWSR Atomic Register

This section presents a Σ-based algorithm that builds an SWSR atomic register REG (i.e., it builds a

register in the system model CAMPn,t[Σ]). The algorithm appears in Fig. 7.2. Extending this algo-

rithm to build an MWMR atomic register is straightforward. It can be easily done using an incremental

construction similar to the one described in the previous chapter.

One writer, one reader, but all the processes must participate The writer is denoted pw, while the

reader is denoted pr. It is important to notice that all the processes have to participate in the algorithm.

This is because the output domain of Σ is the set of the identities of all the processes, p1, ..., pn, and

both sigmaw and sigmar can a priori contain the identities of any subset of p1, ..., pn. The progress

of pw depends on the values returned by sigmaw, and, similarly, the progress of pr depends on the

values returned by sigmar, which are not known in advance. Hence, to cope with any subset of faulty

processes, each process must participate in the construction of the atomic register REG . Each process

pi has consequently to manage a local copy reg i of REG , and a local variable wsni, as in the register

algorithms of the previous chapter.

operation REG .write (v) is % This code is for the single writer pw %

(1) wsnw ← wsnw + 1;

(2) broadcast WRITE (v,wsnw);
(3) wait (sigmai is such that ∀pj ∈ sigmai : ACK WRITE (wsnw) received from pj);

(4) return().

operation REG .read () is % This code is for the single reader pr %

(5) reqsni ← reqsni + 1;

(6) broadcast READ REQ (reqsni);
(7) wait (sigmai is such that ∀pj ∈ sigmai : ACK READ REQ (wsnw,−,−) received from pj);

(8) let msn be greatest sequence number received in an ACK READ REQ (reqsni,−,−) message;

(9) if (msn > wsni) then reg i ← v; wsni ← msn end if;

(10) return (reg i).

% The code snippets that follow are for every process pi, i ∈ {1, . . . , n}.

when WRITE (val,wsn) is received from pw do

(11) if (wsn ≥ wsni) then reg i ← val; wsni ← wsn end if;

(12) send ACK WRITE (wsn) to pw.

when READ REQ (rsn) is received from pr do

(13) send ACK READ REQ (rsn,wsni, regi) to pr .

Figure 7.2: An algorithm for an atomic SWSR register in CAMPn,t[Σ]

The algorithm The code of the algorithm is very close to that of the algorithms in the previous

chapter. The local variables have the same meaning, and the basic structure is also the same. There

are only two differences:

• The first is the use of a quorum failure detector of the class Σ instead of the majority of non-

faulty processes assumption. Let us observe that the value of the quorum failure detector module

sigmai can change forever (lines 3 and 7). A process pi waits until there is a set output by the

local failure detector module such that it has received an appropriate message (ACK WRITE or

ACK READ REQ) from each process of this set.

• The second difference is not related to the use of Σ, but to the fact that there is a single reader.

As pr is the only reader, when it invokes REG .read(), it is not necessary for it to execute the

second phase of the REG .read() operation (the write phase), whose aim was to ensure that the
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value kept in the local memories of the other processes is at least as recent as the value it is about

to return. As no other process is allowed to read, it is sufficient that pr keeps a local copy of the

value it is about to return, in order to prevent new/old inversions. So, the second phase of a read

operation required to guarantee atomicity is now simply a local write (that actually depends on

the sequence number of the returned value).

The proof is a simplified version of the proof of the algorithm described in Fig. 6.5 of the previous

chapter, where the majority of correct processes assumption is replaced by the properties of Σ. It is

left to the reader as an exercise.

7.2 Σ Is the Weakest Failure Detector to Build an Atomic Register

7.2.1 What Does “Weakest Failure Detector Class” Mean

Notion of extraction algorithm The previous section has shown that it is possible to build an atomic

register in CAMPn,t[Σ], i.e. Σ is sufficient to implement an atomic register in an asynchronous system

prone to any number of process crashes. This section shows that, as soon as we rely on information

on failures when we want to build a register, Σ is also necessary.

Let D be a failure detector class such that it is possible to build a register in CAMPn,t[D]. In-

tuitively, “necessary” means that the information on failures provided by D “includes” information

on failures provided by Σ. More precisely, let D be any failure detector class such that it is pos-

sible to build an atomic register in CAMPn,t[D], and A be any algorithm that builds a register in

CAMPn,t[D]. Proving the necessity of Σ to build an atomic register consists in designing an algo-

rithm that, given the previous D-based algorithm A as an input, builds a failure detector of the class

Σ. We say that this algorithm extracts Σ from the D-based algorithm A (see Fig. 7.3).

ΣExtraction algorithm
D-based algorithm A

that builds a register R

Figure 7.3: Extracting Σ from a register D-based algorithm A

Remark It is important to understand that the notion of weakest used here is related to information

on failures only. Nothing prevents us from designing an oracle that does not provide processes with

hints on failures but with another type of information (e.g., about the synchrony of the system) that

would allow the construction of an atomic register despite any number of process crashes. “Weakest”

means that any oracle that (1) provides processes only with information on failures (i.e., any failure

detector class), and (2) allows processes to build an atomic register, allows the construction of a failure

detector of class Σ.

7.2.2 The Extraction Algorithm

Aim As previously indicated, the aim is to design an algorithm that emulates the output of Σ at each

process pi. This algorithm uses as a subroutine any algorithm A and failure detector D such that A
is an n-process D-based algorithm that implements an atomic register in an n-process asynchronous

message-passing system prone to any number of crashes.

The following extraction algorithm is due to F. Bonnet and M. Raynal (2010). It has the property

to be a bounded construction (every local variable or message content is bounded).
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An array of atomic registers Let Q be a non-empty set of processes, and REGQ[1..n] an array of

n atomic registers (initialized to [⊥, . . . ,⊥]) such that each atomic register REGQ[x] is implemented

by the n-process algorithm A executed only by |Q| threads, each associated with a process of Q.

A simple register-based algorithm (task) Let WRQ be the register-based algorithm (called a task)

where each process pi, such that i ∈ Q, executes the following statements (where regi[1..n] is an array

local to pi):

REGQ[i].write(!); for each x ∈ {1, ..., n} do regi[x]← REGQ[x].read() end for.

The process pi first writes the value ! in its entry of the array REGQ, and then reads asyn-

chronously all its entries. The REGQ[i].write(!) and REGQ[x].read() operations are provided to the

processes by the previous algorithm A. (Let us note that the value obtained by a read is irrelevant. As

we will see, what is important is the fact that REGQ[x] has been written or not.) A corresponding

run (history) of WRQ is denoted EQ. In that run, no process outside Q sends or receives messages

related to the task WRQ. When we consider the underlying failure detector-based algorithm A that

implements the registers REGQ[1..n], as the processes that are not in Q do not participate in WRQ,

the messages sent by the processes of Q to these processes are never received, or are delayed for an

arbitrarily long period. (Alternatively, we could say that, in WRQ, the processes of Q “omit” sending

messages to the processes that are not in Q.)

Let C denote the set of non-faulty processes in the run we consider. Let us observe that, as the

underlying failure detector-based algorithm A that builds a register is correct, if the set Q contains all

the correct processes (i.e., C ⊆ Q), EQ is such that every correct process terminates the task WRQ.

In the other cases, i.e., for the tasks WRQ such that ¬(C ⊆ Q), EQ is such that a process of Q
terminates WRQ, or blocks forever, or crashes (this depends on the actual failure pattern, the outputs

of the underlying failure detector D used by algorithm A, and the code of A).

Running concurrently 2n − 1 tasks The extraction algorithm considers the 2n − 1 distinct tasks

WRQ where Q is a non-empty set such that Q ∈ 2Π. To this end, each process pi manages 2n−1

threads, one for each subset Q such that i ∈ Q. Let us note that the crash of a process pi entails the

crash of all its threads.

An extraction algorithm The algorithm that extracts Σ is described in Figure 7.4. Let us recall

that its aim is to provide each process pi with a local variable sigmai such that the (sigmax)1≤x≤n

variables satisfy the intersection and liveness properties defined in Section 7.1.

To that end, each process pi manages two local variables: a set of sets of process identities, de-

noted quorum setsi, and a queue denoted queuei. The aim of quorum setsi is to contain all the sets

Q such that pi has terminated WRQ (task T1), while queuei is managed in such a way that eventually

any correct process appears in it before any faulty process (tasks T2 and T3).

The idea is to select an element of quorum setsi as the current output of sigmai. As we will see

in the proof, given any pair of processes pi and pj , any quorum in quorum setsi has a non-empty

intersection with any quorum in quorum setsj , thereby supplying the required intersection property.

The main issue is to ensure the liveness property of sigmai (eventually sigmai has to contain

only correct processes) while preserving the intersection property. This is realized with the help of the

local variable queuei as follows: the current output of sigmai is the set (quorum) of quorum setsi
that appears “first” in queuei. The formal definition of “first element of quorum setsi with respect to

queuei” is stated in the task T4. To make it easy to understand, let us consider the following example.

Let quorum setsi = {{3, 4, 9}, {2, 3, 8}, {1, 2, 4, 7}}, and queuei =< 4, 8, 3, 2, 7, 5, 9, 1, · · · >.

The set S = {2, 3, 8} is the first set of quorum setsi with respect to queuei because each of the other
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sets {3, 4, 9} and {1, 2, 4, 7} includes an element (e.g., 9 and 7, respectively) that appears in queuei
after the elements of S. (If several sets are “first”, any of them can be selected). The notion of “first

quorum in queuei” is used to ensure that Σi eventually includes only correct processes.

Init: quorum setsi ← {{1, . . . , n}}; queuei ← 〈1, . . . , n〉;
for each Q ∈

(
2Π \ {∅, {1, . . . , n}}

)
do

if (i ∈ Q) then launch a thread associated with the task WRQ end if end for.

% Each process pi participates concurrently in all the tasks WRQ such that i ∈ Q %

Task T1: when pi terminates task WRQ: quorum setsi ← quorum setsi ∪ {Q}.

Task T2: repeat periodically broadcast ALIVE(i) end repeat.

Task T3: when ALIVE (j) is received: suppress j from queuei; enqueue j at the head of queuei.

Task T4: when pi reads sigmai:

let m = minQ∈quorum setsi(maxx∈Q(rank[x])) where rank[x] denotes the rank of x in queuei;
return (a set Q such that maxx∈Q(rank[x]) = m).

Figure 7.4: Extracting Σ from a failure detector-based register algorithm A (code for pi)

Remark Initially quorum setsi contains the set {1, . . . , n}. As no set of processes is ever with-

drawn from quorum setsi (task T1), quorum setsi is never empty. Moreover, it is not necessary

to launch the task WR{1,...,n} in which all processes participate. This is because, as the underlying

failure detector-based algorithm A (which implements a register) is correct, it follows that each cor-

rect process decides in task WR{1,...,n}. This case is directly taken into account in the initialization of

quorum setsi (thereby saving the execution of the task WR{1,...,n}).

7.2.3 Correctness of the Extraction Algorithm

Let us recall that a bounded construction is an algorithm in which all variables and all messages have

a bounded size.

Theorem 28. Let A be any failure detector-based algorithm that implements an atomic register in the

system model CAMPn,t[∅]. Given A, the algorithm described in Fig. 7.4 is a bounded construction of

a failure detector of the class Σ.

Proof Proof of the intersection property. The proof is by contradiction. Let us first observe that the

set sigmai returned to a process pi is a set of quorum seti (which contains the set {1, . . . , n} – its

initial value – plus all the sets Q such that pi has terminated WRQ). Let us assume that there are two

sets Q1 and Q2 such that (1) Q1, Q2 ∈
⋃

1≤j≤n(quorum setj), and (2) Q1 ∩Q2 = ∅. The first item

means that Q1 and Q2 can be returned to some processes as their local value for Σ.

Let pi be a process that terminates WRQ1
and pj a process that terminates WRQ2

(due to the

“contradiction” assumption, such processes do exist). Using the fact that the message-passing system

is asynchronous, let us construct the runs EQ1
and EQ2

associated with WRQ1
and WRQ2

as follows.

If any, messages sent by processes in Q1 to processes in Q2 (when they execute A to implement

each register of the array REGQ1
) are delayed for an arbitrarily long period, until pi has added Q1 to

quorum seti and pj has added Q2 to quorum setj . Let us similarly delay messages sent by processes

in Q2 to processes in Q1 when they execute A for each register of the array REGQ2
.

Let us observe that, in concurrent runs EQ1
and EQ2

, algorithm A, which is executed only by

(1) processes of Q1 in EQ1
to build registers REGQ1

[1..n], and (2) processes of Q2 in EQ2
to build

registers REGQ2
[1..n], is fed with the same outputs of the underlying failure detector D. Due to the
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fact that (if any) messages from Q1 to Q2 and from Q2 to Q1 are delayed, pi reads ⊥ from REGQ1
[j]

in EQ1
, and pj reads ⊥ from REGQ2

[i] in EQ2
.

Let us construct a run EQ12
, where Q12 = Q1 ∪ Q2, which is a simple merge of EQ1

and EQ2

defined as follows. In this run, algorithm A (which involves only the processes in Q12 and implements

the array of registers REGQ12
[1..n]) is fed with the same failure detector outputs as the ones supplied

to the concurrent runs EQ1
and EQ2

. Moreover, messages from Q1 to Q2 and from Q2 to Q1 are

delayed as in EQ1
and EQ2

. So, pi (resp., pj) receives the same messages and the same outputs from

the underlying failure detector in EQ12
and EQ1

(resp., EQ2
).

• On the one hand, we have the following. As process pi receives the same messages and the

same failure detector outputs in EQ12
as in EQ1

, arrays REGQ1
[1..n] and REGQ12

[1..n] con-

tain the same values. Consequently, pi reads ⊥ from REGQ12
[j]. Similarly, pj reads ⊥ from

REGQ12
[i].

• On the other hand, we have the following. In EQ12
, process pi writes ! into REGQ12

[i] and the

process pj writes ! into REGQ12
[j]. Moreover, one of these operations terminates before the

other. Without loss of generality, let us assume that the write by pi terminates before the write

by pj . Consequently, pj reads REGQ12
[i] after it has been written. Due to the atomicity of that

register, it follows that pj obtains the value ! when it reads REGQ12
[i].

The second item contradicts the first one. It follows that the initial assumption (namely, the exis-

tence of a failure detector-based algorithm A that builds a register, Q1, Q2 ∈
⋃

1≤j≤n(quorum setj)
and Q1 ∩ Q2 = ∅) is false, from which we conclude that at least one of the assertions Q1, Q2 ∈⋃

1≤j≤n(quorum setj) and Q1∩Q2 = ∅ is false, which completes the proof of the intersection prop-

erty (the corollary 2 stated below is an immediate consequence of that property).

Proof of the liveness property. As far as the liveness property is concerned, let us consider the task

WRC (recall that C is the set of correct processes). As the underlying failure detector-based algorithm

A that implements the registers REGC [1..n] is correct by assumption, each correct process pi termi-

nates its REGC [i].write(!) and REGC [x].read() operations in EC . Consequently, in the extraction

algorithm, the variable quorum seti of each correct process pi eventually contains the set C.

Moreover, after some finite time, each correct process pi receives ALIVE(j) messages only from

correct processes. This means that, at each correct process pi, every correct process eventually pre-

cedes every faulty process in queuei. Due to the definition of “first set of quorum seti with respect

to queuei” stated in task T4, it follows that, from the time at which C has been added to quorum seti,
the quorum Q selected by the task T4 is always such that Q ⊆ C, which proves the liveness property

of sigmai.

The construction is bounded. A simple examination of the extraction algorithm shows that (1) both

the variables queuei and quorum setsi are bounded, and (2) messages carry bounded values, from

which it follows that the construction is bounded. �Theorem 28

An additional property The proof of intersection property shows that it is not possible to have two

sets Q1 and Q2 such that Q1 ∩ Q2 = ∅ and at least one process of Q1 terminates WRQ1
; hence, the

following corollary.

Corollary 2. Let two sets Q1 and Q2 be such that Q1 ∩ Q2 = ∅. Then, no process of Q1 terminates

WRQ1
or no process of Q2 terminates WRQ2

(or both).

7.3 Comparing the Failure Detectors Classes Θ and Σ

The failure detector class Θ provides us with the weakest information on failures needed to implement

the URB-broadcast abstraction in CAMPn,t[- FC, t ≥ n/2] (see Section 3.4.1). Let us remember that
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the output of such a failure detector at a process pi is a set of processes, denoted trustedi, that always

contains a non-faulty process, though not necessarily always the same non-faulty process (accuracy),

and eventually contains only correct processes (liveness).

We have also seen in Section 7.1.2 that both Θ and Σ can be implemented in CAMPn,t[t < n/2].
Which raises the question: Do Θ and Σ have the same computational power, is one stronger than the

other, or are they incomparable? The theorem that follows answers this question.

Theorem 29. In any system where t ≥ n/2, Σ is strictly stronger than Θ (i.e., Θ can be built in

CAMPn,t[Σ], while Σ cannot be built in CAMPn,t[Θ]).

Proof Let us first observe that it follows from their definitions that Σ is at least as strong as Θ. This

comes from the following two observations. First, their liveness properties are the same. Second, the

combination of the intersection and liveness properties of Σ implies that any set sigmai contains a

correct process, which is the accuracy property of Θ (let us observe that this is independent of the

value of t).

The rest of the proof shows that, when t ≥ n/2, the converse is not true, from which it follows

that Σ is strictly stronger than Θ in systems where t ≥ n/2.

The proof is by contradiction. Let us assume that there is an algorithm A that, accessing any failure

detector of the class Θ, builds a failure detector of the class Σ. Let us partition the processes into two

subsets P1 and P2 (i.e., P1 ∩ P2 = ∅ and P1 ∪ P2 = {p1, . . . , pn}) such that |P1| = �n/2� and

|P2| = �n/2�.
Let FD be a failure detector such that, in any failure pattern in which at least one process px ∈ P1

(resp., py ∈ P2) is non-faulty, outputs px (resp. py) at all the processes of P1 (resp., P2). Moreover,

in the failure patterns in which all the processes of P1 (resp., P2) are faulty, FD outputs the same

non-faulty process ∈ P2 (resp., P1) at all the processes.

It is easy to see that FD belongs to the class Θ: no faulty process is ever output (hence we have

the liveness property), and at least one non-faulty process is always output at any non-faulty process

(hence we have the accuracy property).

Let us consider a failure pattern F where some process px ∈ P1 is non-faulty, and FD outputs

trustedx = {x}, and some process py ∈ P2 is non-faulty, and FD outputs trustedy = {y}. The

process px cannot distinguish the failure pattern F from the failure pattern in which all the processes of

P2 are faulty. Similarly, py cannot distinguish the failure pattern F from the failure pattern in which

all the processes of P1 are faulty. It follows from these observations and the fact that trustedx ∩
trustedy = ∅, that the intersection of Σ cannot be ensured, which concludes the proof of the theorem.

�Theorem 29

The previous theorem actually shows that Σ is Θ enriched with the property that any two sets

output by Θ have a non-empty intersection.

7.4 Atomic Register Abstraction vs URB-broadcast Abstraction

7.4.1 From Atomic Registers to URB-broadcast

The URB-broadcast communication abstraction has been defined in Section 2.1.2. This section presents

a direct construction of this communication abstraction in any system where the atomic register ab-

straction can be built. (This construction corresponds to the bottom left-to-right arrow in Fig. 7.6.)

The construction uses an array of SWMR atomic registers REG [1..n] such that REG [i] can be

read by any process but written only by pi. Moreover, each process pi manages a local variable

denoted senti and a local array reg i[1..n]. Each atomic register REG [x], and each local variable



Chapter 7. Circumventing the t < n/2 Read/Write Register Impossibility:

the Failure Detector Approach 127

operation URB broadcast (m) is

(1) senti ← senti ⊕m; REG[i].write(senti).

background task T is

(2) repeat forever

(3) for each j ∈ {1, . . . , n} do

(4) regi[j] ← REG [j].read();
(5) for each m ∈ regi[j] not yet urb-delivered do URB deliver (m) end for

(6) end repeat.

Figure 7.5: From atomic registers to URB-broadcast (code for pi)

sentx or regi[x] contains a sequence of messages. Each is initialized to the empty sequence; ⊕
denotes message concatenation.

To urb-broadcast a message m a process pi appends m to the local sequence senti and writes its

new value into REG [i] (line 1). The urb-deliveries occur in a background task T . This task is an

infinite loop that reads all the atomic registers REG [j] (line 4), and urb-delivers all the messages they

contain exactly once (line 5).

Theorem 30. The algorithm described in Fig. 7.5 constructs an URB-broadcast communication ab-

straction in any system in which atomic registers can be built.

Proof As the algorithm does not forge new messages, the validity property of URB-broadcast is

trivial. Similarly, it follows directly from the text of the algorithm that a message is urb-delivered at

most once; hence, the integrity property of URB-broadcast.

For the termination property of URB-broadcast, let us observe that a non-faulty process pi that

urb-broadcasts a message m adds this message to the sequence of messages contained in REG [i].
Then, when pi executes the background task T , it reads REG [i], and consequently regi[i] contains m.

According to the text of the algorithm, pi eventually urb-delivers m.

The previous observation has shown that, if a non-faulty process urb-broadcasts a message m,

it eventually urb-delivers it. It remains to show that, if any process urb-delivers a message m, then

every non-faulty process urb-delivers m. So, let us assume that a (faulty or non-faulty) process px
urb-delivers a message m. It follows that px has read m from an atomic register REG [j]. Due to the

atomicity property of REG [j], (1) the process pj has executed a REG [j].write(sentj) operation such

that sentj contains m, and (2) each REG [j].read() operation issued after this write operation obtains

a sequence that contains m. As any non-faulty process py reads the atomic registers infinitely often, it

will obtain infinitely often m from REG [j].read(), and will urb-deliver it, which concludes the proof

of the theorem. �Theorem 30

7.4.2 Atomic Registers Are Strictly Stronger than URB-broadcast

An immediate consequence of Theorem 29 is that, whatever the value of t ≥ n/2, Θ can be built in

CAMPn,t[Σ] and CAMPn,t[- FC; Σ], while a failure detector Σ can be built neither in CAMPn,t[Θ]
nor in CAMPn,t[- FC; Θ].

On the one hand, as we have seen, Σ is the weakest failure detector class that needs to be added

to CAMPn,t[∅] in order to build an atomic register whatever the value of t ∈ {1, ...n − 1}. On

another hand, Θ is the weakest failure detector class that allows the construction of the URB-broadcast

communication abstraction in this type of system.

This means that, when looking from a failure detector class point of view, as the atomic register

abstraction requires a stronger failure detector class than the one required by URB-broadcast, it is a

problem strictly stronger than the URB-broadcast abstraction. This is depicted in Fig. 7.6 where an

arrow from X to Y means that Y can be built on top of X .
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Construction of Fig. 7.5

Σ

Atomic register URB abstraction

Θ

Theorem 29

Figure 7.6: From the failure detector class Σ to the URB abstraction (1 ≤ t < n)

7.5 Summary

This chapter introduced the failure detector class Σ, and showed that Σ allows an atomic register to

be implemented in an asynchronous message-passing system prone to any number of process crashes.

It also proved that, when one wants to build a register this context enriched with the computability

power provided by an oracle giving information on failures, Σ is the weakest such oracle required.

The chapter has also shown that, from an information on failures point of view, the construction of

an atomic read/write register is a stronger problem than the implementation of the URB-broadcast

communication abstraction.
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7.7 Exercise and Problem

1. Prove that the algorithm described in Fig. 7.2 is correct.

2. Construction of an atomic register in a hybrid communication model.

7.7. Exercise and Problem
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Hybrid communication model Let us consider the following hybrid distributed computing

model CAMPn,t[∅], where the n processes are partitioned into m, 1 ≤ m ≤ n, non-empty

subsets P [1], . . . , P [m] called clusters (i.e., ∪1≤x≤mP [x] = Π and ∀x, y : (x �= y)⇒ (P [x] ∩
P [y] = ∅)).
Inside each cluster x, 1 ≤ x ≤ m, the processes in P [x] share a common read/write memory

denoted MEMx . MEMx is composed of a set of at least one atomic SWMR (single-writer/multi-

reader) register per process pi belonging to P [x]. For notational convenience, we use an array

notation for every register of MEMx : if i ∈ P [x], MEM x[i] can only be written by pi and read

by all processes in P [x] (if i /∈ P [x], MEM x[i] is meaningless and pi cannot access MEM x).

Initially, each process knows the indexes of the processes that are in its partition. They do not

know the composition of the other clusters.

Two examples of partially shared memory are depicted in Fig. 7.7 where the communication

channels are not depicted. In both cases we have n = 7 and m = 3 but the partitions are

different.

p2 p3 p4 p5 p6 p7p1 p1 p2 p3 p4 p5 p6 p7

︸︷︷︸ ︸︷︷︸ P [3]P [2]P [1] ︸︷︷︸ P [2] P [3] ︸︷︷︸P [1]︸︷︷︸ ︸︷︷︸

MEM 1 MEM 3MEM 2 MEM 3MEM 2MEM 1

Figure 7.7: Two examples of the hybrid communication model

The Failure Detector Class MΣ This class of failure detectors consists of all the failure

detectors that satisfy the following properties where the quorum msigmai is the local output at

process pi and msigmaτi its value at time τ :

• Intersection. ∀ i, j ∈ Π, ∀ τ, τ ′ :
∃x, k, 	 : (x ∈ [1..m]) ∧ (k ∈ msigmaτi ) ∧ (	 ∈ msigmaτ

′

j ) ∧ (k, 	 ∈ P [x]).

• Liveness. ∃ τ : ∀ τ ′ ≥ τ : ∀ i ∈ Correct(F ) : msigmaτi ⊆ Correct(F ).

The liveness property is the same as the one of Σ. The intersection property is more general.

It states that any pair of quorums (whose values are taken at any times) is such that each one

contains a process and these two processes share the same common memory. This can be seen

as an “indirect” intersection: msigmai and msigmaj are not required to intersect “directly”

but must include processes that share the same memory.

What has to be done

• Implement an atomic SWMR read/write register in the previous hybrid communication

model, enriched with a failure detector of the class MΣ.

• Show that MΣ is the weakest failure detector class to build an atomic SWMR read/write

register in the previous hybrid communication model.

Solution in [234].



Chapter 8

A Broadcast Abstraction

Suited to the Family of

Read/Write Implementable Objects

Chapter 6 presented algorithms constructing atomic and sequentially consistent read/write registers

in the system model CAMPn,t[t < n/2] (which, from a t-resilience point of view, is the weakest

system model in which such read/write registers can be built). All these algorithms rely directly on the

unreliable macro-operation denoted broadcast(), i.e., on the send() and receive() operations, which

are “machine/network” low level operations.

This raises the question: Is it possible to implement read/write registers (and other objects) on top

of a communication abstraction that is abstract enough to allow for simple register implementations,

while not being over-powerful (i.e., its computability power is not stronger than the one of read/write

registers)? This chapter presents such a communication abstraction, called set-constrained delivery

broadcast (SCD-broadcast). From a distributed algorithmic point of view it shows how SCD-broadcast

can be used to implement atomic and sequentially consistent read/write registers (and other objects).

On a more theoretical side, it shows that SCD-broadcast captures exactly the computability power of

read/write registers.

The family of read/write implementable objects is the set of all the objects which can be im-

plemented on top of read/write registers. Consequently, they all require the assumption t < n/2
when considering asynchronous message-passing systems prone to process crash failures. Hence, as

SCD-broadcast is computationally equivalent to atomic read/write registers, it is particularly suited

to the direct implementation of read/write implementable objects. “Direct” implementation means

here “without stacking” a read/write-based implementation of an object on top of read/write registers

implemented in CAMPn,t[t < n/2].

Let us notice that, contrary to the (reliable) sequential computing model (where read/registers are

universal), the asynchronous message-passing failure-prone system model CAMPn,t[t < n/2] is not

universal: it is not strong enough to implements relevant computing objects. These objects require

stronger computability assumptions than t < n/2 (and consequently cannot be implemented on top of

read/write registers only). This will be addressed in Part IV of the book.

Keywords Asynchronous system, Atomicity, Communication abstraction, Communication pattern,

Computability equivalence, Conflict-free replicated data type, Counter object, Lattice agreement task,

Process crash failure, Read/write register, Sequential consistency, Snapshot object.
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8.1 The SCD-broadcast Communication Abstraction

8.1.1 Definition

Communication operations The set-constrained delivery broadcast abstraction (SCD-broadcast)

was introduced by D. Imbs, A. Mostéfaoui, M. Perrin, and M. Raynal (2017), who also developed all

the algorithms presented in this chapter. This abstraction provides the processes with two operations:

SCD broadcast() and SCD deliver(). The first operation takes a message to broadcast as an input

parameter. The second one returns a non-empty set of messages to the process that invoked it. Using

the classic terminology, when a process invokes the operation SCD broadcast(m), we say that it “scd-

broadcasts a message m”. Similarly, when it invokes SCD deliver() and obtains a set of messages

ms, we say that it “scd-delivers the set of messages ms”. By a slight abuse of language, when we

are interested in a message m, we say that a process “scd-delivers the message m” when actually it

scd-delivers the message set ms containing m.

SCD-broadcast: definition SCD-broadcast is defined by the following set of properties, where we

assume – without loss of generality – that all the messages that are scd-broadcast are different, and

that non-faulty processes never stop invoking SCD deliver():

• Validity. If a process scd-delivers a set containing a message m, then m was scd-broadcast by a

process.

• Integrity. A message is scd-delivered at most once by each process.

• MS-ordering. Let pi be a process that scd-delivers first a message set msi and later a message

set ms′i. For any pair of messages m ∈ msi and m′ ∈ ms′i, no process pj scd-delivers first a

message set ms′j containing m′ and later a message set msj containing m.

• Termination-1. If a non-faulty process scd-broadcasts a message m, it terminates its scd-

broadcast invocation and scd-delivers a message set containing m.

• Termination-2. If a process scd-delivers a message m, every non-faulty process scd-delivers a

message set containing m.

Termination-1 and termination-2 are classical liveness properties of reliable broadcast abstractions.

The other ones are safety properties. Validity and integrity are classical communication-related prop-

erties. The first states that there is neither message creation nor message corruption, while the second

states that there is no message duplication.

The MS-ordering property characterizes SCD-broadcast. It states that the contents of the sets of

messages scd-delivered at any two processes are not totally independent: the sequence of sets scd-

delivered at a process pi and the sequence of sets scd-delivered at a process pj must be mutually

consistent in the sense that a process pi cannot scd-deliver first m ∈ msi and later m′ ∈ ms′i �= msi,
while another process pj scd-delivers first m′ ∈ ms′j and later m ∈ msj �= ms′j . Let us nevertheless

observe that if pi scd-delivers first m ∈ msi and later m′ ∈ ms′i, pj may scd-deliver m and m′ in the

same set of messages.

Let us remark that, if the MS-ordering property is suppressed and messages are scd-delivered one

at a time, SCD-broadcast boils down to the URB-broadcast abstraction introduced in Section 2.1.2.

Example Let m1, m2, m3, m4, m5, m6, m7 and m8 be messages that have been scd-broadcast

by different processes. The following scd-deliveries of message sets by p1, p2 and p3 respect the

definition of SCD-broadcast:

• at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}.
• at p2: {m1}, {m3,m2}, {m6,m4,m5}, {m7}, {m8}.
• at p3: {m3,m1,m2}, {m6,m4,m5}, {m7}, {m8}.
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However, due to the scd-deliveries of the sets including m2 and m3, the following scd-deliveries by

p1 and p2 do not satisfy the MS-ordering property:

• at p1: {m1,m2}, {m3,m4,m5}, ...

• at p2: {m1,m3}, {m2}, ...

A containment property Let ms�i be the 	-th message set scd-delivered by pi. Hence, at some time,

pi scd-delivered the sequence of message sets ms1i , . . . ,msxi . Let MSx
i = ms1i ∪ · · · ∪ msxi . The

following Containment property follows directly from the MS-ordering and termination-2 properties:

∀ i, j, x, y : (MSx
i ⊆ MS

y
j ) ∨ (MS

y
j ⊆ MSx

i ).

Partial order on messages created by the message sets The MS-ordering and integrity properties

establish a partial order on the set of all the messages, defined as follows. Let "→i be the local message

delivery order at process pi according to: m "→i m
′ if pi scd-delivers the message set containing m

before the message set containing m′. As no message is scd-delivered twice, it is easy to see that

"→i is a partial order (locally know by pi). The reader can check that there is a total order (which

remains unknown to the processes) on the whole set of messages, which complies with the partial

order "→= ∪1≤i≤n "→i. This is where SCD-broadcast can be seen as a weakening of total order

broadcast.

8.1.2 Implementing SCD-broadcast in CAMPn,t[t < n/2]

This section presents an algorithm implementing SCD-broadcast in CAMPn,t[t < n/2]. To simplify

the presentation we assume an underlying FIFO-broadcast communication abstraction. This abstrac-

tion was defined in Section 2.2. It is URB-broadcast plus the following property:

• FIFO-order. For any pair of processes pi and pj , if pi fifo-delivers first a message m and later a

message m′, both from pj , no process fifo-delivers m′ before m.

As it can be implemented in CAMPn,t[t < n/2], the FIFO-broadcast assumption is related to the

abstraction level we consider to implement SCD-broadcast, and not to additional computability issues.

Local variables at a process pi Each process pi manages the following local variables:

• bufferi : a buffer (initially empty) storing quadruplets containing messages that have been fifo-

delivered but not yet scd-delivered in a message set.

• to deliveri : a set of quadruplets containing messages to be scd-delivered.

• sni: a local logical clock (initialized to 0), which increases by step 1 and measures the local

progress of pi. Each application message scd-broadcast by pi is identified by a pair 〈i, sn〉,
where sn is the current value of sni.

• an clocki[1..n]: array of logical dates; clocki[j] is the greatest date x such that the application

message m identified 〈x, j〉 has been scd-delivered by pi.

Content of quadruplet The fields of a quadruplet qdplt = 〈qdplt.msg, qdplt.sd, qdplt.sn, qdplt.cl〉
have the following meaning:

• qdplt.msg contains an application message m;

• qdplt.sd contains the id of the sender of this application message;

• qdplt.sn contains the local date (sequence number) associated with m by its sender. Hence,

〈qdplt.sd, qdplt.sn〉 is the identity of m.
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• qdplt.cl is an array of size n, initialized to [+∞, . . . ,+∞]. Each of its entries qdplt.cl[x] will

contain the sequence number associated with m by process px when it broadcast the message

FORWARD(msg.m,−,−,−,−). This last field is crucial in the scd-delivery of a message set

containing m by the process pi.

Protocol message The algorithm is described in Fig. 8.1. It uses a single type of protocol message

denoted FORWARD(). Such a message is made up of five fields: an associated application message m,

and two pairs, each made up of a sequence number and a process identity. The first pair 〈sd, sn〉 is the

identity of the application message, while the second pair 〈f, snf 〉 is the local progress (as captured

by snf ) of the forwarder process pf when it forwarded this protocol message to the other processes by

invoking fifo broadcast FORWARD(m, sd, snsd , pf , snf ) (line 11).

Operation SCD broadcast() When a process pi invokes the operation SCD broadcast(m), where

m is an application message, it sends the protocol message FORWARD(m, i, sni, i, sni) to itself (this

simplifies the writing of the algorithm), and waits until it has no more messages from itself pending in

buffer i, which means it has scd-delivered a set containing m.

Uniform fifo-broadcast of a message FORWARD() When a process pi fifo-delivers a protocol mes-

sage FORWARD(m, sd, snsd , f, snf ), it first invokes the internal operation forward(m, sd, snsd , f, snf ).
In addition to other statements, the first fifo-delivery of such a message by a process pi entails its par-

ticipation in the uniform reliable fifo-broadcast of this message (lines 5 and 11). In addition to the

invocation of forward(), the fifo-delivery of FORWARD() invokes try deliver(), which strives to scd-

deliver a message set (line 4).

operation SCD broadcast(m) is

(1) send FORWARD(m, sni, i, sni, i) to itself;

(2) wait(� qdplt ∈ bufferi : qdplt.sd = i).

when the message FORWARD(m, sd, snsd , f, snf ) is fifo-delivered do % from pf
(3) forward(m, sd, snsd , f, snf );
(4) try deliver().

procedure forward(m, sd, snsd , f, snf ) is

(5) if (snsd > clocki[sd])
(6) then if (∃ qdplt ∈ bufferi : qdplt.sd = sd ∧ qdplt.sn = snsd)
(7) then qdplt.cl[f ] ← snf

(8) else threshold[1..n] ← [∞, . . . ,∞]; threshold[f ] ← snf ;

(9) let qdplt ← 〈m, sd, snsd , threshold[1..n]〉;
(10) bufferi ← bufferi ∪ {qdplt};

(11) fifo broadcast FORWARD(m, sd, snsd , i, sni);
(12) sni ← sni + 1
(13) end if

(14) end if.

procedure try deliver() is

(15) let to deliveri ← {qdplt ∈ bufferi : |{f : qdplt.cl[f ] < ∞}| > n
2
};

(16) while (∃ qdplt ∈ to deliveri , ∃ qdplt′ ∈ bufferi \ to deliveri : |{f : qdplt.cl[f ] < qdplt′.cl[f ]}| ≤ n
2

) do

to deliveri ← to deliveri \ {qdplt} end while;

(17) if (to deliveri �= ∅)
(18) then for each qdplt ∈ to deliveri do clocki[qdplt.sd] ← max(clocki[qdplt.sd], qdplt.sn) end for;

(19) bufferi ← bufferi \ to deliveri ;

(20) ms ← {qdplt.msg : qdplt ∈ to deliveri}; SCD deliver(ms)
(21) end if.

Figure 8.1: An implementation of SCD-broadcast in CAMPn,t[t < n/2] (code for pi)
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Core of the algorithm Expressed with the relations "→i, 1 ≤ i ≤ n, introduced in Section 8.1.1, the

main issue of the algorithm is to ensure that, if there are two message m and m′ and a process pi such

that m "→i m
′, then there is no pj such that m′ "→j m.

To this end, a process pi is allowed to scd-deliver a message m before a message m′ only if it knows

that a majority of processes pj have fifo-delivered a message FORWARD(m,−,−,−) before m′; pi
knows it (i) because it fifo-delivered from pj a message FORWARD(m,−,−,−,−) but not yet a mes-

sage FORWARD(m′,−,−,−,−), or (ii) because it fifo-delivered both FORWARD(m,−,−,−, snm)
and FORWARD(m′,−,−,−, snm′) from pj and the sending date smn is smaller than the sending date

snm′. The MS-ordering property follows then from the impossibility that a majority of processes

“sees m before m′”, while another majority “sees m′ before m”.

Internal operation forward() This operation can be seen as an enrichment (with the fields f and snf )

of the reliable fifo-broadcast implemented by the protocol message FORWARD(m, sd, snsd ,−,−).
Considering such a message FORWARD(m, sd, snsd , f, snf ), m was scd-broadcast by psd at its local

time snsd , and relayed by the forwarding process pf at its local time snf . If snsd ≤ clocki[sd], pi has

already scd-delivered a message set containing m (see lines 18 and 20). If snsd > clocki[sd], there

are two cases defined by the predicate of line 6:

• There is no quadruplet qdplt in bufferi is such that qdplt.msg = m. In this case, pi creates a

quadruplet associated with m, and adds it to bufferi (lines 8-10). Then, pi participates in the

fifo-broadcast of m identified by 〈sd, snsd 〉 (line 11) and records its local progress by increasing

sni (line 12).

• There is a quadruplet qdplt in bufferi associated with m, i.e., qdplt = 〈m,−,−,−〉 ∈ bufferi .

In this case, pi assigns snf to qdplt.cl[f ] (line 7), thereby indicating that m was known and

forwarded by pf at its local time snf .

Internal operation try deliver() When a process pi executes try deliver(), it first computes the set

to deliveri of the quadruplets qdplt containing application messages m which have been seen by a

majority of processes (line 15). From pi’s point of view, a message has been seen by a process pf if

qdplt.cl[f ] has been set to a finite value (line 7).

As indicated previously, if a majority of processes received first a message FORWARD carrying m′

and later another message FORWARD carrying m, it might be that some process pj scd-delivered a set

containing m′ before scd-delivering a set containing m. Therefore, pi must avoid scd-delivering a set

containing m before scd-delivering a set containing m′. This is done at line 16, where pi withdraws

the quadruplet qdplt corresponding to m if it has not obtained enough information to deliver m′ (i.e.

the corresponding qdplt′ is not in to deliveri ), or it has no evidence that the bad situation cannot

happen, i.e. no majority of processes saw the message corresponding to qdplt before the message

corresponding to qdplt′ (this is captured by the predicate |{f : qdplt.cl[f ] < qdplt′.cl[f ]}| ≤ n
2 ).

If to deliveri is not empty after it has been purged (lines 16-17), pi computes a message set to scd-

deliver. This set ms contains all the application messages in the quadruplets of to deliveri (line 20).

These quadruplets are withdrawn from bufferi (line 18). Moreover, before this scd-delivery, pi needs

to updates clocki[x] for all the entries such that x = qdplt.sd where qdplt ∈ to deliveri (line 18).

This update is needed to ensure that the future uses of the predicate of line 17 are correct.

8.1.3 Cost and Proof of the Algorithm

Lemma 12. If a process scd-delivers a message set containing m, a process scd-broadcast m.

Proof If a process pi scd-delivers a set containing a message m, it previously added into bufferi a

quadruplet qdplt such that qdplt.msg = m (line 10), for which it follows that it fifo-delivered a proto-

col message FORWARD(m,−,−,−,−). Due to the fifo-validity property, it follows that a process gen-
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erated the fifo-broadcast of this message, which originated from an invocation of SCD broadcast(m).
�Lemma 12

Lemma 13. No process scd-delivers the same message twice.

Proof Let us observe that, due to the wait statement at line 2, and the increase of sni at line 15 between

two successive scd-broadcasts by a process pi, no two application messages can have the same identity

〈i, sn〉. It follows that there is a single quadruplet 〈m, i, sn,−〉 that can be added to bufferi , and this

is done only once (line 10). Finally, let us observe that this quadruplet is suppressed from bufferi just

before m is scd-delivered (line 19-20), which concludes the proof of the lemma. �Lemma 13

Lemma 14. If pi fifo-broadcasts FORWARD(m, sd, snsd , i, sni) (i.e., executes line 11), each non-faulty

process pj executes fifo broadcast FORWARD(m, sd, snsd , j, snj) once.

Proof Let pj be any correct process. First, we prove that the message FORWARD(m, sd, snsd , j, snj)
is broadcast by pj . As pi is non-faulty, pj will eventually receive the message sent by pi. At that time,

if snsd > clockj [sd], after the condition on line 6 and whatever its result, buffer i contains a quadru-

plet qdplt with qdplt.sd = sd and qdplt.sn = snsd . That qdplt was inserted at line 10 (possibly after

the reception of a different message), just before pj sent a message FORWARD(m, sd, snsd , j, snj)
at line 11. Otherwise, clockj [sd] was incremented on line 18, when validating some qdplt′ added

to bufferj after pj received a (first) message FORWARD(qdplt′.msg, sd, snsd , f, clockf [sd]) from

pf . Because the messages FORWARD() are fifo-broadcast (hence they are delivered in their send-

ing order), psd sent the message FORWARD(qdplt.msg, sd, snsd , sd, snsd ) before sending the message

FORWARD(qdplt′.msg, sd, clockj [sd], sd, clockj [sd]), and all other processes only forward messages,

pj received FORWARD(qdplt.msg, sd, snsd ,−,−) from pf before receiving from this process the mes-

sage FORWARD(qdplt′.msg, sd, clockj [sd],−,−). At that time, snsd > clockj [sd], so the previous

case applies.

After pj broadcasts its message FORWARD(m, sd, snsd , j, snj) on line 11, there is a qdplt ∈
buffer j with ts(qdplt) = 〈sd, snsd 〉, until it is removed on line 16 and clockj [sd] ≥ snsd . There-

fore, one of the conditions at lines 5 and 6 will stay false for the timestamp ts(qdplt) and pj will never

execute line 11 with the same timestamp 〈sd, snsd 〉 later. �Lemma 14

Lemma 15. Let pi be a process that scd-delivers a set msi containing a message m and later scd-

delivers a set ms′i containing a message m′. No process pj scd-delivers first a set ms′j containing m′

and later a message set msj containing m.

Proof Let us suppose there are two messages m and m′ and two processes pi and pj such that pi scd-

delivers a set msi containing m and later scd-delivers a set ms′i containing m′, and pj scd-delivers a

set ms′j containing m′ and later scd-delivers a set msj containing m.

When m is delivered by pi, there is an element qdplt ∈ buffer i such that qdplt.msg = m, and

because of line 15, pi has received a message FORWARD(m,−,−,−,−) from more than n
2 processes.

• Case 1. There is no element qdplt′ ∈ buffer i such that qdplt′.msg = m′, since m′ has

not yet been delivered by pi, pi has not received a message FORWARD(m′,−,−,−,−) from

any process (lines 10 and 19). Hence, because the communication channels are FIFO, more

than n
2 processes have sent a message FORWARD(m,−,−,−,−) before sending a message

FORWARD(m′,−,−,−,−).
• Case 2. qdplt′ /∈ to deliveri after line 16. As the communication channels are FIFO, more

than half of the processes have sent a message FORWARD(m,−,−,−,−) before a message

FORWARD(m′,−,−,−,−).
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Using the same reasoning, it follows that when m′ is delivered by pj , a majority of processes

have sent a message FORWARD(m′,−,−,−,−) before sending a message FORWARD(m,−,−,−,−).
There is a process pk in the intersection of the two majorities, that (a) sent FORWARD(m,−,−,−,−)
before sending FORWARD(m′,−,−,−,−) and (b) sent FORWARD(m′,−,−,−,−) before sending a

message FORWARD(m,−,−,−,−). However, it follows from Lemma 14 that pk can send a single

message FORWARD(m′,−,−,−,−) and a single message FORWARD(m,−,−,−,−), which leads to

a contradiction. �Lemma 15

pi

pf

SCD broadcast(mk)

FORWARD(mk, f, snf (k), f, snf (k)) · · ·

• • •

snf (k1) snf (k2)

�
i

�
i�

i

FORWARD(m, sd, snsd ,−,−)

FORWARD(m, sd, snsd ,−,−)

FORWARD(ml+1, sdl+1, snsdl+1 ,−,−)

Figure 8.2: Message pattern introduced in Lemma 16

Lemma 16. If a non-faulty process executes fifo broadcast FORWARD(m, sd, snsd , i, sni) (line 11),

it scd-delivers a message set containing m.

Proof Let pi be a non-faulty process. For any pair of messages qdplt and qdplt′ ever inserted in

bufferi , let ts = ts(qdplt) and ts′ = ts(qdplt′). Let →i be the dependency relation defined as

follows: ts →i ts
′ def
= |{j : qdplt′.cl[j] < qdplt.cl[j]}| ≤ n

2 (i.e. the dependency does not exist if pi
knows that a majority of processes have seen the first update – due to qdplt′ – before the second – due

to qdplt). Let→�
i denote the transitive closure of→i.

Let us suppose (by contradiction) that the timestamp 〈sd, snsd 〉 associated with the message m
(carried by the protocol message FORWARD(m, sd, snsd , i, sni) fifo-broadcast by pi), has an infinity

of predecessors according to→�
i . As the number of processes is finite, an infinity of these predecessors

have been generated by the same process, let us say pf . Let 〈f, snf (k)〉k∈N be the infinite sequence

of the timestamps associated with the invocations of the SCD broadcast() issued by pf . The situation

is depicted in Figure 8.2.

As pi is non-faulty, pf eventually receives a message FORWARD(m, sd, snsd , i, sni), which means

pf broadcast an infinity of messages FORWARD(m(k), f, snf (k), f, snf (k)) after having broadcast

the message FORWARD(m, sd, snsd , f, snf ). Let 〈f, snf (k1)〉 and 〈f, snf (k2)〉 be the timestamps

associated with the next two messages sent by pf , with snf (k1) < snf (k2). By hypothesis, we

have 〈f, snf (k2)〉 →�
i 〈sd, snsd 〉. Moreover, all processes received for the first time the message

FORWARD(m, sd, snsd ,−,−) before receiving their first message FORWARD(m(k), f, snf (k),−,−).
So 〈sd, snsd 〉 →�

i 〈f, snf (k1)〉. Let us express the path 〈f, snf (k2)〉 →�
i 〈f, snf (k1)〉:

〈f, snf (k2)〉 = 〈sd′(1), sn′(1)〉 →i 〈sd′(2), sn′(2)〉 →i · · · →i 〈sd(m), sn′(m)〉 = 〈f, snf (k1)〉.
In the time interval starting when pf sent the message FORWARD(m(k1), f, snf (k1), f, snf (k1))

and finishing when it sent the message FORWARD(m(k2), f, snf (k2), f, snf (k2)), the waiting con-

dition of line 2 became true, so pf scd-delivered a set containing the message m(k1), and accord-

ing to Lemma 12, no set containing the message m(k2). Therefore, there is an index l such that

process pf delivered sets containing messages associated with a timestamp 〈sd′(l), sn′(l)〉 for all



138 8.1. The SCD-broadcast Communication Abstraction

l′ > l but not for l′ = l. Because the channels are FIFO and thanks to lines 15 and 16, it means

that a majority of processes have sent a message FORWARD(−, sd′(l + 1), sn′(l + 1),−,−) be-

fore a message FORWARD(−, sd′(l), sn′(l),−,−), which contradicts the fact that 〈sd′(l), sn′(l)〉 →i

〈sd′(l + 1), sn′(l + 1)〉.
Let us suppose a non-faulty process pi has fifo-broadcast a message FORWARD(m, sd, snsd , i, sni)

(line 10). It inserted a quadruplet qdplt with timestamp 〈sd, snsd 〉 on line 9 and by what precedes,

〈sd, snsd 〉 has a finite number of predecessors 〈sd1, sn1〉, . . . , 〈sdl, snl〉 according to →�
i . As pi is

non-faulty, according to Lemma 14, it eventually receives a message FORWARD(−, sdk, snk,−,−)
for all 1 ≤ k ≤ l and from all non-faulty processes, which are in the majority.

Let pred be the set of all quadruplets qdplt′ such that 〈qdplt′.sd, qdplt′.sn〉 →�
i 〈sd, snsd 〉. Let

us consider the moment when pi receives the last message FORWARD(−, sdk, snk, f, snf ) sent by a

correct process pf . For all qdplt′ ∈ pred , either qdplt′.msg has already been delivered or qdplt′ is

inserted in to deliveri on line 15. Moreover, no qdplt′ ∈ pred will be removed from to deliveri , on

line 16, as the removal condition is the same as the definition of →i. In particular for qdplt′ = qdplt,
either m has already been scd-delivered or m is present in to deliveri on line 17 and will be scd-

delivered on line 20. �Lemma 16

Lemma 17. If a non-faulty process scd-broadcasts a message m, it scd-delivers a message set con-

taining m.

Proof If a non-faulty process scd-broadcasts a message m, it previously fifo-broadcast the message

FORWARD(m, sd, snsd , i, sni) at line 11. Then, due to Lemma 16, it scd-delivers a message set con-

taining m. �Lemma 17

Lemma 18. If a process scd-delivers a message m, every non-faulty process scd-delivers a message

set containing m.

Proof Let pi be a process that scd-delivers a message m. At line 20, there is a quadruplet qdplt ∈
TO deliveri such that qdplt.msg = m. At line 15, qdplt ∈ buffer i, and qdplt was inserted in buffer i
at line 10, just before pi fifo-broadcast the message FORWARD(m, sd, snsd , i, sni). By Lemma 14,

every non-faulty process pj sends a message FORWARD(m, sd, snsd , j, snj), so by Lemma 16, pj
scd-delivers a message set containing m. �Lemma 18

Theorem 31. Algorithm 8.1 implements the SCD-broadcast communication abstraction in the system

model CAMPn,t[t < n/2]. Moreover, each invocation of the operation SCD broadcast() requires

O(n2) protocol messages. If there is an upper bound Δ on message transfer delays (and local com-

putation times are equal to zero), each SCD-broadcast costs at most 2Δ time units.

Proof The proof follows from Lemma 12 (validity), Lemma 13 (integrity), Lemma 15 (MS-ordering),

Lemma 17 (termination-1), and Lemma 18 (termination-2).

The O(n2) message complexity comes from the fact that, due to the predicates of line 5 and 6,

each application message m is forwarded at most once by each process (line 11). The 2Δ follows

from the same argument. �Theorem 31

The next corollary follows from (i) Theorem 31, (ii) Corollary 4 (which shows that SCD-broadcast

can be implemented from read/write registers, Section 8.5), and (iii) the fact that the constraint (t <
n/2) is an upper bound on the number of faulty processes to build atomic read/write registers (Theo-

rem 18).

Corollary 3. Algorithm 8.1 is resiliency optimal.
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8.1.4 An SCD-broadcast-based Communication Pattern

All the algorithms implementing concurrent objects and tasks, which are presented in the next sections,

are based on the same communication pattern, denoted Pattern 8.3. This pattern involves each process,

either as a client (when it invokes an operation) or as a server (when it scd-delivers a message set).

When a process pi invokes an operation op(), it executes 0, 1, or 2 times the lines 1-3. This oc-

currence number depends on the consistency condition which is implemented (atomicity or sequential

consistency).

operation op() is

According to the object that is implemented, and its consistency condition

execute 0, 1, or 2 times the lines 1-3 where the message type

TYPE is either a pure synchronization message SYNC or an object-dependent message MSG

(1) donei ← false;

(2) SCD broadcast TYPE(a, b, ..., i);
a, b, ... are data, and i is the id of the invoking process; a message SYNC carries only the id of its sender;

(3) wait(donei);
(4) According to the states of the local variables, compute a result r; return(r).

when the message set { MSG(..., j1), . . . , MSG(..., jx), SYNC(jx+1), . . . , SYNC(jy) } is scd-delivered do

(5) for each message m = MSG(..., j) do statements specific to the object that is implemented end for;

(6) if ∃� : j� = i then donei ← true end if.

Figure 8.3: SCD-broadcast-based communication pattern (code for pi)

All the messages sent by a process pi are used to synchronize its local data representation of the

object. This synchronization is realized by the Boolean donei and the parameter i carried by every

message (lines 1, 3, and 6): pi is blocked until the message it just scd-broadcast is scd-delivered. The

values carried by a message MSG are related to the object that is implemented, and may require local

computation.

The combination of this communication pattern and the properties of SCD-broadcast provides us

with a single simple framework that allows for correct object implementations. This provides users

with a simple distributed software engineering methodology.

The next three sections describe algorithms implementing a snapshot object, a counter object, and

the lattice agreement task, respectively. All these algorithms consider the system model CAMPn,t[∅]
enriched with SCD-broadcast (denoted CAMPn,t[SCD-broadcast]), and use the pattern depicted in

Fig. 8.3.

8.2 From SCD-broadcast to an MWMR Register

Let CAMPn,t[SCD-broadcast] denote the system model CAMPn,t[∅] enriched with the SCD-broadcast

communication abstraction.

8.2.1 Building an MWMR Atomic Register in CAMPn,t[SCD-broadcast]

Let REG denote the MWMR atomic register that we want to build. The algorithm building REG in

CAMPn,t[SCD-broadcast] is described in Fig. 8.4.

Local representation of REG at a process pi At each process pi, REG is represented by three

local variables.

• donei: a synchronization Boolean variable (introduced in the communication pattern of Fig. 8.3).

• reg i: the current value of the register REG , as known by pi.
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• tsai: a timestamp associated with the value stored in reg i.

Timestamps have been introduced in Section 6.4.1. A timestamp is a pair made of a local

clock value and a process identity. Its initial value is 〈0,−〉. The fields of a timestamp local

variable tsai are denoted 〈tsai.date, tsai.proc〉. Let us remember that the set of timestamps

are totally ordered according to the classical lexicographical total order. Let ts1 = 〈h1, i1〉 and

ts2 = 〈h2, i2〉. We have ts1 < ts2
def
= (h1 < h2) ∨ ((h1 = h2) ∧ (i1 < i2)).

Operation REG .read() This operation is implemented by one instance of the communication pat-

tern introduced in Section 8.1.4 (line 1), followed by the return of the local value of reg i (line 2). The

message SYNC(i), which is scd-broadcast, is a pure synchronization message whose aim is to entail

the refreshment of the value of reg i (lines 6-9), which occurs before the setting of donei to true

(line 10).

operation read() is

(1) donei ← false; SCD broadcast SYNC(i); wait(donei);
(2) return(reg i).

operation write(v) is

(3) donei ← false; SCD broadcast SYNC(i); wait(donei);
(4) donei ← false; SCD broadcast WRITE(r, v, 〈tsai.date+ 1, i〉); wait(donei).

when the message set { WRITE(vj1 , 〈datej1 , j1〉), . . . , WRITE(vjx , 〈datejx , jx〉),
SYNC(jx+1), . . . , SYNC(jy) } is scd-delivered do

(5) let 〈date, writer〉 be the greatest timestamp in the messages WRITE(−,−);
(6) if (tsai < 〈date, writer〉)
(7) then let v the value in WRITE(−, 〈date, writer〉);
(8) regi ← v; tsai ← 〈date, writer〉
(9) end if;

(10) if ∃� : j� = i then donei ← true end if.

Figure 8.4: Construction of an MWMR atomic register in CAMPn,t[SCD-broadcast] (code for pi)

Operation REG .write() When a process pi wants to assign a value v to REG , it invokes the op-

eration REG .write(v). This operation is made up of two instances of the communication pattern.

The first one (line 3) is a re-synchronization, as in the snapshot operation, whose side effect is here

to provide pi with an up-to-date value of tsai.date. In the second instance of the communication

pattern, pi associates the timestamp 〈tsai.date+1, i〉 with v, and scd-broadcasts the data/control mes-

sage WRITE(v, 〈tsai.date + 1, i〉). In addition to informing the other processes on its write of REG ,

this message WRITE() acts as a synchronization message, exactly as a message SYNC(i). When this

synchronization terminates (i.e., when the Boolean donei is set to true), pi returns from the write

operation.

Scd-delivery of a set of messages When pi scd-delivers a message set, namely,

{ WRITE(vj1 , 〈datej1 , j1〉), . . . , WRITE(vjx , 〈datejx , jx〉), SYNC(jx+1), . . . , SYNC(jy) },
it first looks if there are messages WRITE(). If it is the case, pi computes the maximal timestamp

carried by these messages (line 5), and updates accordingly its local representation of REG (lines 6-

9). Finally, if pi is the sender of one of these messages (WRITE() or SYNC()), donei is set to true,

which terminates pi’s read or write synchronization (line 10).
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8.2.2 Cost and Proof of Correctness

Theorem 32. Let Δ be the maximal transfer delay. An invocation of REG .read() costs O(n2) proto-

col messages and 2Δ time units. An invocation of REG .write() costs O(n2) protocol messages and

4Δ time units.

Proof The theorem follows from the fact that an invocation of REG .read() uses one SCD-broadcast,

while an invocation of REG .write() uses two, and the fact that an instance of SCD-broadcast costs

O(n2) messages and 2Δ time units. �Theorem 32

Lemma 19. If a non-faulty process invokes an operation, it returns from its invocation.

Proof Let pi be a non-faulty process that invokes a read or write operation. By the termination-1

property of SCD-broadcast, it eventually receives a message set containing the message SYNC() or

WRITE() it sends at line 1, 3 or 4. As all the statements associated with the scd-delivery of a message

set (lines 5-10) terminate, it follows that the synchronization Boolean donei is eventually set to true,

which allows pi to return from its invocation. �Lemma 19

Timestamp of a write operation and of a value Let the timestamp of a write operation, denoted

ts(write(v)), invoked by pi be the pair 〈tsai.date+1, i〉, defined at line 4 of this operation invocation.

If v is the value that is written, it inherits from from the timestamp of its write operation. Conse-

quently we have ts(v) = ts(write(v)) = 〈tsai[r].date+ 1, i〉.

Order on operations Given an execution Ĥ , let op1 and op2 be any two of its operations. The

relation →H on operations was defined in Section 5.2.2 as follows: op1 →H op2
def
= resp(op1) <H

inv(op2), i.e., op1 terminated before op2 started. It is easy to see that →H is a real-time-compliant

partial order on all the set of all operations.

Lemma 20. No two write operations write1 and write2 have the same timestamp. Moreover, we have

(write1→H write2)⇒ (ts(write1) < ts(write2)).

Proof Let 〈date1, i〉 and 〈date2, j〉 be the timestamp of write1 and write2, respectively. If i �= j,

write1 and write2 have been produced by different processes, and their timestamps differ at least in

their process identity.

So, let us consider that the operations have been issued by the same process pi, with write1 first.

As write1 precedes write2, pi invoked first SCD broadcast WRITE(−, 〈date1, i〉) (line 4), and later

WRITE(−, 〈date2, i〉). It follows that these SCD-broadcast invocations are separated by a local reset

at the value false of the Boolean donei at line 4. Moreover, before the reset of donei due to the

scd-delivery of the message {. . . ,WRITE(−, 〈date1, i〉), . . .}, we have tsai.datei ≥ date1 (lines 6-9).

Hence, we have tsai.date ≥ date1 before the resetting at value true of donei (line 10). Then, due to

the “+1” at line 4, WRITE(r, w, 〈date2, i〉) is such that date2 > date1, which concludes the proof of

the first part of the lemma.

Let us now consider that write1 →H write2. If write1 and write2 have been produced by the

same process we have date1 < date2 from the previous reasoning. So let us assume that they have

been produced by different processes pi and pj . Before terminating write1 (when the Boolean donei
is set true at line 10), pi received a message set ms1i containing the message WRITE(−, 〈date1, i〉).
When pj executes write2, it first invokes SCD broadcast SYNC(j) at line 3. Because write1 terminated

before write2 started, this message SYNC(j) cannot belong to ms1i.
Due to the integrity and termination-2 properties of SCD-broadcast, pj eventually scd-delivers

exactly one message set ms1j containing WRITE(−, 〈date1, i〉). Moreover, it also scd-delivers ex-

actly one message set ms2j containing its own message SYNC(j). On the other side, pi scd-delivers
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exactly one message set ms2i containing the message SYNC(j). It follows from the MS-ordering

property that, if ms2j �= ms1j , pj cannot scd-deliver ms2j before ms1j . Then, whatever the case

(ms1j = ms2j or ms1j is scd-delivered at pj before ms2j), it follows from the fact that the message

WRITE(−, 〈date1, i〉) is processed by pj (lines 5-9) before the message SYNC(j) (line 10), that we

have tsaj ≥ 〈date1, i〉 when donej is set to true. It then follows from line 4 that date2 > date1,

which concludes the proof of the lemma. �Lemma 20

Timestamp of a read operation The timestamp of a read operation, denoted ts(read), is the times-

tamp of the value it returns. Hence, if read() returns v, we have ts(read) = ts(v) = ts(write(v)).

Lemma 21. The read/write register REG by the algorithm described in Fig. 8.4 is linearizable.

Proof The proof follows the same structure as the proofs in Chapter 6, namely, it consists in building

a total order Ŝ on the operations, which respects their real-time occurrence order and satisfies the

sequential specification of a read/write register. To facilitate the reasoning, we consider directly the

abstraction level defined by operations, instead of the basic event level.

Let us initialize Ŝ with the write operations ordered with respect their timestamps. It follows from

Lemma 20 that this total order is well-defined and complies with real-time. Let us now insert each

read operation in this total order as follows.

Let read1 be a read operation whose timestamp is 〈date1, i〉 (this is the timestamp of the value

returned by the read operation). This operation is inserted just after the write operation write1 that has

the same timestamp (this write wrote the value read by read1). Let us observe that, as read1 obtained

the value timestamped 〈date1, i〉, it did not terminate before write1 started. It follows that the insertion

of read1 into the total order cannot violate the real-time order between write1 and read1.

Let us consider (if any) the operation write2 that follows write1 in the write total order. If

read1 →H write2, the insertion of read1 in the total order is real-time compliant. If ¬(read1 →H

write2), due to the timestamp obtained by read1, we cannot have write2→H read1. It follows that in

this case also, the insertion of read1 in the total order is real-time compliant.

Finally, let us consider two read operations read1 and read2 which have the same timestamp

〈date, i〉 (hence, they read from the same write operation, say write1). Both are inserted after write1
in their invocation order as defined by the events inv(read1) and inv(read2). Hence, the total order

Ŝ we obtain is compliant with real-time (as defined by the relation <H on the events produced by Ĥ),

and satisfies the register sequential specification (each read obtains the last written value that precedes

it). Hence, the register built by the algorithm is linearizable. �Lemma 21

Theorem 33. The algorithm described in Fig. 8.4 builds an MWMR atomic read/write register in the

system model CAMPn,t[SCD-broadcast].

Proof The proof follows from Lemma 19, Lemma 20, and Lemma 21. �Theorem 33

8.2.3 From Atomicity to Sequential Consistency

From atomicity to sequential consistency The previous algorithm can be easily converted into an

algorithm implementing a sequentially consistent read/write register. This algorithm, presented in

Fig. 8.5, is the same algorithm as the one in Fig. 8.4, without the lines 1 and 3. Actually, these are

the lines implementing the synchronization that forces the read and write operations to appear in a

real-time compliant order. Hence, they precisely capture where atomicity and sequential consistency

differ. The proof of this algorithm is obtained from a simplified version of the proofs of Lemma 19,

Lemma 20, and Lemma 21.
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operation read() is

(2) return(reg i).

operation write(v) is

(4) donei ← false; SCD broadcast WRITE(r, v, 〈tsai.date+ 1, i〉); wait(donei).

when the message set { WRITE(vj1 , 〈datej1 , j1〉), . . . , WRITE(vjx , 〈datejx , jx〉),
SYNC(jx+1), . . . , SYNC(jy) } is scd-delivered do

(5) let 〈date, writer〉 be the greatest timestamp in the messages WRITE(−,−);
(6) if (tsai < 〈date, writer〉)
(7) then let v the value in WRITE(−, 〈date, writer〉);
(8) regi ← v; tsai ← 〈date, writer〉
(9) end if;

(10) if ∃� : j� = i then donei ← true end if.

Figure 8.5: Construction of an MWMR sequentially consistent register in CAMPn,t[SCD-broadcast]
(code for pi)

Cost of the algorithm As it does not involve communication, the read operation is local: its cost is

zero; hence, it is a fast operation. The cost of a write operation is a single SCD-broadcast, i.e., O(n2)
messages and 2Δ time units.

8.2.4 From MWMR Registers to an Atomic Snapshot Object

Atomic MWMR snapshot object An MWMR snapshot object is an array REG [1..m] made up of

m atomic read/write registers. It provides the processes with two operations, denoted write(r,−) and

snapshot(). The invocation of write(r, v), where 1 ≤ r ≤ m, by a process pi atomically assigns

v to REG [r]. The invocation of snapshot() returns the value of REG [1..m] as if it was executed

instantaneously. Hence, in any execution of an atomic snapshot object, its operations write() and

snapshot() are totally ordered and this order complies with real-time.

The underlying atomic registers can be Single-Reader (SR) or Multi-Reader (MR), and Single-

Writer (SR) or Multi-Writer (MW). We consider here MWMR registers. If the registers are SWMR the

snapshot is called SWMR snapshot. We have then m = n, and there is one entry per process: only pi
can write REG [i]. This means that write(−) invoked by pi is always write(i,−). An implementation

of an atomic SWMR snapshot object can be easily obtained from an algorithm implementing an atomic

MWMR snapshot object.

Atomicity line

pi

pj

pk

[v11, v
1
2] [v21, v

1
2] [v21, v

2
2]

REG .snapshot()→ [v21, v
2
2]REG .write(1, v11)

REG .write(2, v12) REG .write(2, v22)

REG .snapshot()→ [a, b]

REG .write(1, v21)

Figure 8.6: Example of a run of an MWMR atomic snapshot object

Example of an execution of a snapshot object Fig. 8.6 represents a run of an MWMR snapshot ob-

ject with two entries (m = 2). The four solid red bullets on the atomicity line indicate the linearization
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points of the four write operations. The (blue) dashed circle on the right represents the linearization

point of the operation REG .snapshot() invoked by pi, which can only return the array [v21, v
2
2] (made

up of the last values written in REG [1] and REG [2], respectively). Whereas due to the concurrency

context in which it occurs, the invocation of REG .snapshot() by pk can return any of the three array

values indicated by a blue circle. But, this invocation cannot return an array value such as [v11, v
2
2]. This

is due to the fact that, if REG [2] = v22 appears in the returned array, due to the atomicity of the write

operations, REG .write(1, v11) was overwritten by REG .write(1, v21) when REG .write(2, v22) started.

From SCD-broadcast to MWMR snapshot The algorithm described in Fig. 8.7 builds an atomic

MWMR snapshot object. It is nearly the same as the algorithm building an MWMR atomic register

(Fig. 8.4). The lines with the same number have the same meaning in both algorithms. The lines that

have been modified are prefixed by “M”, while the new lines are prefixed by “N”.

operation snapshot() is

(1) donei ← false; SCD broadcast SYNC(i); wait(donei);
(M2) return(regi[1..m]).

operation write(r, v) is

(3) donei ← false; SCD broadcast SYNC(i); wait(donei);
(M4) donei ← false; SCD broadcast WRITE(r, v, 〈tsai[r].date+ 1, i〉); wait(donei).

when the message set { WRITE(rj1 , vj1 , 〈datej1 , j1〉), . . . , WRITE(rjx , vjx , 〈datejx , jx〉),
SYNC(jx+1), . . . , SYNC(jy) } is scd-delivered do

(N1) for each r such that WRITE(r,−,−) ∈ scd-delivered message set do

(M5) let 〈date, writer〉 be the greatest timestamp in the messages WRITE(r,−,−);
(M6) if (tsai[r] < 〈date, writer〉)
(M7) then let v the value in WRITE(r,−, 〈date, writer〉);
(M8) regi[r] ← v; tsai[r] ← 〈date, writer〉
(9) end if;

(N2) end for;

(10) if ∃� : j� = i then donei ← true end if.

Figure 8.7: Construction of an MWMR atomic snapshot object in CAMPn,t[SCD-broadcast]

At each process pi, the array reg i[1..m] constitutes the local representation of the snapshot object

REG [1..m]. The local array tsai[1..m] is such that tsai[x] contains the timestamp of the last value

written in REG [x], as known by pi.

Assuming the previous algorithm building an atomic MWMR register is known and understood,

this algorithm building an MWMR atomic snapshot object is self-explanatory. Its proof is more in-

volved than the one of the algorithm building an MWMR atomic register (Fig. 8.4). This is due to the

fact that a snapshot operation involves all the entries of REG [1..m], and the reading of each of them

must appear to be simultaneous (atomicity of the snapshot operation).

Cost of the algorithm It is easy to see that, whatever the value of m (number of registers composing

REG [1..m]), the costs of the snapshot and a write operation are the same as the ones of a read and a

write operation of an atomic MWMR atomic register.

8.3 From SCD-broadcast to an Atomic Counter

8.3.1 Counter Object

A counter is an object that can be manipulated by three parameterless operations denoted increase(),
decrease(), and read(). Let C be a counter. From a sequential specification point of view C.increase()
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adds 1 to C, C.decrease() subtracts 1 from C, and C.read() returns the value of C. The operations

C.increase() and C.decrease() are commutative, which means that, an invocation of C.increase()
followed by an invocation of C.decrease() is equivalent to an invocation of C.decrease() followed

by an invocation of C.increase(). This object is a good representative of the class of CRDT objects

(CRDT stands for conflict-free replicated data type).

8.3.2 Implementation of an Atomic Counter Object

Algorithm The algorithm presented in Fig. 8.8 implements an atomic counter C. Each process

manages a local copy of it, denoted counteri. The text of the algorithm is self-explanatory.

The operation read() is similar to the operation snapshot() of the snapshot object. Unlike the

write() operation on a snapshot object (which requires a synchronization message SYNC() and a

data/synchronization message WRITE()), the update operations increase() and decrease() require only

one data/synchronization message PLUS() or MINUS(). This is the gain obtained from the fact that,

from the point of view of any process pi, the operations increase() and decrease(), which appear

between two of its read() invocations, are commutative.

operation increase() is

(1) donei ← false; SCD broadcast PLUS(i); wait(donei);
(2) return().

operation decrease() is the same as increase() where PLUS(i) is replaced by MINUS(i).

operation read() is

(3) donei ← false; SCD broadcast SYNC(i); wait(donei);
(4) return(counteri).

when the message set { PLUS(j1), . . . ,MINUS(jx), . . . , SYNC(jy), . . . } is scd-delivered do

(5) let p = number of messages PLUS() in the message set;

(6) let m = number of messages MINUS() in the message set;

(7) counteri ← counteri + p−m;

(8) if ∃� : j� = i then donei ← true end if.

Figure 8.8: Construction of an atomic counter in CAMPn,t[SCD-broadcast] (code for pi)

Lemma 22. If a non-faulty process invokes an operation, it returns from its invocation.

Proof Let pi be a non-faulty process that invokes increase(), decrease() or read(). By the Termination-

1 property of SCD-broadcast, it eventually receives a message set containing the message PLUS(),

MINUS() or SYNC() it sends at line 1 or 3. As all the statements associated with the scd-delivery of a

message set (lines 5-8) terminate, it follows that the synchronization Boolean donei is eventually set

to true. Consequently, pi returns from the invocation of its operation. �Lemma 22

Definition Let opi be an operation performed by pi. The set of messages past(opi) is defined as

follows (the message relations "→i and "→ have been defined in Section 8.1.1):

• If opi is an increase() or decrease() operation, and mi the message scd-broadcast during its

execution at line 1, then past(opi) = {m : m "→ mi}.
• If opi is a read() operation, then past(opi) is the union of all sets of messages scd-delivered by

pi before it executed line 4.

Given an execution Ĥ = (H,→H), let �H be the relation on operations defined as follows. op �H

op′ if one of the following conditions holds:
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• past(op) � past(op′), or

• past(op) = past(op′), where op is an increase() or a decrease() operation and op′ is a read()
operation.

Lemma 23. The counter object built by Algorithm 8.8 is linearizable.

Proof Let us first prove that �H is a strict partial order relation. Let us suppose op �H op′ �H op′′.

If op′ is a read() operation, we have past(op) ⊆ past(op′) � past(op′′). If op′ is an increase()
or a decrease() operation, we have past(op) � past(op′) ⊆ past(op′′). In both cases, we have

past(op) � past(op′′), which proves transitivity, antisymmetry, and irreflexivity since it is impossible

to have past(op) � past(op).
Let us now prove that �H is real-time compliant. Let opi and opj be two operations performed

by processes pi and pj respectively, and let mi and mj be the messages sent during the execution of

opi and opj , respectively, on line 1 or 3. Suppose that opi →H opj (i.e., resp(opi) <H inv(opj): opi
terminated before opj started). When pi returns from opi, by the waiting condition of line 1 or 3, it has

received mi, but pj has not yet sent mj . Therefore, mi "→i mj , and consequently mj /∈ past(opi).
By the waiting condition during the execution of opj (line 1 or 3), we have mj ∈ past(opj). By the

containment property of SCD-broadcast, we therefore have past(opi) � past(opj), so opi �past opj .

Let Ŝ = (H,→S) be a total order extending the transitive closure of �H (hence, by its very definition,

→S includes this transitive closure). It is real-time compliant because the transitive closure of �H

contains→H (let us remember that the execution is modeled by Ĥ = (H,→H)).
Let us now consider the value returned by a read() operation op. Let p be the number of PLUS()

messages in past(op) and let m be the number of MINUS() messages in past(op). According to

line 1, op returns the value of counteri that is modified only at line 7 and contains the value p −m,

by commutativity of additions and subtractions. Moreover, due to the definition of �H , all pairs

composed of a read() operation and an increase() or decrease() operation are ordered by �H , hence

by →S . Consequently, op has the same increase() and decrease() predecessors according to �H , its

transitive closure, and →S . Therefore, the value returned by op is the number of times increase() has

been called, minus the number of times increase() has been called before op (where “before” refers to

→S), which concludes the lemma. �Lemma 23

Theorem 34. Algorithm 8.8 builds an atomic counter in the system model CAMPn,t[SCD-broadcast].

Proof The proof follows from Lemmas 22 and 23. �Theorem 34

8.3.3 Implementation of a Sequentially Consistent Counter Object

The previous algorithm can be easily modified to obtain a sequentially consistent counter. To this end,

a technique similar to the one introduced in Section 6.5.2 can be used to allow the operations increase()
and decrease() to have a fast implementation. As we have seen, “fast” means that these operations

are purely local: they do not require the invoking process to wait in the algorithm implementing them.

Whereas the operation read() issued by a process pi cannot be fast, because all the previous increase()
and decrease() operations issued by pi must be applied to its local copy of the counter for its invocation

of read() to terminate (this is the rule known as “read your writes”).

The resulting algorithm presented in Fig. 8.9. In addition to counteri, each process manages a

synchronization counter lsci initialized to 0, which counts the number of increase() and decrease()
operations executed by pi and not yet locally applied to counteri. Only when lsci is equal to 0, is pi
allowed to read counteri.

The cost of both the operations increase() and decrease() is zero time units plus the O(n2) protocol

messages of the underlying SCD-broadcast. The time cost of the operation read() by a process pi
depends on the value of lsci. It is zero when pi has no “pending” counter operations.
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operation increase() is

(1) lsci ← lsci + 1;

(2) SCD broadcast PLUS(i);
(3) return().

operation decrease() is the same as increase() where PLUS(i) is replaced by MINUS(i).

operation read() is

(4) wait(lsci = 0);
(5) return(counteri).

when the message set { PLUS(j1), . . . ,MINUS(jx), . . . } is scd-delivered do

(6) let p = number of messages PLUS() in the message set;

(7) let m = number of messages MINUS() in the message set;

(8) counteri ← counteri + p−m;

(9) let c = number of messages PLUS(i) and MINUS(i) in the message set;

(10) lsci ← lsci − c.

Figure 8.9: Construction of a sequentially consistent counter in CAMPn,t[SCD-broadcast] (code for

pi)

8.4 From SCD-broadcast to Lattice Agreement

8.4.1 The Lattice Agreement Task

Definition Let S be a partially ordered set and ≤ its partial order relation. Given S′ ⊆ S, an upper

bound of S′ is an element x of S such that ∀ y ∈ S′ : y ≤ x. The least upper bound of S′ is an upper

bound z of S′ such that, for all upper bounds y of S′, z ≤ y. S is called a semilattice if all its finite

subsets have a least upper bound. Let lub(S′) denotes the least upper bound of S′.

Let us assume that each process pi has an input value ini that is an element of a semilattice S. The

lattice agreement task was introduced by H. Attiya, M. Herlihy, and O. Rachman (1995). It provides

each process with an operation denoted propose(), such that a process pi invokes propose(ini) (we

say that pi proposes ini); this operation returns an element z ∈ S (we say that it decides z). The

task is defined by the following properties, where it is assumed that each non-faulty process invokes

propose():

• LA-validity. If process pi decides outi, we have ini ≤ outi ≤ lub({in1, . . . , inn}).
• LA-containment. If pi decides outi and pj decides outj , we have outi ≤ outj or outj ≤ outi.

• LA-termination. If a non-faulty proposes a value, it decides a value.

Lattice agreement is a task The structure of a distributed task was presented in Fig. 1.5. More

formally, a task is defined as follows:

• Each process pi has its own input ini, which is initially known only by itself (hence, the dis-

tributed nature of a distributed task). Let I = [in1, · · · , inn] be a distributed input vector, and

I be the set of all allowed input vectors.

In the case of lattice agreement, I is defined from the partially ordered set S.

• Let O = [out1, . . . , outn] be a distributed output vector, where outi is the output of process pi,
and O be the set of all allowed output vectors.

• A task is defined by a mapping T from I into O: ∀I ∈ I: T (I) ⊆ O.

In the case of lattice agreement, given a partially ordered set associated with the possible inputs,

O is the set of all output vectors that satisfies the previous validity and agreement properties.

• Taking into account process crashes:
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– If a process pi crashes before having computed its local result, its output outi is assumed

to be any value such that the resulting output vector O belongs to T (I).
– If a process pi crashes before taking any step, its input value ini is assumed to be any value

such that, if the distributed vector O is output, we have O ∈ T (I).

8.4.2 Lattice Agreement from SCD-broadcast

The algorithm solving the lattice agreement task is described in Fig. 8.10. It is a very simple algorithm,

whose text is self-explanatory.

operation propose(ini) is

(1) donei ← false; SCD broadcast MSG(i, ini); wait(donei);
(2) return(lub(reci)).

when the message set { MSG(j1, vj1), . . . , MSG(jx, vjx)} is scd-delivered do

(3) reci ← reci ∪ {vj1 , . . . , vjx};

(4) if ∃� : j� = i then donei ← true end if.

Figure 8.10: Solving lattice agreement in CAMPn,t[SCD-broadcast] (code for pi)

Theorem 35. The algorithm described in Fig. 8.10 implements the lattice agreement task in the system

model CAMPn,t[SCD-broadcast].

Proof The termination property follows from the termination-1 property of SCD-broadcast (if a non-

faulty process scd-broadcasts a message m, it scd-delivers a message set containing m). The validity

property follows from the definition of the lub() operation, and the fact that, when a process pi executes

line 2, reci contains ini (it executed before lines 3-4 when it received a message set containing the

message MSG(i, ini) it scd-broadcast at line 1).

As far as the containment property is concerned, let us assume, by contradiction, that there are

two processes pi and pj such that we have neither outi ≤ outj nor outj ≤ outj . This means that

there is a value v ∈ outi \ outj , and a value v′ ∈ outj \ outi. Let msi and ms′i be the message sets

(scd-delivered by pi) which contained v and v′ respectively. As v ∈ outi and v′ /∈ outi, we have

msi �= ms′i, and msi was scd-delivered before ms′i.
Similarly defining msj (containing v′) and ms′j (containing v), we have ms′j �= msj , and ms′j

was scd-delivered before msj . It follows that m "→i m′ and m′ "→j m, from which it follows

that "→ = ∪1≤x≤n "→x is not a partial order. A contradiction with the SCD-broadcast definition.

�Theorem 35

8.5 From SWMR Atomic Registers to SCD-broadcast

This section presents an algorithm building an instance of the SCD-broadcast abstraction on top of

SWMR snapshot objects. Such a snapshot object can be trivially obtained from MWMR snapshot

objects: it has m = n entries, and the entry i can be written only by the process pi.
Hence, it follows from (a) this algorithm, (b) the algorithm described in Fig. 8.1, and (c) the

impossibility proof to build an atomic register on top of asynchronous message-passing systems where

t ≥ n/2 process may crash (Theorem 18), that the SCD-broadcast abstraction cannot be implemented

in CAMPn,t[t ≥ n/2]. Hence, snapshot objects and SCD-broadcast are computationally equivalent.

8.5.1 From Snapshot to SCD-broadcast

Shared objects The shared memory is composed of two SWMR snapshot objects. Let ε denote the

empty sequence.
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• SENT [1..n]: snapshot object (initialized to [∅, . . . , ∅]), such that SENT [i] contains the mes-

sages scd-broadcast by pi.

• SETS SEQ [1..n]: snapshot object (initialized to [ε, . . . , ε]), such that SETS SEQ [i] contains

the sequence of the sets of messages scd-delivered by pi.

The notation⊕ is used for the concatenation of a message set at the end of a sequence of message sets.

Local objects Each process pi manages the following local objects:

• sent i: the local copy of the snapshot object SENT .

• sets seq i: the local copy of the snapshot object SETS SEQ .

• to deliveri : an auxiliary variable whose aim is to contain the next message set that pi has to

scd-deliver.

The function members(set seq) returns the set of all the messages contained in set seq.

operation SCD broadcast(m) is

(1) sent i[i] ← sent i[i] ∪ {m}; SENT .write(sent i[i]); progress().

(2) background thread T is repeat forever progress() end repeat.

procedure progress() is

(3) enter mutex();
(4) catchup();
(5) sent i ← SENT .snapshot();
(6) to deliveri ← (∪1≤j≤n sent i[j]) \members(sets seq i[i]);
(7) if (to deliveri �= ∅)
(8) then sets seq i[i] ← sets seq i[i]⊕ to deliveri ; SETS SEQ .write(sets seq i[i]);
(9) SCD deliver(to deliveri)
(10) end if;

(11) exit mutex().

procedure catchup() is

(12) sets seq i ← SETS SEQ .snapshot();
(13) while (∃j, set : set is the first set in sets seq i[j] : set �⊆ members(sets seq i[i]) do

(14) to deliveri ← set \members(sets seq i[i]);
(15) sets seq i[i] ← sets seq i[i]⊕ to deliveri ; SETS SEQ .write(sets seq i[i]);
(16) SCD deliver(to deliveri)
(17) end while.

Figure 8.11: An implementation of SCD-broadcast on top of snapshot objects (code for pi)

Description of the algorithm The algorithm is described in Fig. 8.11. When a process pi in-

vokes SCD broadcast(m), it adds m to sent i[i] and SENT [i] to inform all the processes on the

scd-broadcast of m. It then invokes the internal procedure progress() from which it exits once it

has a set containing m (line 1).

A background thread T ensures that all messages will be scd-delivered (line 2). This thread in-

vokes repeatedly the internal procedure progress(). As, locally, both the application process and the

underlying task T can invoke progress(), which accesses the local variables of pi, those variables

are protected by a local fair mutual exclusion algorithm providing the operations enter mutex() and

exit mutex() (lines 3 and 11).

The procedure progress() first invokes the internal procedure catchup(), whose aim is to allow pi
to scd-deliver sets of messages which have been scd-broadcast and not yet locally scd-delivered.

To this end, catchup() works as follows (lines 12-17). Process pi first obtains a snapshot of

SETS SEQ , and saves it in sets seq i (line 12). This allows pi to know which message sets have been
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scd-delivered by all the processes; pi then enters a “while” loop to scd-deliver as many message sets as

possible according to what was scd-delivered by the other processes. For each process pj that has scd-

delivered a message set set containing messages not yet scd-delivered by pi (predicate of line 13), pi
builds a set TO deliveri containing the messages in set that it has not yet scd-delivered (line 14), and

locally scd-delivers it (line 16). This local scd-delivery needs to update accordingly both sets seq i[i]
(local update) and SETS SEQ [i] (global update).

When it returns from catchup(), pi strives to scd-deliver messages not yet scd-delivered by the

other processes. To this end, it first obtains a snapshot of SENT , which it stores in sent i (line 5). If

there are messages that can be scd-delivered (computation of TO deliveri at line 6, and predicate at

line 7), pi scd-delivers them and updates sets seq i[i] and SETS SEQ [i] (lines 7-9) accordingly.

8.5.2 Proof of the Algorithm

Lemma 24. If a process pi scd-delivers a set containing a message m, a process pj scd-broadcast m.

Proof The proof follows directly from the text of the algorithm, which copies messages from SENT

to SETS SEQ without creating new messages. �Lemma 24

Lemma 25. No process scd-delivers the same message twice.

Proof Let us first observe that, due to lines 8 and 15, all messages that are scd-delivered at a process

pi have been added to sets seq i[i]. The proof then follows directly from (a) this observation, (b)

the fact that (due to the local mutual exclusion at each process) sets seq i[i] is updated consistently,

and (c) lines 6 and 14, which state that a message already scd-delivered (i.e., a message belonging to

sets seq i[i]) cannot be added to TO deliveri. �Lemma 25

Lemma 26. Any invocation of SCD broadcast() by a non-faulty process pi terminates.

Proof The proof consists in showing that the internal procedure progress() terminates. As the mutex

algorithm is assumed to be fair, process pi cannot block forever at line 3. Hence, pi invokes the

internal procedure catchup(). It then issues a snapshot invocation on SETS SEQ and stores the value

it obtains in sets seq i. There is consequently a finite number of message sets in sets seq i. Hence, the

“while” of lines 13-17 can be executed only a finite number of times, and it follows that any invocation

of catchup() by a non-faulty process terminates. The same reasoning (replacing SETS SEQ by

SENT ) shows that process pi cannot block forever when it executes lines 5-10 of the procedure

progress(). �Lemma 26

Lemma 27. If a non-faulty process scd-broadcasts a message m, it scd-delivers a message set con-

taining m.

Proof Let pi be a non-faulty process that scd-broadcasts a message m. As it is non-faulty, pi adds m
to SENT [i] and then invokes progress() (line 1). As m ∈ SENT , it is eventually added to to deliveri
if not yet scd-delivered (line 6), and scd-delivered at line 9, which concludes the proof of the lemma.

�Lemma 27

Lemma 28. If a non-faulty process scd-delivers a message m, every non-faulty process scd-delivers

a message set containing m.

Proof Let us assume that a process scd-delivers a message set containing a message m. It follows

that the process that invoked SCD broadcast(m) added m to SENT (otherwise no process could scd-

deliver m). Let pi be a correct process. It invokes progress() infinitely often (line 2). Hence, there is
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a first execution of progress() such that senti contains m (line 5). It then follows from line 6 that m
will be added to TO deliveri (if not yet scd-delivered). It finally follows that pi will scd-deliver a set

of messages containing m at line 9. �Lemma 28

Lemma 29. Let pi be a process that scd-delivers a set msi containing a message m and later scd-

delivers a set ms′i containing a message m′. No process pj scd-delivers first a set ms′j containing m′

and later a set msj containing m.

Proof Let us consider two messages m and m′. Due to the total order property on the operations

on the snapshot object SENT , it is possible to order the write operations of m and m′ into SENT .

Without loss of generality, let us assume that m is added to SENT before m′. We show that no

process scd-delivers m′ before m. (Let us notice that it is possible that a process scd-delivers them in

two different message sets, while another process scd-delivers them in the same set (which does not

contradict the lemma.)

Let us consider a process pi that scd-delivers the message m′. There are two cases:

• pi scd-delivers the message m′ at line 9. Hence, pi obtained m′ from the snapshot object SENT

(lines 5-6). As m was written in SENT before m′, we conclude that SENT contains m. It then

follows from line 6 that, if pi has not scd-delivered m before (i.e., m is not in sets seq i[i]), then

pi scd-delivers it in the same set as m′.

• pi scd-delivers the message m′ at line 16. Due to the predicate used at line 13 to build a set of

messages to scd-deliver, there is a process pj that has previously scd-delivered a set of messages

containing m′.

Moreover, let us observe that the first time the message m′ is copied from SENT to some

SETS SEQ [x] occurs at line 8. As m was written in SENT before m′, the corresponding

process px cannot see m′ without seeing m. It follows from the previous item that px has scd-

delivered m in the same message set (as the one including m′), or in a previous message set. It

then follows from the predicate of line 13 that pi cannot scd-deliver m′ before m.

To summarize, the scd-deliveries of message sets in the procedure catchup() cannot violate the

MS-ordering property, which is established at lines 6-10.
�Lemma 29

Theorem 36. The algorithm described in Fig. 8.11 implements the SCD-broadcast communication

abstraction in the asynchronous read/write model, prone to any number of process crashes.

Proof The proof follows from Lemma 24 (validity), Lemma 25 (integrity), Lemmas 26 and 27

(termination-1), Lemma 28 (termination-2), and Lemma 29 (MS-ordering). �Theorem 36

The next corollary follows from the previous theorem, and Theorem 33, and the fact that (SWMR

and MWMR) snapshot objects can be built from atomic read/write registers despite up to t < n process

crashes.

Corollary 4. The atomic read/write register and the SCD-broadcast communication abstractions have

the same computability power.

8.6 Summary

Considering asynchronous message-passing systems where computing entities (processes) may crash,

this chapter has introduced a high level communication abstraction suited to the implementation of

(atomic or sequentially consistent) read/write registers, and more generally to the direct implementa-

tion of the family of read/write implementable objects and distributed tasks.
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Denoted SCD-broadcast, this communication abstraction allows processes to broadcast messages

and deliver sets of messages (instead of delivering a message at a time). These message set deliveries

are such that if a process pi delivers a set of messages containing a message m, and later delivers

a set of messages containing a message m′, no process pj can deliver a set of messages containing

m′ before a set of messages containing m. Moreover, there is no local constraint imposed on the

processing order of the messages belonging to a same message set.

SCD-broadcast has the following noteworthy features:

• It can be implemented in asynchronous message passing systems where any minority of pro-

cesses may crash. Its costs are upper bounded by twice the network latency (from a time point

of view) and O(n2) protocol messages (from a message point of view).

• Its computability power is the same as that of an atomic read/write register (anything that can be

implemented in asynchronous read/write systems can be implemented with SCD-broadcast).

• It promotes a communication pattern which is simple to use when one has to implement concur-

rent objects defined by a sequential specification or read/write solvable distributed tasks.

• When interested in the implementation of a concurrent object O, a simple weakening of the

SCD-broadcast-based atomic implementation of O provides us with an SCD-broadcast-based

implementation satisfying sequential consistency (moreover, the sequentially consistent imple-

mentation is more efficient than the atomic one).

On programming languages for distributed computing Differently from sequential computing for

which there are plenty of high level languages (each with its idiosyncrasies), there is no specific lan-

guage for distributed computing. Instead, addressing distributed settings is done by the enrichment of

sequential computing languages with high level communication abstractions. When considering asyn-

chronous systems with process crash failures, total order broadcast is one of them. SCD-broadcast

can be one of them, when one has to implement read/write solvable objects and distributed tasks.
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can be found in many publications (e.g., [4, 31, 41, 233, 237, 240]), and in textbooks (e.g., [43,

369]). Complexity issues in the implementation of snapshot objects on top of read/write registers

iare addressed in [145, 146].

An implementation of snapshot objects in CAMPn,t[t < n/2], which is not based on the stack-

ing approach, is presented in [126].

• The similarities and differences between atomicity and sequential consistency are investigated

in [42, 347, 361].
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• The counter object is a paradigm of the class of objects defined by a sequential specification,

where some operations are commutative. It belongs to the class of CRDT objects (Conflict-free

Replicated Data Types [392]). This class of objects is itself a subclass of a more general class

of objects identified in [33]. The objects of this class are characterized by the fact that each pair

op1 and op2 of their operations can either commute (i.e., in any state, executing op1 before op2
is the same as executing op2 before op1, as is the case for a counter), or any of op1 and op2 can

overwrite the other one (e.g., executing op1 before op2 is the same as executing op2 alone).

• The lattice agreement task was introduced in [40], and later generalized in [153]. The algorithm

presented in Fig. 8.10 is the first algorithm solving lattice agreement on top of read/write regis-

ters only. (As shown in Section 8.5, SCD-broadcast and read/write registers are equivalent: they

have the same computability power.)

• The notion of a distributed task was introduced in [65, 296]. This notion has received a great lot

of attention in the distributed computing community (e.g., [6, 75, 76, 215, 217, 358, 359, 377]

to cite a few).

• Relations between objects and tasks are formally studied in [97, 98].

8.8 Exercises and Problems

1. Is it possible to implement a queue or a stack in the system model CAMPn,t[SCD-broadcast]?

Solution in Section 16.9.2.

2. As in [42], using the same technique, is it possible to design a sequentially consistent counter

in which the operation read() is fast, while the operations increase() and decrease() are not? If

the answer is “yes”, design such an algorithm.

3. Prove the algorithm described in Fig. 8.9, which implements a sequentially consistent counter.

4. When considering the lattice agreement task, neither the algorithm described in Fig. 8.10 nor

its proof refer to atomicity or sequential consistency. Is the notion of a consistency condition

meaningful for distributed tasks? Explain your answer precisely.



Chapter 9

Atomic Read/Write Registers

in the Presence of Byzantine Processes

Theorem 18 (stated and proved in Section 5.4) has shown that t < n/2 is an upper bound on the

resilience parameter t to build atomic read/write registers in the asynchronous crash process model

CAMPn,t[∅]. Section 6.3 and Section 6.4 then presented an incremental construction of Single-Writer

Multi-Reader (SWMR) and Multi-Writer Multi-Reader (MW-MR) atomic registers.

This chapter addresses the construction of SWMR atomic read/write registers (one per process)

in the failure context where up to t processes may exhibit a Byzantine behavior. It first shows that

t < n/3 is a necessary condition for such a construction. Then, it presents an algorithm building

an array REG [1..n] of SWMR atomic registers (only pi can write REG [i]) in the system model

BAMPn,t[t < n/3]. This algorithm is consequently t-resilient optimal.

Keywords Asynchronous system, Atomicity, Byzantine process, Byzantine reliable broadcast, Im-

possibility, Linearization point, Upper bound, Read/write register.

9.1 Atomic Read/Write Registers in the Presence of Byzantine Processes

9.1.1 Why SWMR (and Not MWMR) Atomic Registers?

The fault-tolerant shared memory supplied to the upper abstraction layer is an array denoted REG [1..n].
For each i, REG [i] is a single-writer/multi-reader (SWMR) register. This means that REG [i] can be

written only by pi. To this end, pi invokes the operation REG [i].write(v) where v is the value it

wants to write into REG [i]. However, any process pj can read REG [i] by invoking the operation

REG [i].read().

Let us notice that the “single-writer” requirement is natural in the presence of Byzantine processes.

If registers could be written by any process, it would be possible for the Byzantine processes to flood

the whole memory with fake values, so that no non-trivial computation could be possible.

9.1.2 Reminder on Possible Behaviors of a Byzantine Process

Reminder on Byzantine behavior A Byzantine process is a process that behaves arbitrarily. As seen

in Section 4.1, this means that, when looking at the implementation level of the array REG [1..n], it

may crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary state, perform

arbitrary state transitions, etc. Hence, a Byzantine process, which is assumed to send a message m to

all the processes, can send a message m1 to some processes, a different message m2 to another subset

of processes, and no message at all to the other processes. Moreover, while they cannot modify the
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content of the messages sent by non-Byzantine processes, they can read their content and reorder their

deliveries. More generally, Byzantine processes can collude to “pollute” the computation.

Notation As already indicated, the asynchronous message-passing system made up of n processes,

among which up to t may be Byzantine, is denoted BAMPn,t[∅].

On the modifications of REG [k] by a Byzantine process pk Let pk be a Byzantine process. Like

a correct process, pk may invoke the write operation REG [k].write(v) to assign a value v to REG [k]
(where v can be a correct or a fake value).

Such a process pk can also try to modify REG [k] without using this operation, e.g., by send-

ing “protocol messages” which, from the point of view of correct processes, simulate an invocation of

REG [k].write(v). Such an attempt to modify REG [k], without invoking the operation REG [k].write(),
may or not succeed. “Succeed” means that, from the point of view of all the correct processes, v was

assigned to REG [k], namely, this modification of REG [k] appears as if it had been produced by an

invocation of REG [k].write() by pk.

The problem in the implementation of REG [k] is then to ensure that REG [k] does not appear as

having been modified to some correct processes, and not modified to other correct processes. More-

over, the implementation of REG [k] must also ensure that none of the modifications by the Byzantine

process pk are seen by some correct processes as if a was written, and seen by other correct processes

as if b �= a was written. Hence, REG [k] must appear as having been modified to the same value to all

correct processes or none of them.

9.1.3 SWMR Atomic Registers Despite Byzantine Processes: Definition

Notations Let pi and pj be two correct processes.

• Let read[i, j, x] denote the execution of the operation REG [j].read() issued by pi which returns

the xth value written by pj .

• Let write[i, y] denote the yth execution of the operation REG [i].write() by pi.

• H being a sequence of values, let H[x] denote the value at position x in H .

As seen in Section 5.2, it would be possible to associate a start event and an end event with each

read[i, j, x] and each write[i, y] issued by a correct process pi, so that all the events produced by the

correct processes define a total order from which the notion of “terminates before” (used below) can

be formally defined. To not overload the presentation, we do not use this formalization here.

Atomic SWMR registers in the presence of Byzantine processes The atomicity of a set of n
SWMR registers REG [1], ..., REG [n] (some of them possibly associated with Byzantine processes)

is defined by the following set of properties:

• R-termination (liveness). Let pi be a correct process.

– Each invocation of REG [i].write() terminates.

– For any j, any invocation of REG [j].read() by pi terminates.

• R-consistency (safety). Let pi and pj be two correct processes, and pk a faulty or correct process.

– Single history per process. There is exactly one sequence of values Hk associated with

each process pk. More, if pk is correct, Hk[x] contains the value written by write[k, x].

– Read followed by write. (read[j, i, x] terminates before write[i, y] starts)⇒ (x < y).

– Write followed by read. (write[j, x] terminates before read[i, j, y] starts)⇒ (x ≤ y).

– No new/old read inversion. (read[i, k, x] terminates before read[j, k, y] starts)⇒ (x ≤ y).
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As the behavior of a Byzantine process escapes the control of a correct algorithm, both the termi-

nation property and the constraint on the values returned by read invocations can only be on correct

processes.

The “single history per process” property states that the write operations on any register are totally

ordered. Hence, if pk is correct, Hk is the sequence of values it wrote in REG [k].
The three other safety properties concern only the values read by correct processes. The “read

followed by write” property states that there is no read from the future, while the “write followed by

read”’ property states that no read can obtain an overwritten value. Due to the possibiliry of concurrent

access to the same register, these two properties actually defines a regular register. Hence the “no

new/old read inversion” property, which allows us to obtain an atomic register from a regular register.

9.2 An Impossibility Result

This section shows that t < n/3 is a necessary condition to implement an SWMR atomic register

BAMPn,t[∅]. This theorem is due to D. Imbs, S. Rajsbaum, M. Raynal, and J. Stainer (2017).

Theorem 37. It is impossible to implement an atomic SWMR register in BAMPn,t[t ≥ n/3].

Proof The proof is by contradiction. It is based on classic partitioning and indistinguishability ar-

guments. Let us assume that there is an algorithm A that builds an atomic read/write register in

BAMPn,t[t ≥ n/3], which means that it satisfies the R-consistency and R-termination properties

stated in the previous section. Let us notice that to guarantee the R-termination property, a correct

process cannot wait for messages from more than n− t = 2t processes.

Let us partition the processes into three sets Q1, Q2 and Q3, each of size �n3 � or �n3 �. As

�n3 � ≤ �
n
3 � ≤ t, it follows that, in any execution, all processes of Q1 (or Q2, or Q3) can be Byzantine.

In the following p1 is a process of Q1, while p2 is a process of Q2. Let us assume that all SWMR

atomic registers are initialized to ⊥.

p1 ∈ Q1

τw

Atomicity line

processes of Q1 are Byzantine and send no messages

REG [2].write(v)
p2 ∈ Q2

process ∈ Q3

Figure 9.1: Execution E1 (impossibility of an SWMR register in BAMPn,t[t ≥ n/3])

Let us consider a first execution E1, depicted in Fig. 9.1 and defined as follows. (In this figure and the

two following figures, a single process of each set is represented.)

• The set of Byzantine processes is Q1. They do not send messages and appear as crashed to the

processes of Q2 and Q3.

• The process p2 ∈ Q2 writes a value v in REG [2]. Due to the R-termination property of the

algorithm A, the invocation of REG [2].write(v) by p2 terminates. Let τw be the time instant at

which this write terminates.

Let E2 (Fig. 9.2) be a second execution defined as follows.

• All processes are correct, but the processes of Q2 execute no step before τr (defined below).
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p1 ∈ Q1

Atomicity line

p2 ∈ Q2

the processes of Q2 execute no step before τr

τw τr

REG [2].read()→ ⊥

process ∈ Q3

Figure 9.2: Execution E2 (impossibility of an SWMR register in BAMPn,t[t ≥ n/3])

• After τw, the process p1 ∈ Q1 reads the register REG [2]. Due to the R-termination property of

the algorithm A it follows that the invocation of REG [2].read() by p1 terminates (let us notice

that, as |Q2| ≤ t, and n − 2t ≤ t, the processes of Q2 appear as crashed to the invocation of

REG [2].read(), and they cannot prevent it from terminating). Let τr be the time instant at which

this read terminates. According to the R-consistency property read followed by write, REG [2]
still has its initial value ⊥. It follows that the read operation by p1 returns this value.

p1 ∈ Q1

Atomicity line

p2 ∈ Q2

τw τr

REG [2].read()→ ⊥

REG [2].write(v)

the processes of Q3 are Byz. and behave as in E1 wrt Q1 and as in E2 wrt Q2

messages between Q1 and Q2 delayed until after τr

process ∈ Q3

Figure 9.3: Execution E3 (impossibility of an SWMR register in BAMPn,t[t ≥ n/3])

Let us finally consider E3, a third execution depicted in Fig. 9.3 and defined as follows.

• The set of Byzantine processes is Q3, and the processes of Q3 behave exactly as in E1 with

respect to the processes of Q2, and exactly as in E2 with respect to those of Q1.

• The messages sent by the processes of Q1 to the processes of Q2 and by the processes of Q2 to

the processes of Q1 are delayed until after τr.

• The messages exchanged between themselves by the processes of Q2∪Q3 are received at exactly

the same time instants as in E1. Similarly, the messages exchanged between themselves by the

processes of Q1 ∪Q3 are received at exactly the same time instants as in E2.

• At the very same time instant as in E1, process p2 ∈ Q2 writes value v in REG [2]. Since, from

the point of view of the processes of Q2, the executions E1 and E3 are indistinguishable, the

invocation of REG [2].write(v) by p2 terminates at τw.

• As in execution E2, after τw the process p1 ∈ Q1 reads the register REG [2]. Since, from

the point of view of the processes of Q1, the executions E2 and E3 are indistinguishable, the

invocation of REG [2].read() by p1 terminates at τr and returns ⊥. But this violates the R-

consistency property write followed by read, which contradicts the existence of Algorithm A.

�Theorem 37
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9.3 Reminder on Byzantine Reliable Broadcast

This section is a reminder of Section 4.4 where a reliable broadcast algorithm suited to the system

model BAMPn,t[t < n/3] was presented. This algorithm is extended here to include sequence num-

bers, which allows a process to send a sequence of messages instead of a single message. This exten-

sion constitutes a basic building block on which the algorithm implementing SWMR atomic registers

in BAMP |n, t[t < n/3] presented in Section 9.4 relies.

9.3.1 Specification of Multi-shot Reliable Broadcast

Including sequence numbers The multi-shot BRB-broadcast communication abstraction provides

the processes with the operations BRB broadcast() and BRB deliver(). BRB broadcast() has now

two input parameters: a broadcast value v and an integer sn, which is a local sequence number used

to identify the successive brb-broadcasts issued by the sender process. The sequence of numbers used

by each (correct) process is the increasing sequence of consecutive integers. This BRB-broadcast

communication abstraction is defined by the following properties:

• BRB-validity. If a non-faulty process BRB-delivers a pair (v, sn) from a correct process pi, then

pi invoked BRB broadcast(v, sn).

• BRB-integrity. No correct process BRB-delivers a pair (v, sn) more than once.

• BRB-no-duplicity. If a non-faulty process brb-delivers a pair (v, sn) from a process pi, no

non-faulty process brb-delivers a pair (v′, sn, ) such that v �= v′ from pi.

• BRB-termination-1. If a non-faulty process pi invokes BRB broadcast(v, sn), all the non-faulty

processes eventually brb-deliver the pair (v, sn).

• BRB-termination-2. If a non-faulty process brb-delivers a pair (v, sn) from pi (possibly faulty)

then all the non-faulty processes eventually brb-deliver a pair from pi.

Let us notice that it follows from the BRB-no-duplicity property and the BRB-termination-2 prop-

erties that, if a correct process brb-delivers a pair (v, sn) from a process pi (possibly faulty), then

all the correct processes eventually brb-deliver the same pair (v, sn) from pi (this property is called

BRB-uniformity).

BRB-validity is on correct processes and relates their outputs to their inputs, namely no correct

process brb-delivers spurious messages from correct processes. BRB-integrity states that there is

no brb-broadcast duplication. BRB-uniformity is an “all or none” property (it is not possible for a

pair to be delivered by a correct process and to never be delivered by the other correct processes).

BRB-termination-1 is a liveness property: at least all the pairs brb-broadcast by correct processes are

brb-delivered by them.

Adding FIFO delivery As a process pi may execute several write operation on REG [i], it is possible

to associate a sequence number with each of them. So, we require that these messages be processed in

their sequence number order.

9.3.2 An Algorithm for Multi-shot Byzantine Reliable Broadcast

The BRB-broadcast algorithm presented in Fig. 9.4 is the one of Section 4.4 enriched with sequence

numbers. The lines with the same meaning in both algorithms have the same line numbers. Line (2)

is split into two lines denoted (2)-1 and (2)-2. There are also two new lines related to the management

of sequence numbers, denoted (N1) and (N2). Instead of INIT, the tag of an application message

is denoted APPL, and each message carries the sequence number of the application message it is

associated with.
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operation BRB broadcast APPL(v, sn) is

(1) broadcast APPL(v, sn).

when a message APPL(v, sn) is received from pj do

(2)-1 discard the message if it is not the first message from pj with sequence number sn;

(N1) wait (nexti[j] = sn);
(2)-2 broadcast ECHO(j, v, sn).

when a message ECHO(j, v, sn) is received do

(3) if (ECHO(j, v, sn) received from strictly more than n+t
2

different processes)

∧(READY(j, v, sn) never broadcast)

(4) then broadcast READY(j, v, sn)
(5) end if.

when a message READY(j, v, sn) is received do

(6) if (READY(j, v, sn) received from at least (t+ 1) different processes)

∧(READY(j, v, sn) never sent)

(7) then broadcast READY(j, v, sn)
(8) end if;

(9) if (READY(j, v, sn) received from at least (2t+ 1) different processes)

∧ (〈j, v, sn〉 brb-delivered from pj)

(10) then BRB deliver 〈j, v, sn〉;
(N2) nexti[j] ← nexti[j] + 1
(11) end if.

Figure 9.4: Reliable broadcast with sequence numbers in BAMPn,t[t < n/3] (code for pi)

Each process pi manages a local array nexti[1..n], where nexti[j] is the sequence number sn of

the next application message (namely, APPL(−, sn)) from pj , which pi will process (line N1). Initially,

for all i, j, nexti[j] = 1. Then, nexti[j] increases at line (N2).

Let us remember that broadcast TAG(m) is a simple macro-operation standing for “for all j ∈
{1, ...n} do send TAG(m) to pj end for”.

When, on its “client” side, a process pi invokes BRB broadcast APPL(v, sn), it broadcasts the

message APPL(v, sn), where sn is the value of its next sequence number (line 1).

On its “server” side, the behavior of a process pi is as follows:

• When it receives a message APPL(v, sn) from a process pj , pi discards it if it has already re-

ceived a message APPL(−, sn′) from pj such that sn′ = sn (line (2)-1). This is because in this

case pj is Byzantine (a correct process issues a single BRB-broadcast per sequence number).

Otherwise, pi waits until it can process this message according to its sequence number (line N1).

When this occurs, pi broadcasts the message ECHO(j, v, sn) to inform the other processes it has

received the application message APPL(v, sn) (line (2)-2).

• Then, when pi has received the same message ECHO(j, v, sn) from “enough” processes (where

“enough” means here “more than (n + t)/2 different processes”), and has not yet broadcast a

message READY(j, v, sn), it does so (lines 3-5).

The aim of (a) the messages ECHO(j, v, sn), and (b) the cardinality “greater than (n + t)/2
processes”, is to ensure that no two correct processes brb-deliver distinct messages from pj (even

if pj is Byzantine). The aim of the messages READY(j, v, sn) is related to the liveness of the

algorithm. More precisely, their aim is to allow the brb-delivery, by the correct processes, of the

very same triple 〈j, v, sn〉 from pj , and this must always occur if pj is correct. It is nevertheless

possible that a message brb-broadcast by a Byzantine process pj is never brb-delivered by the

correct processes.
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• Finally, when pi has received the message READY(j, v, sn) from (t + 1) different processes, it

broadcasts the same message READY(j, v, sn), if not yet done. This is required to ensure the

BRB-termination properties. If pi has received “enough” messages READY(j, v, sn) (“enough”

means here “from at least (2t + 1) different processes”), it brb-delivers the triple 〈j, v, sn〉
generated by the message APPL(v, sn) brb-broadcast by pj .

9.4 Construction of SWMR Atomic Registers in BAMPn,t[t < n/3]

An algorithm constructing an array REG [1..n] of SWMR atomic registers, where each pi can write

only REG [i], in the presence of up to t Byzantine processes is described in Fig. 9.5. As it assumes

t < n/3, this algorithm is t-resilience optimal.

This algorithm is due to A. Mostéfaoui, M. Petrolia, M. Raynal, and Cl. Jard (2017). Its design

strives to be as close as possible to the ABD algorithms presented in Section 6.3.2 (SWMR atomic reg-

ister) and Section 6.4.2 (MWMR atomic register). In addition to the necessary and sufficient condition

t < n/3, this presentation allows the reader to better see, and understand, the additional statements

needed to go from crash failures to Byzantine process failures.

The algorithm uses a wait(condition) statement. The corresponding process is blocked until the

predicate condition is satisfied. While a process is blocked, it can process the messages it receives.

9.4.1 Description of the Algorithm

Local variables Each process pi manages the following local variables whose scope is the full com-

putation:

• regi[1..n] is the local representation of the array REG [1..n] of SWMR registers. Each local

register regi[j] contains two fields, a sequence number regi[j].sn, and the corresponding value

regi[j].val. It is initialized to the pair 〈⊥j , 0〉, where ⊥j is the initial value of REG [j].

• wsni is an integer, initialized to 0, used by pi to associate sequence numbers with its successive

write invocations.

• rsni[1..n] is an array of sequence numbers (initialized to [0, · · · , 0]) such that sni[j] is used by

pi to identify its successive read invocations of REG [j]. (If we assume that no correct process

pi reads its own register REG [i], rsni[i] can be used to store wsni.)

The operation REG [i].write(v) This operation is implemented by the client lines 1-4 and the server

lines 12-14.

When a process pi invokes REG [i].write(v), it first increases wsni and brb-broadcasts the mes-

sage WRITE(v, wsni). Let us notice that this is the only use of the reliable broadcast abstraction

by the algorithm. The process pi then waits for acknowledgments (message WRITE DONE(v, wsni))
from (n− t) distinct processes, and finally terminates the write operation.

When pi brb-delivers a message WRITE(v, wsn) from a process pj , it waits until wsn = regi[j]+1
(line 12). Hence, whatever the sender pj , its messages WRITE() are processed in their sending order.

When this predicate becomes true, pi updates accordingly its local representation of REG [j] (line 13),

and sends back to pj an acknowledgment to inform it that its new write has locally been taken into

account (line 14).

Modification of REG [j] by a Byzantine process pj Let us observe that the only way for a process

pi to modify regi[j] is to brb-deliver a message WRITE(v, wsn) from a (correct or faulty) process

pj . Due to the BRB-uniformity of the brb-broadcast abstraction it follows that, if a correct process

pi brb-delivers such a message, all correct processes will brb-deliver the same message, be its sender

correct or faulty. Consequently each of them will eventually execute the statements of lines 12-14.
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local variables initialization:

regi[1..n] ← [〈init0, 0〉, . . . , 〈initn, 0〉]; wsni ← 0; rsni[1..n] ← [0, · · · , 0].
%————————————————————————————————-

operation REG[i].write(v) is

(1) wsni ← wsni + 1;

(2) BRB broadcast WRITE(v,wsni);

(3) wait WRITE DONE(wsni) received from (n− t) different processes;

(4) return()
end operation.

operation REG[j].read() is

(5) rsni[j] ← rsni[j] + 1;

(6) broadcast READ(j, rsni[j]);
(7) wait

(
regi[j].sn ≥ max(wsn1, ..., wsnn−t) where wsn1, ..., wsnn−t are from

messages STATE(rsni[j],−) received from n− t different processes
)
;

(8) let 〈w,wsn〉 the value of regi[j] which allows the previous wait to terminate;

(9) broadcast CATCH UP(j, wsn);

(10) wait
(

CATCH UP DONE(j, wsn) received from (n− t) different processes
)
;

(11) return(w)
end operation.

%————————————————————————————————-

when a message WRITE(v,wsn) is BRB delivered from pj do

(12) wait(wsn = regi[j].sn+ 1);
(13) regi[j] ← 〈v, wsn〉;
(14) send WRITE DONE(wsn) to pj .

when a message READ(j, rsn) is received from pk do

(15) send STATE(rsn, regi[j].sn) to pk.

when a message CATCH UP(j, wsn) is received from pk do

(16) wait (regi[j].sn ≥ wsn);
(17) send CATCH UP DONE(j, wsn) to pk.

Figure 9.5: Atomic SWMR Registers in BAMPn,t[t < n/3] (code for pi)

Hence, if a correct process brb-delivers a message WRITE(v, wsn) from a Byzantine process pj ,
be this message due to an invocation of BRB broadcast WRITE() by pj or a spurious message it sent,

its faulty behavior is restricted to the broadcast of fake values for v and wsn.

The operation REG [j].read() This operation is implemented by the client lines 5-11 and the server

line 15. The corresponding algorithm is the core of the implementation of an SWMR atomic register

in the presence of Byzantine processes.

When pi wants to read REG [j], it first broadcasts a read request (message READ(j, rsni[j])),
and waits for corresponding acknowledgments (message STATE(rsni[j],−)). Each of these acknowl-

edgment carries the sequence number associated with the current value of REG [j], as known by the

sender pj of the message (line 15). For pi to progress, the wait predicate (line 7) states that its local

representation of REG [j], namely regi[j], must be fresh enough (let us remember that the only line

where regi[j] can be modified is line 13, i.e., when pi brb-delivers a message WRITE(−,−) from pj).
This freshness predicate states that pi’s current value of regi[j] is as fresh as the current value of at

least (n − t) processes (i.e., at least (n − 2t) correct processes). If the freshness predicate is false,

it will become true when pi brb-delivers the WRITE(−,−) messages already brb-delivered by other

correct processes, but not yet by it.

When this waiting period terminates, pi considers the current value 〈w,wsn〉 of regi[j] (line 8).

It then broadcasts the message CATCH UP(j, wsn), and returns the value w as soon as its message
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CATCH UP() is acknowledged by (n− t) processes (lines 9-10).

The aim of the CATCH UP(j, wsn) message is to allow each destination process pk to have a value

in its local representation of REG [j] (namely regk[j].val) at least as recent as the one whose sequence

number is wsn (line 15). The aim of this value resynchronization is to prevent read inversions. When

pi has received the (n− t) acknowledgments it was waiting for (line 10), it knows that no other correct

process can obtain a value older than the value w it is about to return.

Message cost of the algorithm In addition to a reliable broadcast (whose message cost is O(n2)),
a write operation generates n messages WRITE DONE. Hence, the cost of a write is O(n2) messages.

A read operation costs 4n messages, i.e. n messages for each of the four kinds of messages READ,

STATE, CATCH UP and CATCH UP DONE.

9.4.2 Comparison with the Crash Failure Model

As we have seen in Chapter 6 and Chapter 8, the algorithms implementing an atomic register on top of

an asynchronous message-passing system prone to process crashes, require that “reads have to write”.

More precisely, before returning a value, in one way or another, a reader must write this value to

ensure atomicity (otherwise, we obtain only a “regular” register). In doing so, it is not possible that

two sequential read invocations, concurrent with one or more write invocations, are such that the first

read obtains one value while the second read obtains an older value (this prevents read inversion).

As Byzantine failures are more severe than crash failures, the algorithm of Figure 9.5 needs to use

a mechanism analogous to the “reads have to write” to prevent read inversions from occurring. As

previously indicated, this is done by the messages CATCH UP() broadcast at line 9 and the associated

acknowledgments messages CATCH UP DONE() received at line 10. These messages realize a synchro-

nization during which (n− t) processes (i.e., at least (n− 2t) correct processes) have resynchronized

their value, if needed (line 15).

A comparison of two instances of the ABD algorithm and the algorithm of Fig. 9.5 is presented in

Table 9.1. The first instance is the version of the ABD algorithm presented in Fig. 6.4, which builds an

array of n SWMR (single-writer/multi-reader) atomic registers (one register per process). The second

instance is the version of the ABD algorithm, presented in Fig. 6.5, which builds a single MWMR

(multi-writer/multi-reader) atomic register.

As they depend on the application and not on the algorithm that implements registers, the size of

the values which are written is considered to be constant. The parameter m denotes an upper bound

on the number of read and write operations on each register. The value log n is due to the fact that

a message carries a constant number of process identities. Similarly, logm is due to the fact that

(a) a message carries a constant number of sequence numbers, and (b) there is a constant number of

message tags (including the tags used by the underlying reliable broadcast).

Algorithm Fig. 6.4: n SWMR Fig. 6.5: 1 MWMR Fig. 9.5: n SWMR

Failure type crash crash Byzantine

Requirement t < n/2 t < n/2 t < n/3
Msgs/write O(n) O(n) O(n2)
Msgs/read O(n) O(n) O(n)
Msg size O(log n+ logm) O(log n+ logm) O(log n+ logm)
Local mem./proc. O(n logm) O(n logm) O(n logm)

Table 9.1: Crash vs Byzantine failures: cost comparisons
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9.5 Proof of the Algorithm

9.5.1 Preliminary Lemmas

Lemma 30. If a correct process pi brb-delivers a message WRITE(w, sn) (from a correct or faulty

process), any correct process brb-delivers it.

Proof This is an immediate consequence of the BRB-uniformity property of the BRB-broadcast ab-

straction. �Lemma 30

Lemma 31. Any two sets of (n− t) processes have at least one correct process in their intersection.

Proof Let Q1 and Q2 be two sets of processes such that |Q1| = |Q2| = n− t. In the worst case, the

t processes that are not in Q1 belong to Q2, and the t processes that are not in Q2 belong to Q1. It

follows that |Q1 ∩ Q2| ≥ n − 2t. As n > 3t, it follows that |Q1 ∩ Q2| ≥ n − 2t ≥ t + 1, which

concludes the proof of the lemma. �Lemma 31

9.5.2 Proof of the Termination Properties

Lemma 32. Let pi be a correct process. Any invocation of REG [i].write() terminates.

Proof Let us consider the first invocation of REG [i].write() by a correct process pi. This write op-

eration generates the brb-broadcast of the message WRITE(−, 1) (lines 1-2). Due to Lemma 30, all

correct processes brb-deliver this message, and the waiting predicate of line 13 is eventually satis-

fied. Consequently, each correct process pk eventually sets regk[i].sn to 1, and sends back to pi an

acknowledgment message WRITE DONE(1). As there are least (n − t) correct processes, pi receives

such acknowledgments from at least (n − t) different processes, and terminates its first invocation

(lines 3-4).

As, for any given process pj , all correct processes will process the messages WRITE() from pj
in their sequence order, the lemma follows from a simple induction (whose previous paragraph is the

proof of the base case). �Lemma 32

Lemma 33. Let pi be a correct process. For any j, any invocation of REG [j].read() terminates.

Proof When a correct process pi invokes REG [j].read(), it broadcasts a message READ(j, rsn)
where rsn is a new sequence number (lines 5-6). Then, it waits until the freshness predicate of line 7

is satisfied. As pi is correct, each correct process pk receives READ(j, rsn), and sends back to pi a

message STATE(rsn,wsn), where wsn is the sequence number of the last value of REG [j] it knows

(line 15). It follows that pi receives a message STATE(j,−) from at least (n − t) correct processes.

Let STATE(j, wsn1), · · · , STATE(j, wsnn−t) be these messages.

To show that the wait of line 7 terminates we have to show that the freshness predicate regi[j].sn ≥
max(wsn1, · · · , wsnn−t) is eventually satisfied. Let wsn be one of the previous sequence numbers,

and pk the correct process that send it. This means that regk[j].sn = wsn (line 15), from which

we conclude (as pk is correct) that pk has previously brb-delivered a message WRITE(−, wsn) and

updated accordingly regk[j] at line 13 (let us remember that this is the only line at which the local

register regk[j] is updated). It follows from Lemma 30 that eventually pi brb-delivers the message

WRITE(−, sn). It follows then from line 13 that eventually we have regi[j].sn ≥ sn. As this is true

for any sequence number in {wsn1, ..., wsnn−t}, it follows that the freshness predicate is eventually

satisfied, and consequently the wait statement of line 7 is satisfied.

Let us now consider the wait statement of line 10, which appears after pi has broadcast the mes-

sage CATCH UP(j, wsn), where wsn = regi[j].sn (the sequence number in regi[j] just after pi



Chapter 9. Atomic Read/Write Registers in the Presence of Byzantine Processes 165

stopped waiting at line 7). We show that any correct process sends an acknowledgment message

CATCH UP DONE(j, wsn) back to pi at line 17. Process pi updated regi[j].sn to wsn at line 13,

and this occurred when it brb-delivered a message WRITE(−, wsn). The reasoning is the same as in

the previous paragraph, namely, it follows from Lemma 30 that all correct processes brb-deliver this

message and consequently we have regk[j].sn ≥ wsn at every correct process pk. Hence, the value

resynchronization predicate of line 16 is eventually satisfied at all correct processes, which conse-

quently send back a message CATCH UP DONE(j, wsn) at line 17, which concludes the proof of the

lemma. �Lemma 33

9.5.3 Proof of the Consistency (Atomicity) Properties

Lemma 34. It is possible to associate a single sequence of values Hi with each register REG [i].
Moreover, if pi is correct, Hi is the sequence of values written by pi in REG [i].

Proof To define Hi let us consider all the messages WRITE(−, sn) brb-delivered from a (correct or

faulty) process pi by the correct processes (due to Lemma 30, these messages are brb-delivered to all

correct processes). Let us order these messages according to their processing order as defined by the

predicate of line 12. Hi is the corresponding sequence of values. (Let us notice that, if pi is Byzantine,

it is possible that some of its messages WRITE() are brb-delivered but never processed at lines 12-14;

such messages if any are never added to Hi).

Let us now consider the case where pi is correct. It follows from the BRB-validity property of

the brb-broadcast abstraction that any message brb-delivered from pi, was brb-broadcast by pi. It then

follows from lines 1-2 that Hi is the sequence of values written by pi. �Lemma 34

Lemma 35. Let pi and pj be two correct processes. If read[i, j, x] terminates before write[j, y] starts,

we have x < y.

Proof Let pi be a correct process that returns value v from the invocation of REG [j].read(). Let

regi[j] = 〈v, x〉 be the pair obtained by pi at line 8, i.e., v = Hj [x] and regi[j].sn ≥ x when

read[i, j, x] terminates.

As write[j, y] defines Hj [y], it follows that a message WRITE(−, y) is brb-delivered from pj at

each correct process pk which executes regk[j] ← 〈−, y〉 at line 13. As this occurs after read[i, j, x]
has terminated, we necessarily have x < y. �Lemma 35

Lemma 36. Let pi and pj be two correct processes. If write[i, x] terminates before read[j, i, y] starts,

we have x ≤ y.

Proof Let pi be a correct process that returns from its xth invocation of REG [i].write(). It fol-

lows from line 1 that the sequence number x is associated with the written value. It follows from

the brb-broadcast of the message WRITE(v, x) issued by pi (line 2), and its brb-delivery (line 12) at

each correct process (the BRB-uniformity of the BRB-broadcast), that pi receives (n − t) messages

WRITE DONE(x) (line 3). Let Q1 be this set of (n − t) processes that sent these messages (line 14).

Let us notice that there are at least (n − 2t) correct processes in Q1 and, due to line 13, any of them,

say pk, is such that regk[i].sn ≥ x.

Let pj be a correct process that invokes REG [i].read(). The freshness predicate of line 7 blocks

pj until regj [i].sn ≥ max(wsn1, ..., wsnn−t). Let Q2 be the set of the (n− t) processes that sent the

messages STATE() (line 15) which allowed pj to exit the wait statement of line 7.

It follows from Lemma 31 that at least one correct process pk belongs to Q1 ∩ Q2. Hence, when

pi returns from REG [i].write() it received the message WRITE DONE(x) from pk, and we then have

regk[i].sn ≥ x. As REG [i].read() by pj started after REG [i].write() by pi terminated, when pk sends
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the message STATE(−, regk[i].sn) to pj , we have regk[i].sn ≥ x. It follows that, when pj exits the

wait statement at line 8 we have regj [i].sn ≥ x, which concludes the proof of the lemma. �Lemma 36

Lemma 37. Let pi and pj be two correct processes. If read[i, k, x] terminates before read[j, k, y]
starts, we have x ≤ y.

Proof Let us consider process pi. When it terminates read[i, k, x], it follows from the messages

CATCH UP() and CATCH UP DONE() (lines 9-10 and lines 16-17) that pi received the acknowledgment

message CATCH UP DONE(k, x) from (n − t) different processes. Let Q1 be this set of (n − t)
processes. Let us notice that there are at least (n − 2t) correct processes in Q1, and for any of them,

say p�, we have reg�[k].sn ≥ x.

When pj invokes REG [k].read() it broadcasts the message READ() and waits until the freshness

predicate is satisfied (line 7). The messages STATE(−,−) it receives are from (n − t) different pro-

cesses. Let Q2 be this set of (n− t) processes.

It follows from Lemma 31 that at least one correct process p� belongs to Q1∩Q2. According to the

fact that read[i, k, x] terminates before read[j, k, y] starts, it follows that p� sent CATCH UP DONE(k, x)
to pi before sending the message STATE(−, s) to pj . As reg�[k].sn never decreases, it follows that

x ≤ s. It finally follows that, when the freshness predicate is satisfied at pj , we have regj [k].sn ≥ s.

As y = regj [k].sn (lines 8-11), it follows that x ≤ y, which concludes the proof. �Lemma 37

9.5.4 Piecing Together the Lemmas

Theorem 38. The algorithm described in Fig. 9.5 implements an array of n SWMR atomic registers

(one per process) in the system model BAMPn,t[t < n/3].

Proof The proof follows from Lemmas 32-37. �Theorem 38

9.6 Building Objects on Top of SWMR Byzantine Registers

This section presents two objects illustrating the use of an SWMR shared memory build on top of

BAMPn,t[t < n/3]. Both these objects assume that, not only can each register REG [i] be written by

pi, but pi can write it only once. Hence, the underlying shared memory REG [1..n] is made up of n
write-once SWMR atomic registers. It is easy to modify (simplify) the algorithm presented in Fig. 9.5

to obtain write-once registers. This is left to the reader, and constitutes Exercise 1 of Section 9.9.

9.6.1 One-shot Write-snapshot Object

Definition A one-shot write-snapshot object provides the processes with a single operation denoted

write snapshot(). This operation has a single parameter, namely the value that the invoking process

wants to write in the object. A process pi can invoke write snapshot() at most once (whereas, there

is no control on the number of times a Byzantine process invokes write snapshot()). This operation

returns to the invoking process pi a set outputi made up of pairs 〈j, w〉, where w is the value written

by the process pj . A one-shot write-snapshot object is defined by the following properties:

• Termination. The invocation of write snapshot(v) by a correct process pi terminates.

• Self-inclusion. If pi is correct and invokes write snapshot(v), then 〈i, v〉 ∈ outputi.

• Containment. If both pi and pj are correct and invoke write snapshot(), then outputi ⊆
outputj or outputj ⊆ outputi.

• Validity. If both pi and pj are correct and 〈j, w〉 ∈ outputi, then pj invoked write snapshot(w).
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The algorithm The internal representation of the write-snapshot object is an array (REG [1..n]) of

write-once SWMR atomic registers. It is assumed that REG [1..n] is initialized to [⊥, . . . ,⊥], and all

correct processes invoke write snapshot(). Each process manages two auxiliary variables aux1 and

aux2.

operation write snapshot(vi) is

(1) REG [i].write(vi);
(2) for x ∈ {1, ..., n} do aux1[x] ← REG[x].read() end for;

(3) for x ∈ {1, ..., n} do aux2[x] ← REG[x].read() end for;

(4) while (aux1 �= aux2) do

(5) aux1[1..n] ← aux2[1..n];
(6) for x ∈ {1, ..., n} do aux2[x] ← REG[x].read() end for

(7) end while;

(8) outputi ← { 〈j, aux1[j]〉 | aux1[j] �= ⊥ };

(9) return(outputi).

Figure 9.6: One-shot write-snapshot in BAMPn,t[t < n/3] (code for pi)

The algorithm implementing the operation write snapshot() is very simple (Fig. 9.6). The in-

voking process pi first deposits its value in REG [i] (line 1), and issues an asynchronous “sequential

double scan” (lines 2-3). If the sequential double scan is not successful (line 4), it executes other

double scans (lines 2-3) until a pair of them is successful, i.e., aux1[1..n] = aux2[1..n]. After the

successful double scan, pi computes its output outputi, namely, a set containing the pairs 〈j, w〉 such

that w is the value written by pj (as known by the last successful double scan).

Proof of the algorithm The termination of the algorithm follows directly from the bounded number

of processes, and the fact that each register REG [i] is a one-write register. The validity and self-

inclusion are trivial. The containment property follows from the fact that the number of non-⊥ entries

can only increase.

9.6.2 Correct-only Agreement Object

Definition and assumptions A correct-only agreement object is a one-shot object that provides

processes with a single operation denoted correct only agreement(). This operation is used by each

process to propose a value and decide (return) a set of values. A decided set contains only values

proposed by correct processes and the decided sets satisfy the containment property. It is assumed that

n > (w + 1)t, where w > 1 is the maximal number of distinct values that can be proposed by the

correct processes in an execution.

A correct-only agreement object is defined by the following properties. As in the previous section,

outputi denotes the set of values output by a correct process pi.

• Termination. The invocation of correct only agreement() by a correct process pi terminates.

• Containment. If both pi and pj are correct and invoke correct only agreement(), then outputi ⊆
outputj or outputj ⊆ outputi.

• Validity. The set outputi returned by a correct process pi is not empty and does not contain

values proposed only by Byzantine processes.

The algorithm The algorithm implementing the operation correct only agreement(), is described

in Fig. 9.7. This algorithm is almost the same as the algorithm implementing the previous operation

write snapshot(). The modified lines are prefixed by “M”, and concern the predicate used at line M4,

and the computation of the output at line M8.
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More precisely, a successful double scan is still necessary to exit the while loop, but is no longer

sufficient. In addition, a process pi must observe there is at least one value that has been proposed by

(t + 1) processes (i.e., by at least one correct process). Finally, the output outputi contains all the

values that, from pi’s point of view, have been proposed by at least (t+ 1) processes.

operation correct only agreement(vi) is

(1) REG[i].write(vi);
(2) for x ∈ {1, ..., n} do aux1[x] ← REG[x] end for;

(3) for x ∈ {1, ..., n} do aux2[x] ← REG[x] end for;

(M4) while [(aux1 �= aux2) ∨ (�v : |{j : aux1[j] = v}| > t)] do

(5) aux1 ← aux2;

(6) for x ∈ {1, ..., n} do aux2[x] ← REG[x] end for

(7) end while;

(M8) outputi ← { v : |{j : aux1[j] = v}| > t};

(9) return(outputi).

Figure 9.7: Correct-only agreement in BAMPn,t[t < n/(w + 1)]

Proof of the algorithm As previously, the containment property is a consequence of the fact that

the writes in the array REG [1..n] are atomic, and the number of non-⊥ entries can only increase. The

termination property is a consequence of the following observations: (a) there is a bounded number of

processes, (b) the registers are write-once atomic registers, and (c) the condition n > (w + 1)t. The

validity follows from the condition n > (w+1)t (hence there is at least one value that appears (t+1)
times), and the predicate of line M4.

Remark Both the previous objects share the same termination and containment properties. They

can be seen as dual in the following sense. One-shot write-snapshot satisfies self-inclusion and a

weak validity property, while correct-only agreement is not required to satisfy self-inclusion, but is

constrained by a stronger validity property. As we have seen, both objects can be implemented by the

same generic algorithm whose instances differ essentially in the predicate used to exit the while loop

(line 4).

9.7 Summary

This chapter addressed the implementation of single-writer/multi-reader registers in asynchronous

message-passing systems where processes may commit Byzantine failures. It has first shown that

(t < n/3) is a necessary condition for such a construction. It has then presented an t-resilient algo-

rithm which builds an array of n SWMR atomic registers (one per process) in such a context (system

model BAMPn,t[t < n/3]). This algorithm relies on an underlying reliable broadcast, an appropri-

ate freshness predicate and a value resynchronization mechanism which ensure that a correct process

always reads up-to-date values. A read operation costs O(n) protocol messages, while a write opera-

tion costs O(n2) messages. It is important to notice that SWMR atomic registers can be implemented

without using cryptography notions.

The fact that SWMR registers are considered is due to the following observation: as a Byzantine

process can corrupt any register it can write, the design of multi-writer/multi-reader registers with

non-trivial correctness guarantees is impossible in the presence of Byzantine processes. Whereas the

values written in the SWMR register associated with a non-Byzantine process cannot be corrupted by

a Byzantine process.
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9.8 Bibliographic Notes

• Byzantine process failures were introduced in [263, 342] in the context of synchronous dis-

tributed systems.

• The impossibility proof stated in Theorem 37 is from [230]. The algorithm presented in Sec-

tion 9.4 is due to A. Mostéfaoui, M. Petrolia, M. Raynal, and Cl. Jard [311].

• As far as we know, the first algorithm building SWMR atomic read/write registers in the system

model BAMPn,t[t < n/3] is the one presented in [230]. In this algorithm, each register REG [j]
is locally represented at each process pi by the sequence of all the values written by pj in

REG [j]. This article also presents implementations of high level objects on top of SWMR

atomic registers that cope with Byzantine processes.

• Byzantine-tolerant broadcast was investigated in [81, 235, 325] (see also Chapter 4 and [88, 89]).

• The construction of Byzantine-tolerant objects was investigated in [241, 275].

• The topological structure of executions with Byzantine processes was investigated in [214, 286,

287].

• The ABD algorithms were introduced in [36] (see Chapter 6).

• The one-shot write-snapshot object and the correct-only agreement objects, and the associ-

ated algorithms, presented in Section 9.6 are due to D. Imbs, S. Rajsbaum, M. Raynal, and

J. Stainer [230]. The one-shot write-snapshot object is a variant of an object called immediate

snapshot object, defined by E. Borowsky and E. Gafni in [76].

• This chapter has considered the peer-to-peer model in which each process has both the role

of a client (when it invokes an operation) and the role of a server (where it manages a local

representation of the state of the implemented registers).

In the clients/servers distributed model, some processes are clients while other are servers. Sev-

eral articles have addressed the design of servers implementing a shared memory accessible by

clients. The servers are usually managing a set of disks (e.g., [111, 1, 280]). Moreover, while

they consider that some servers can be Byzantine, some articles restrict the failure type allowed

to clients. As an example, [131, 203] explore efficiency issues (relation between resilience and

fast reads) in the context where only servers can be Byzantine, while clients (the single writer

and the readers) can fail by crashing.

As other examples, [1] considers that clients can only commit crash failures, while [38] consid-

ers that clients can only be “semi-Byzantine” (i.e., they can issue a bounded number of faulty

writes, but otherwise respect their code). The algorithm presented in [278] allows clients and

some number of servers to be Byzantine, but requires clients to sign their messages. As far as

we know, [25] was the first paper considering Byzantine readers while still offering maximal

resilience (with respect to the number of Byzantine servers) without using cryptography. How-

ever, the writer can fail only by crashing, and the fact that a – possibly Byzantine – reader does

not write a fake value in a register (to ensure the “reads have to write” rule required to implement

atomicity) is ensured only with some probability.

9.9 Exercises and Problems

1. A one-write SWMR atomic register is a register that can written only once. Modify the al-

gorithm described in Fig. 9.5 so that it implements an array REG [1..n] of one-write SWMR

atomic registers.

2. Is the one-shot write-snapshot object presented in Section 9.6 an atomic object?

If it is atomic, you have to associate a linearization point with each operation invocation, such

that no two invocations have the same linerarization point, and, for any two operations op1 and
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op2, if op1 terminates before op2 starts, the linearization point of op1 appears before the one of

op2. If it is not atomic, you have to show that there are executions of the one-shot write-snapshot

object for which it is impossible to build a linearization (atomicity line) as just described.

Solution in [230].

3. Same question with the correct-only agreement object.

Solution in [230].



Part IV

Agreement in Synchronous Systems

This part of the book, made up of five chapters, is on distributed agreement abstractions in synchronous

messages-passing systems prone to crash or Byzantine process failures (system models CSMPn,t[∅]
and BSMPn,t[∅]). These abstractions are: consensus, interactive consistency (also called vector con-

sensus), k-set agreement, simultaneous consensus, and non-blocking atomic commit. In these prob-

lems, each process proposes a value, and the correct processes must agree (decide) on a common

value.

• Chapter 10 defines two agreement abstractions, namely consensus and interactive consistency,

and presents round-based algorithms that implement them in the presence of synchrony and

process crash failures (system model CSMPn,t[∅]). The chapter also shows that (t + 1) is a

lower bound on the number of rounds for such algorithms (let us remember that t is the upper

bound on the number of process crashes allowed in the model).

• While the previous chapter proves that there are runs in which the failure pattern forces any

algorithm to execute at least (t+ 1) rounds, Chapter 11 addresses the early decision issue, i.e.,

the possibility for the processes to decide in less than (t+1) rounds in favorable circumstances.

Those are when few processes crash, or when the values proposed by the processes satisfy a

predefined input pattern. Another possibility to expedite synchronous consensus consists in

enriching the underlying synchronous system with a fast failure detector.

• Chapter 12 presents two important variants of consensus. The first one, called simultaneous

consensus, requires that the processes decide (agree) during the very same round (which has to

be as early as possible). The second one consists in a weakening of the consensus agreement

property. Called k-set agreement, it allows the processes to decide on at most k different values

(1 ≤ k < n).

• Chapter 13 addresses the non-blocking atomic commit (NBAC) agreement abstraction. This

is an agreement problem in which the processes have to vote (yes or no) and decide a value

(commit or abort) according to their votes and the process failure pattern which occurs during

the execution. The chapter introduces the problem, presents the notions of fast commit, fast

abort, and associated computability tradeoffs, and corresponding algorithms.

• Finally, Chapter 14 focuses on consensus in the synchronous Byzantine model BSMPn,t[∅]. It

first shows that t < n/3 is a necessary requirement to solve consensus in this computing model.

It then presents several algorithms solving consensus in BSMPn,t[t < n/3].
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Chapter 10

Consensus and Interactive Consistency

in Synchronous Systems

Prone to Process Crash Failures

This first chapter on agreement in synchronous systems focuses on the consensus and interactive con-

sistency (also called vector consensus) agreement abstractions. It first defines these abstractions, and

presents algorithms that build them in the presence of any number of process crashes in the system

model CSMPn,t[∅]. All these algorithms are round-based (as defined in the system model). The chap-

ter also shows that (t+ 1) is a lower bound on the number of rounds for any algorithm implementing

these abstractions in the system model CSMPn,t[∅].

Keywords Agreement, Binary vs multivalued, Atomic crash, Atomic round, Consensus, Conver-

gence, Hamming distance, Interactive consistency, Lower bound, Process crash failure, Round-based

algorithm, Uniformity, Valence, Vector consensus, Synchronous system.

10.1 Consensus in the Crash Failure Model

10.1.1 Definition

Consensus in the process crash failure model The consensus problem is one of the most celebrated

problems of fault-tolerant distributed computing. It abstracts a lot of problems where – in one way

or another – processes have to agree. This problem can be captured by a distributed object, i.e., a

distributed agreement abstraction defined as follows.

The consensus abstraction provides the processes with a single operation denoted propose() which

takes a value as an input parameter, and returns a value. If a process pi invokes propose(vi) and obtains

the value w, we say “pi proposes vi”, and “pi decides w”. This agreement abstraction is defined by

the following properties, where CC stands for consensus in the crash failure model. The definition is

the same for both the synchronous model CSMPn,t[∅] and the asynchronous model CAMPn,t[∅]. It

is assumed that all processes invoke the operation propose() (hence, this is a one-shot operation).

• CC-validity. A decided value is a proposed value.

• CC-agreement. No two processes decide different values.

• CC-termination. Each correct process decides a value.

The CC-validity and CC-agreement properties define the safety property of consensus. CC-validity

relates the outputs to the inputs (the output is not a predefined value, which would make the problem

trivial and not application-relevant), and CC-agreement defines the quality of the output (there is a
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single decided value). CC-termination is a liveness property stating that the invocation of propose()
by a correct process always terminates.

Consensus objects are one-shot objects. This means that, if CONS is a consensus object, a process

invokes CONS .propose() once (if it does not crash before the invocation).

Consensus as an input vector/output vector relation Fig. 1.5 (Section 1.3) has shown that some

distributed computing problems can be captured as an input/output relation on vectors of size n, where

the input vector I is such that I[i] represents the input of pi, and the output vector O is such that O[i]
represents the output of pi.

The consensus abstraction can be expressed in terms of such a relation. An input vector I is the

vector containing the values proposed by the processes. Given an input vector I , several output vectors

O are possible. Those are the vectors containing the same value v in all their entries, where v is any

value present in the input vector I .

Uniform vs non-uniform consensus The previous definition is sometimes called uniform consen-

sus, in the sense that it does prevent a process that decides and then crashes from deciding differently

from the correct processes. A weaker version of the problem, called non-uniform consensus, allows

a process that crashes to decide differently from the other processes. It is defined by the same CC-

validity and CC-termination properties plus the following weaker agreement property.

• Non-uniform CC-agreement. No two correct processes decide different values.

More generally, when considering the process crash failure model, a uniform property directs any

process that crashes to behave as a correct process (before crashing). In the case of consensus, it is not

because a process crashes after having decided that it is allowed to decide a value different from the

one decided by the correct processes.

In the following, except when explicitly indicated, we always consider uniform properties.

Lower bound As we will see, consensus can be solved in the synchronous crash failure model for

any value t < n, i.e., in the unconstrained system model CSMPn,t[∅].

Binary vs multivalued consensus Let V be the set of values that can be proposed to a consensus

object. If |V| = 2, the consensus is binary. In this case, it is usually considered that V = {0, 1}. If

|V| > 2, the consensus is multivalued. In this case, the set V can be finite or infinite.

10.1.2 A Simple (Unfair) Consensus Algorithm

A simple consensus algorithm A process pi invokes the operation propose (vi) where vi is the value

it proposes. It terminates when it executes the statement return(v) and v is then the value it decides.

The principle of the algorithm is pretty simple. As at most t processes may crash (model assump-

tion), any set of (t+1) processes contains at least one correct process. (If more than t processes crash,

we are outside the model. In that case there is no guarantee. More generally, if an algorithm is used

in a more severe failure model than the one it is intended for, it is allowed to behave arbitrarily.) It

follows that taking any set of (t + 1) processes we can always rely on one of them to ensure that a

single value is decided.

The corresponding algorithm is described in Fig. 10.1. Each process manages a local variable esti
that contains its estimate of the decision value; esti is consequently initialized to vi (line 1). Then, the

processes execute synchronously (t + 1) rounds (line 2), each round being coordinated by a process,

namely, round r is coordinated by process pr. The coordinator of round r broadcasts its current

estimate (message EST(), line 4). Let us notice that, as a round is coordinated by a single process,

there is at most one value broadcast per round. During a round, a process pi updates its estimates esti
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if it receives the current estimate of the current round coordinator (line 5). Finally, at the end of the

last round, pi decides (returns) the current value of its estimate esti.

operation propose (vi) is

(1) esti ← vi;
(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(4) if (i = r) then broadcast EST(esti) end if;

(5) if (EST(v) received during round r) then esti ← v end if;

(6) if (r = t+ 1) then return(esti) end if

(7) end synchronous round.

Figure 10.1: A simple (unfair) t-resilient consensus algorithm in CSMPn,t[∅] (code for pi)

Theorem 39. Let 1 ≤ t < n. The algorithm described in Fig. 10.1 solves the consensus problem in

the system model CSMPn,t[∅].

Proof The CC-validity property (a decided value is a proposed value) is trivial. The CC-termination

property (every correct process decides) is an immediate consequence of the synchrony assumption:

the system automatically progresses from one round to the next one (with the guarantee that the mes-

sages sent in a round are received in the very same round).

The CC-agreement property (no two processes decide differently) is an immediate consequence

of the following observation. Due to the assumption on the maximum number t of processes that may

crash, there is at least one round that is coordinated by a correct process. Let pc be such a process.

When r = c, pc sends its current estimate estc = v to all the processes, and any process pj that has not

crashed updates estj to v. It follows that all the processes that have not crashed by the end of round r
have their estimates equal to v, and consequently no other value can be decided. �Theorem 39

Time and message complexities The algorithm requires (t + 1) rounds. Moreover, at most one

message is broadcast at each round, i.e., (n−1) messages. Let b be the bit size of the proposed values.

The bit complexity is consequently (n− 1)(t+ 1)b.

Unfairness with respect to proposed values While correct, the previous algorithm has the follow-

ing “drawback”: for any j ∈ {(t + 1), . . . , n}, there is no run in which the value vj proposed by pj
can be decided (if vj is not a value proposed by a coordinator process). In that sense, the algorithm is

unfair.

This unfairness can be eliminated by adding a preliminary shuffle round (r = 0) during which

the processes exchange their values. This is done by inserting the statements “broadcast EST(esti);
esti ← any estimate value received” between line 1 and line 2. This makes the algorithm fair, but is

obtained at the additional cost of one round.

10.1.3 A Simple (Fair) Consensus Algorithm

Let us remember that the input vector of a given a run is the size n vector such that, for any j, its j-th

entry contains the value proposed by pj . No process pi initially knows this vector, it only knows the

value it proposes to that consensus instance.

Principle of the algorithm The idea is for a process to decide, during the last round, a value accord-

ing to a deterministic rule among all the values it has seen. An example of a deterministic rule is to

select the smallest value. This is the rule we consider here. This value is kept in the local variable esti
(initialized to vi, the value proposed by pi).
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Let us observe that, if a process pi does not crash and proposes the smallest input value, that value

will be decided whatever the values proposed by the other processes. Hence, for any process pi, there

are (a) input vectors in which no two processes propose the same value, and (b) failure patterns, such

that the value proposed by pi is decided in the current run. The algorithm is fair in that sense.

The algorithm is described in Fig. 10.2. The processes execute (t+1) synchronous rounds (line 2).

The idea is for a process pi to broadcast the smallest estimate value it has ever received during each

round. But a simple observation shows that this is required only if its estimate became smaller during

the previous round (line 4). To this end, pi manages a local variable denoted prev esti that contains

the smallest value it has previously sent (line 6). This variable is initialized to the default value ⊥ (a

value that cannot be proposed to the consensus by the processes).

During a round r, the set recvali contains the estimate values received by pi during the current

round r (line 5). Due to the synchrony assumption, it contains all estimate values sent to pi during this

round. Before proceeding to the next round, pi updates esti (line 7). If r is the last round (r = t+ 1),

pi decides by invoking return(esti) (line 8).

operation propose (vi) is

(1) esti ← vi; prev esti ← ⊥;

(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(4) if (esti �= prev esti) then broadcast EST(esti) end if;

(5) let recvali = {values received during round r};

(6) prev esti ← esti;
(7) esti ← min(recvali ∪ {esti});
(8) if (r = t+ 1) then return(esti) end if

(9) end synchronous round.

Figure 10.2: A simple (fair) t-resilient consensus algorithm in CSMPn,t[∅] (code for pi)

Theorem 40. Let 1 ≤ t < n. The algorithm described in Fig. 10.2 solves the consensus agreement

abstraction in the system model CSMPn,t[∅].

Proof As in the previous algorithm, the CC-validity and CC-termination properties are trivial. Hence,

we consider only the CC-agreement property.

If a single process decides (we have then t = n− 1 and t processes crash), the agreement property

is trivially satisfied. Hence, let us suppose that at least two processes pi and pj decide. Moreover, let

us assume that pi decides v, and pj decides v′. We show that v = v′. Assuming process px has not

crashed by the end of round r, let estrx denote the value of estx at the the end of round r.

As both pi and pj decide, both execute t + 1 rounds. Let us consider pi. It “learns” (receives for

the first time) the value v at some round r (with r = 0 if v = vi the value proposed by pi itself). As pi
decides v = estri and esti cannot increase, we have estri = · · · = estt+1

i . There are two cases.

• Case 1: r < t + 1 (r is not the last round, and consequently r + 1 does exist). In this case, pi
broadcast EST(v) during round r+ 1 ≤ t+ 1. As pj executes the round r+ 1, it receives v and

we have estr+1
j ≤ v. As estj never increases, we have estt+1

j ≤ v.

• Case 2: r = t+1. In this case, pi learns v at round t+1 and there are no more rounds to forward

v to the other processes. As (a) a process broadcasts a value v at most once, and (b) pi receives v
for the first time at round (t+1), it follows that v has been forwarded (broadcast) along a chain

of (t+1) distinct processes. Due to the model assumption, at least one of these (t+1) processes

(say px) is correct. As it is correct, px broadcast EST(v) during a round r, 1 ≤ r ≤ t + 1. (Let

us also observe that we necessarily have r = t + 1, otherwise pi would have received EST(v)
before the last round.) This is depicted on Fig. 10.3 where t = 3, each arrow is associated with

a message EST(v), and a cross indicates the crash of the corresponding process. It follows that

all processes that execute round r are such that estrj ≤ v, and consequently estt+1
j ≤ v.
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Figure 10.3: The second case of the agreement property (with t = 3 crashes)

As v = estt+1
i , it follows that we have estt+1

j ≤ estt+1
i . A symmetry argument where pi and pj are

exchanged allows us to conclude that estt+1
j ≤ estt+1

i . Hence, estt+1
j = estt+1

i , which concludes the

proof of the theorem. �Theorem 40

Time and message complexities As with the previous algorithm, this algorithm requires (t + 1)
rounds.

During a round, a process send at most (n − 1) messages (we do not count the message it sends

to itself), and each message is made up of b bits. Moreover, due to the fact that a process sends an

estimate value only if it is smaller than the previous one, a process issues at most min(t + 1, |V|)
broadcasts, where V is the set of values that are proposed. It follows that the bit complexity of the

algorithm is upper bounded by n(n− 1)b×min(t+ 1, |V|).
Interestingly, in the case of binary consensus we have b = 1 and |V| = 2. The bit complexity is

then 2n(n− 1).

10.2 Interactive Consistency (Vector Consensus)

While consensus is an agreement abstraction on a value proposed by the processes, interactive consis-

tency is agreement abstraction where the processes agree on the input vector of the proposed values.

This is why it is sometimes named vector consensus.

10.2.1 Definition

Similar to consensus each process proposes a value. As just indicated, the processes now have to agree

on the vector of proposed values. A process can crash before or while it is executing the algorithm. In

this case, its entry in the decided vector can be ⊥. More precisely, interactive consistency in the crash

failure model (ICC) is defined by the following properties.

• ICC-validity. Let Di[1..n] be the vector decided by a process pi. ∀ j ∈ [1..n] : Di[j] ∈ {vj ,⊥}
where vj is the value proposed by pj . Moreover, Di[j] = vj if pj is correct.

• ICC-agreement. No two processes decide different vectors.

• ICC-termination. Every correct process decides on a vector.

Let us notice that, if Di[j] = ⊥ and pi is correct, it knows that pj crashed. Whereas, if Di[j] �= ⊥, pi
cannot conclude that pj is correct.

It is easy to see solve consensus from interactive consistency. As all the processes that decide

obtain the same vector, they can use the same deterministic rule to select one of its non-⊥ values.

However, interactive consistency cannot be solved from consensus. This is because, the value decided

by a consensus instance is the value proposed by any process. It follows that, in the system model
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CSMPn,t[∅], interactive consistency is a stronger (from a commputability point of view) abstraction

than consensus.

10.2.2 A Simple Example of Use: Build Atomic Rounds

Atomic round: definition The crash of a process pi during a round r is atomic if the message that

pi is assumed to broadcast during this round is received by none or all its (non-crashed) destination

processes. If during a round, all crashes are atomic, the round is an atomic round.

Let the synchronous atomic round-based model be the basic model CSMPn,t[∅], in which:

• each process broadcasts a message at every round, and

• all crashes are atomic (i.e., all rounds are atomic).

Such a synchronous model simplifies drastically the design of distributed synchronous algorithms.

This is because it follows from the previous behavioral properties that all the processes that terminate

a round r received exactly the same messages during every round r′, 1 ≤ r′ ≤ r.

From interactive consistency to the atomic round-based model It is consequently worth design-

ing an algorithm that simulates the atomic round-based model on top of the base synchronous model

CSMPn,t[∅]. Among its many applications, this is exactly what is done by interactive consistency.

The simulation is as follows. Assuming that each process pi broadcasts a message during each

round, let us call ρ the rounds in the atomic round-based model. Considering any round ρ, let mρ
i

be the message broadcast by pi during this round of the atomic round-based model. The send and

receive phases of such a round ρ are implemented by an interactive consistency instance where mρ
i is

the value proposed by process pi to this instance. It follows from its specification that all the processes

that terminate the interactive consistency instance associated with round ρ of the atomic round-based

model, obtain the very same vector D[1..n], such that D[j] ∈ {mρ
j ,⊥} and is mρ

j if pj has not crashed

by the end of this interactive consistency instance. Hence, as we are about to see, each round ρ of the

atomic round-based model can be implemented with (t + 1) rounds of the underlying synchronous

round-based model CSMPn,t[∅].

10.2.3 An Interactive Consistency Algorithm

Principle of the algorithm The interactive consistency algorithm presented in Fig. 10.4 is based on

the same principle as the consensus algorithm described in Fig. 10.2, namely, at every round, each

process broadcasts what it learned during the previous round, which is now a set of pairs 〈 process id,

proposed value〉.
Given a process pi, the local variable viewi represents its current knowledge of the values proposed

by the other processes, more precisely, viewi[k] = v means that pi knows that pk proposed value v,

while viewi[k] = ⊥ means that pi does not know the value proposed by pk. Initially, viewi contains

only ⊥s, but its ith entry contains vi (line 1).

In order to forward the value of a process only once, the algorithm uses pairs 〈k, v〉 to denote that

“pk proposed value v”. The local variable newi is a (possibly empty) set of such pairs 〈k, v〉. At the

end of a round r, newi contains the new pairs that pi learned during this round (lines 9-13). Hence,

initially newi = {〈i, vi〉} (line 1).

• Send phase (line 4). The behavior of a process pi is simple. When it starts a new round r, pi
broadcasts EST(newi), if newi �= ∅, to inform the other processes of the pairs it has learned

during the previous round.

• Receive phase (lines 5-7). Then, pi receives round r messages and saves their values in the local

array recfromi [1..n]. Let us observe that it is possible that a process receives no message at

some rounds.)
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• Local computation phase (lines 8-14). After having reset newi, pi updates its array viewi ac-

cording to the pairs it has received. Moreover, if pi learns (i.e., receives for the first time) a pair

〈k, v〉 during the current round, it adds it to the set newi. Finally, if r is the last round, pi returns

viewi as the vector it decides on.

operation propose (vi) is

(1) viewi ← [⊥, . . . ,⊥]; viewi[i] ← vi; newi ← {〈i, vi〉};

(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(4) if (newi �= ∅) then broadcast EST(newi) end if;

(5) for each j ∈ {1, . . . , n} \ {i} do

(6) if (newj received from pj) then recfromi [j] ← newj else recfromi [j] ← ∅ end if;

(7) end for;

(8) newi ← ∅;

(9) for each j such that (j �= i) ∧ (recfromi [j] �= ∅) do

(10) for each 〈k, v〉 ∈ recfromi [j] do

(11) if (viewi[k] = ⊥) then viewi[k] ← v; newi ← newi ∪ {〈k, v〉} end if

(12) end for

(13) end for;

(14) if (r = t+ 1) then return(viewi) end if

(15) end synchronous round.

Figure 10.4: A t-resilient interactive consistency algorithm in CSMPn,t[∅] (code for pi)

10.2.4 Proof of the Algorithm

It would be possible to prove that the previous algorithm satisfies the ICC-agreement property using

the same reasoning as in the proof of Theorem 40, i.e., considering the case where a process learns a

pair 〈k, v〉 for the first time during the last round or a previous round. A different proof is given here.

This proof is an immediate consequence of Lemma 38 that follows.

The interest of this lemma lies in the fact that it captures a fundamental property associated with

the round-based synchronous model where, during each round r, each process (that has not crashed)

forwards the values that it has learned during round r−1 (if any). The lemma captures the intuition that

the “distance” separating the local views of the input vector (as perceived by each process) decreases

as rounds progress. To this end, given two vectors viewi and viewj , let dist(viewi, viewj) denote the

Hamming distance separating these vectors, namely, dist(viewi, viewj) = |{x such that viewi[x] �=
viewj [x]}| (number of entries where the vectors differ).

Lemma 38. Let 1 ≤ t < n, 1 ≤ r < t + 1, pi and pj be two processes not crashed at the end

of round r, and viewr
i and viewr

j the value of viewi and viewj at the end of round r. We have

dist(viewr
i , view

r
j ) ≤ t− (r − 1).

Proof Let δ(r) be the maximal Hamming distance between the vectors of any two processes not

crashed by the end of round r. We have to show that δ(r) ≤ t− (r − 1).

Claim C. Let r be a failure-free round, and pi and pj any two processes that have not crashed by the

end of round r. We have δ(r′) = 0 for r ≤ r′ ≤ t+ 1.

Proof of the claim. Let us first observe that, at each round r′′ such that 1 ≤ r′′ ≤ r, both pi and pj send

to the other every new value it has learned during the round r′′ − 1 (Observation O1). Moreover, as

no process crashes during round r, pi and pj have received the same set of messages during that round

(Observation O2). It follows from O1 and O2 that viewi and viewj are equal at the end of round r.

As pi and pj are any pair of processes that terminate round r, it follows that δ(r) = 0. Moreover, as

from round r no process can learn new values, we trivially have δ(r′) = 0 for r ≤ r′ ≤ t+ 1. End of
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proof of the claim.

The proof of the lemma considers the failure pattern in the worst case scenario in which t processes

crash. Let c ≥ 1 be the number of processes that have crashed by the end of the first round. The worst

situation is when, at the end of the first round, a process pi has received all the proposed values (i.e.,

viewi contains only non-⊥ values), while another process pj has received only n− c proposed values

(i.e., viewj has c entries equal to ⊥). It follows that δ(1) ≤ c. From then on, no two vectors can differ

in more than c entries, and consequently we have δ(r) ≤ c for 1 ≤ r ≤ t+ 1. The rest of the proof is

a case analysis, according to the value of r.

• The first case considers the rounds 1 ≤ r ≤ t+ 1− c.
As r ≤ t + 1 − c ≡ c ≤ t − (r − 1), it follows from δ(r) ≤ c for 1 ≤ r ≤ t + 1, that

δ(r) ≤ c ≤ t − (r − 1) for the rounds 1 ≤ r ≤ t + 1 − c, which proves the lemma for these

rounds.

• The second case considers the remaining rounds t+ 1− c < r ≤ t+ 1.

By the end of the first round, c processes have crashed. The worst case scenario for the next

rounds r, 1 ≤ r ≤ t+ 1− c, is when there is a crash per round. Otherwise, due to Claim C, we

would have δ(r′) = 0 from the first round r′, 1 ≤ r′ ≤ t+1− c, during which there is no crash.

Round number r 1 2 . . . r′ . . . t+ 1− c

Number of crashes during r c 1 . . . 1 . . . 1
Total number of crashes c c+ 1 . . . c+ (r′ − 1) . . . t

Table 10.1: Crash pattern

In this worst case, we can conclude that there are no more crashes after the round t + 1 − c.
This is because there are at most t crashes, c before the end of the first round and then one crash

per round from round r = 2 until round r = t + 1 − c. This is depicted in Table 10.1. It then

follows from Claim C that δ(r′) = 0 for t + 1 − c < r′ ≤ t + 1, which concludes the proof of

the lemma.

�Lemma 38

Theorem 41. Let 1 ≤ t < n. The algorithm described in Fig. 10.4 implements the interactive

consistency agreement abstraction in the system model CSMPn,t[∅].
Proof The ICC-termination property follows directly from the message synchrony assumption of the

synchronous model: if a process does not crash, it necessarily progresses until round t+ 1. The ICC-

agreement property follows from Lemma 38: at round t = t+1 we have dist(viewt+1
i , viewt+1

j ) = 0.

The ICC-validity property states that the vector viewi[1..n] decided by a process pi is such that (a)

viewi[k] ∈ {vk,⊥} where vk is the value proposed by pi, and (b) viewi[k] = vk if pk is correct. Let

us assume that pk is correct. It follows from the algorithm that pk broadcasts EST({〈k, vk〉}) during

the first round. Due to the synchrony assumption and the reliability of the communication channels,

process pi receives this message (line 6). Then pi updates accordingly viewi[k] to vk (line 11). Finally,

let us observe that, due to the test of line 11, any entry viewi[x] is set at most once. Consequently

viewi[k] remains forever equal to vk, which concludes the proof of the validity property. �Theorem 41

Time and message complexities As for the previous algorithms, this algorithm requires (t + 1)
rounds. A pair 〈k, v〉 requires b + log2 n bits (where b is the number of bits needed to encode a

proposed value). As a process broadcasts a given pair 〈k, v〉 at most once, the bit complexity of the

algorithm is upper bounded by n2(n − 1)(b + log2 n) bits (assuming a process does not physically

send messages to itself).
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From interactive consistency to consensus Consensus can easily be solved as soon as one has an

algorithm solving interactive consistency. As the processes that decide in the interactive consistency

agreement abstraction decide the very same vector, they can use the same deterministic rule to extract a

non-⊥ value from this vector (e.g., the first non-⊥ value or the greatest value, etc.). The only important

point is that they all use the same deterministic rule.

10.2.5 A Convergence Point of View

This section gives another view on the way the algorithm works. Let VIEW r[1..n] be the vector of

proposed values collectively known by the set of processes that terminate round r. More explicitly,

VIEW r[i] = vi (the value proposed by pi) if ∃ k such that viewr
k[i] = vi, otherwise VIEW r[i] = ⊥.

This means that VIEW r[1..n] is the “union” of the local vectors viewk[1..n] of the processes pk that

terminate round r. This vector represents the knowledge on “which processes have proposed which

values” that an external omniscient observer could have, which would see inside all processes that

terminate round r.

Definition (V 1 ≤ V 2)
def
= ∀x ∈ [1..n] : (V 1[x] �= ⊥)⇒ (V 1[x] = V 2[x]).

The algorithm satisfies the following properties.

Property 1. ∀r ∈ [0..t] : VIEW r+1 ≤ VIEW r.

This property follows from the fact that crashes are stable (once crashed, a process never recovers).

It states that global knowledge cannot increase.

Property 2. ∀i ∈ [1..n] : ∀r ∈ [1..t+ 1] : viewr
i ≤ viewr+1

i .

This property follows from the fact that no value is ever withdrawn by a process pi from its local

array viewi. It states that local knowledge of a process can never decrease.

Property 3. ∀i ∈ [1..n] : ∀r ∈ [1..t+ 1] : viewr
i ≤ VIEW r.

This property states that, at the end of any round r, a process cannot know more than what is

known by the whole set of processes still alive at the end of the round.

The interactive consistency algorithm, based on the fact that global knowledge cannot increase and

local knowledge cannot decrease, is a distributed algorithm that directs the processes to converge to

the same vector VIEW t+1.

10.3 Lower Bound on the Number of Rounds

This section shows that, when considering the synchronous crash-prone model CSMPn,t[∅], any

round-based consensus algorithm that copes with t process crashes requires at least (t + 1) rounds.

This means that there is no algorithm that always solves consensus in at most t rounds (“always”

means “whatever the failure pattern, defined as the subset of processes that crash and the time instants

at which they crash”).

As any algorithm that implements the interactive consistency agreement abstraction can be used to

solve consensus, it follows that (t + 1) is also a lower bound on the number of rounds for interactive

consistency. Moreover, as both consensus and interactive consistency algorithms presented in this

chapter do not direct the processes to execute more than (t+1) rounds, it follows that they are optimal

with respect to the number of rounds.

This lower bound was first proved by M. Fischer and N. Lynch (1982). The following section

presents a proof of it, which is due to M. Aguilera and S. Toueg (1999). The notion of valence used in

the proof is due to M. Fischer, N.A. Lynch, and M.S. Paterson (1985).
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10.3.1 Preliminary Assumptions and Definitions

Assumptions

• It is assumed that, in every round, each process broadcasts a message to all processes.

It is easy to see this assumption does not limit the generality of the result. This is because, it is

always possible to modify a round-based algorithm in order to obtain an equivalent algorithm

using such a sending pattern. If during a round, a process sends a message m to a subset of the

processes only, that message can carry the set of its destination processes and, when a process

pj receives m, it discards it if is is not a destination process.

• The lower bound proof considers the following assumptions. It is easy to see that, like the

previous one, none of them limits the generality of the result.

– The proof considers binary consensus.

– The proof assumes that at least two processes do not crash (i.e., t < n− 1).

– The proof assumes that there is one crash per round.

– The proof considers the non-uniform version of consensus that is weaker than consensus

(it requires only that no two correct processes decide different values).

Global state, valence, and k-round execution

• Considering an execution of a synchronous round-based algorithm A (a run), the global state

at the end round r is made up of the state of each process at the end of this round (if a process

crashed, its local state indicates the round at which it crashed).

Let us notice that the global state at the end of a round is the same as the global state at the

beginning of the next round. Only these global states need to be considered in the proof that

follows. (A global state is sometimes called a configuration.)

Given an initial global state and a failure pattern, the execution of an algorithm A gives rise to a

sequence of global states.

• Let S be a global state obtained during the execution of a binary consensus algorithm A.

– S is 0-valent (resp., 1-valent), if whatever the global states produced by A after S, the

value 0 (resp., 1) only can be decided.

– S is univalent if it is 0-valent or 1-valent.

– S is bivalent if it not univalent.

• A k-round execution Ek of an algorithm A is an execution of A up to the end of round k.

Let Sk be the corresponding global state. Ek is 0-valent, 1-valent, univalent or bivalent if Sk is

0-valent, 1-valent, univalent or bivalent, respectively.

10.3.2 The (t+ 1) Lower Bound

Theorem 42. Let t < n− 1. Let us assume that at most one process crashes in each round. There is

no round-based algorithm that solves binary consensus in t rounds in the system model CSMPn,t[∅].
Proof The proof is by contradiction. It supposes that there is an algorithm A that solves binary

consensus in t rounds, in the presence of t process crashes (one per round). The proof follows from

the two following lemmas that are proved in the next section.

• Lemma 39 shows that any (t− 1)-round execution Et−1 of A is univalent.

• Lemma 41 shows that A has a (t− 1)-round execution Et−1 that is bivalent.

These two lemmas contradict each other, thereby proving the impossibility for A to terminate in t
rounds. Hence the (t+ 1) lower bound. �Theorem 42
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10.3.3 Proof of the Lemmas

Lemma 39. Any (t− 1)-round execution Et−1 of A is univalent.

Proof The proof is by contradiction. Let us assume that A has a bivalent (t − 1)-round execution

Et−1. Let us consider the following three one-round extensions of Et−1 (Fig. 10.5).

E1
t : 1-valent

E01
t

E0
t : 0-valent

no crash

Et−1: bivalent

(St−1)

pi crashes and pj does not receive from pi

pi crashes and pj receives from pi

Figure 10.5: Three possible one-round extensions from Et−1

• Let E0
t be the t-round execution obtained by extending Et−1 by one round in which no process

crashes. As (by assumption) A terminates in t rounds, the correct processes decide by the end

of round t of E0
t . Let us suppose that they decide the value 0.

• As Et−1 is bivalent (contradiction assumption), it follows that it has a one-round extension E1
t

in which the correct processes decide 1.

Let us observe that in round t of E1
t exactly one process (say pi) crashes. (At least one process

crashes because otherwise E0
t and E1

t would be identical, and at most one process crashes

because there is at most one crash per round.)

Moreover, pi must crash before sending its round t message to at least one correct process pj ,
otherwise pj would be unable to distinguish E0

t from E1
t and would consequently decide the

same value in both executions.

• Let us now consider the one-round extension E01
t that is identical to E1

t except that pi sends its

round t message to pj . (This means the only difference between E01
t and E1

t lies in the round t
message from pi to pj that pj receives in E01

t and does not in E1
t .)

Let pk be a correct process different from pj (such a process exists because t < n− 1). We then have

the following:

1. The correct process pj cannot distinguish between E0
t and E01

t . This is because, from its local

state in St−1 (its local state at the end of execution Et−1), process pj has received the same

messages during the last round in both E0
t and E01

t . Hence, it has to decide the same value in

both executions. As it decides 0 in E0
t , it has to decide 0 in E01

t .

2. The correct process pk cannot distinguish between E1
t and E01

t . This is because (as previously

for pj) from its local state in St−1, it has received the same messages during the last round in

both E1
t and E01

t . Hence, it has to decide the same value in both executions. As it decides 1 in

E1
t , it has to decide 1 in E01

t .

It follows that, while both pj and pk are correct in E01
t , they decide differently, which contradicts

the consensus agreement property and concludes the proof of the lemma. �Lemma 39

Lemma 40. The algorithm A has a bivalent initial global state (or equivalently a bivalent 0-round

execution).
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Proof The proof is by contradiction. Assuming that there is no bivalent initial global state, let S0 be

the set of all 0-valent initial global states and S1 be the set of all 1-valent initial global states. As only

0 (resp., 1) can be decided when all processes propose 0 (resp., 1) the set S0 (resp., S1) is not empty.

As these sets are not empty there must be two global states S[0] ∈ S0 and S[1] ∈ S1 that differ only

in the value proposed by one process (say pi).

Let us consider an execution E of A from S[0] in which pi crashes before taking any step. As S[0]
is 0-valent, it follows that the processes decide 0. But, as pi does not participate in E, exactly the same

execution can be produced from S[1], and in this case the processes have to decide 1. In the execution

E, no process can determine whether if the initial global state is S[0] or S[1]. Consequently they have

to decide the same value if E is executed from S[0] or S[1], contradicting the fact that S[0] is 0-valent

while S[1] is 1-valent. �Lemma 40

Lemma 41. The algorithm A has a bivalent (t− 1)-round execution.

Proof The proof shows that for each k, 0 ≤ k ≤ t − 1, there is a bivalent k-round execution Ek. It

is based on an induction on k. The base case k = 0 is exactly what is proved by Lemma 40, namely,

there is a bivalent initial global state S0. The corresponding 0-round execution (in which no process

has yet executed a step) is denoted E0. So, let us consider the following induction assumption: for

each k, 0 ≤ k < t− 1, there is a bivalent k-round execution Ek.

To show that Ek can be extended by one round into a bivalent (k + 1)-round execution Ek+1, the

reasoning is by contradiction. Let us assume that every one-round extension of Ek is univalent. Let

E1
k+1 be the one-round extension of Ek in which no process crashes during this round. Without loss

of generality, let us assume that E1
k+1 is 1-valent. As Ek is bivalent, and all its one-round extensions

are univalent, it has a one-round extension E0
k+1 that is 0-valent (Fig. 10.6).

Ek: bivalent

E1
k+1: 1-valent

E0
k+1: 0-valent

pi crashes during round k + 1

no crash during round k + 1

Figure 10.6: Extending the k-round execution Ek

As (a) E1
k+1 and E0

k+1 are one-round extensions of the same k-round execution Ek, (b) they have

the different valence, and (c) no process crashes during the round k + 1 of E1
k+1, it follows that E0

k+1

is such that there is exactly one process (say pi) that crashes during round k + 1 (“exactly one” is

because at most one process crashes per round), and fails to send its round k + 1 message to some

processes, say the processes q1, . . . , qm with 0 ≤ m ≤ n (m = 0 corresponds to the case where pi
crashes before it sent its round k + 1 message to any process).

Starting from E0
k+1, let us define a sequence of one-round extensions of Ek such that (see Ta-

ble 10.2):

• Ek+1[0] is E0
k+1 (hence, Ek+1[0] is 0-valent), and

• ∀ j, 0 < j ≤ m, Ek+1[j] is identical to Ek+1[j − 1] except that pi crashes after it has sent its

round k + 1 message to qj . It is follows from this definition that pi has sent its round k + 1
message to the processes q1, . . . , qj .

As by assumption all one-round extensions of Ek are univalent, Ek+1[0], etc., until Ek+1[m] are

univalent.

Claim C. ∀ j, 0 ≤ j ≤ m, Ek+1[j] is 0-valent.

Proof of the claim. The proof is by induction. As Ek+1[0] is 0-valent, the claim follows for j = 0.
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(k + 1)-round execution round k + 1 message from pi
not sent to the processes

Ek+1[0]
def
= E0

k+1 q1, q2, . . . , qj , qj+1, . . . , qm
Ek+1[1] q2, . . . , qj , qj+1, . . . , qm
Ek+1[j − 1] qj , qj+1, . . . , qm
Ek+1[j] qj+1, . . . , qm
Ek+1[m− 1] qm
Ek+1[m] ∅

Table 10.2: Missing messages due to the crash of pi

Hence, let us assume that all (k+1)-round executions Ek+1[	], 0 ≤ 	 < j are 0-valent, while Ek+1[j]
is 1-valent. We show that it is not possible.

Let us extend (see Fig. 10.7) the 0-valent execution Ek+1[j − 1] into the execution E0
k+2 and the

1-valent execution Ek+1[j] into the execution E1
k+2 by crashing, in both executions, process qj at the

very beginning of round k + 2 (if it has not crashed before). It follows there is no round after round

k + 1 in which qj sends a message. Let us notice that, as k < t− 1, round k + 2 exists.

Ek+1[j − 1]: 0-valent E0
k+2: 0-valent

E1
k+2: 1-valentEk+1[j]: 1-valent

qj no longer alive during round k + 2

Figure 10.7: Extending two (k + 1)-round executions

Let us observe that no process that has not crashed by the end of round k+2 can distinguish E0
k+2

from E1
k+2 (any such process has the same local state in both executions). Hence, E0

k+2 and E1
k+2

are identical for the processes that terminate round k + 2. Hence, these processes have to decide both

0 (because E0
k+2 is 0-valent), and 1 (because E1

k+2 is 1-valent), which is clearly impossible. End of

proof of the claim.

It follows from the claim that Ek+1[m] is 0-valent. Let us now consider E1
k+1 that is 1-valent. The

only difference between these two (k + 1)-round executions is that pi crashes at the end of the round

(k + 1) in Ek+1[m], and does not crash during the round (k + 1) in E1
k+1. Let us construct the two

following (k + 2)-round executions (Fig. 10.8).

no more crashes

F 0
k+2: 0-valent

F 1
k+2: 1-valent

pi crashes when round k + 2 starts

E1
k+1: 1-valent

Ek+1[m]: 0-valent

and no other process crashes

Figure 10.8: Extending again two (k + 1)-round executions

• Let F 1
k+2 be the one-round extension of E1

k+1 where pi crashes when round k+2 starts and then

no other process crashes. Let us notice that F 1
k+2 is 1-valent.

• Let F 0
k+2 be the one-round extension of Ek+1[m], where no more process crashes. Let us notice

that F 0
k+2 is 0-valent.

Let us observe on the one hand that a correct process has to decide 1 from the (k+2)-round execution

F 1
k+2, and 0 from the (k + 2)-round execution F 0

k+2. On the other hand, no process executing round
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k + 2 can distinguish if the execution is F 1
k+2 or F 0

k+2; hence, it has to decide both 0 and 1 which is

impossible. A contradiction which concludes the proof of the lemma. �Lemma 41

10.4 Summary

This chapter introduced two basic agreement abstractions, namely consensus and interactive consis-

tency (also called vector consensus). In each of them, each process proposes a value. While consensus

allows processes to agree on one of the values they propose, interactive consistency allows them to

agree on a vector, with one entry per process, such that entry i contains the value vi proposed by pi if

this process is correct, and vi or ⊥ if it is faulty. These definitions are suited to both synchronous and

asynchronous systems.

The chapter then presented round-based algorithms, that implement these agreement abstractions

in the system model CSMPn,t[∅], i.e., synchronous message-passing systems in which any number

t < n of processes may crash. It was also shown that (t+1) is a lower bound on the number of rounds

to implement these agreement abstractions in CSMPn,t[∅].

10.5 Bibliographic Notes

• The message-passing synchronous model with process crash failures was introduced in Chap. 1.

It is also presented in textbooks such as [43, 185, 271, 367]). Lots of synchronous algorithms

for failure-free systems are presented in [368].

• The consensus agreement abstraction originated in the work of L. Lamport, R. Shostask, and

M. Pease [258, 263, 342], who also defined the Byzantine failure model, the Byzantine generals

problem, and the interactive consistency agreement abstraction. These papers established lower

bounds on the number of rounds to solve this problem in the context of synchronous systems

prone to Byzantine failures and presented corresponding algorithms.

• All the algorithms presented in this chapter are based on variants of the extinction/propagation

strategy, namely, during every round, each process propagates the new values it learned during

the previous round. Similar distributed algorithms are described in many textbooks such as [43,

185, 250, 271, 362, 366, 367, 368].

• The notion of an atomic process failure is due C. Delporte, H. Fauconnier, R. Guerraoui and B.

Pochon [124].

• The (t+1) lower bound for consensus and interactive consistency was first been proved for the

Byzantine failure model in the early eighties [136, 161, 262]. Proofs customized for the process

crash failure model appeared later (e.g., in [21, 135, 143, 271, 299]). The proof presented in this

chapter is due Aguilera and Toueg [21].

• The notion of valence is due to M. Fischer, N. A. Lynch, and M. S. Paterson [162]. This notion

was introduced to prove the impossibility of consensus in the asynchronous model CAMPn,t[∅].

10.6 Exercises and Problems

1. Let us assume an algorithm A that implements interactive consistency in the asynchronous sys-

tem model CAMPn,t[∅]. Design an algorithm that builds a perfect failure detector in the system

model CAMPn,t[A] (CAMPn,t[∅] enriched with A).

Solution in [211].

2. Let CSMPn,t[SO] be the system model CSMPn,t[∅] weakened as follows: a faulty process is

a process that crashes, or a process that forgets to send messages. Hence, a faulty process can

. . Exercises and Problems10 6
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never crash, but the message it is assumed to broadcast during a round can be received by an

arbitrary subset of process. This failure model is called the send omission failure model.

Design and proof a consensus algorithm suited to the model CSMPn,t[SO].

Solution in Chapter 7 of [367].

3. Let CSMPn,t[GO] be the system model CSMPn,t[∅] weakened as follows: a faulty process is

a process that crashes, or a process that forgets to send or receive messages. This is the general

omission failure model.

• Show that the model constraint t < n/2 is a necessary condition to solve consensus in the

system model CSMPn,t[GO]. (Hint: partition the set of processes in two subsets Q1 and

Q2 of size �n2 �, and �n2 �, and consider the case where, while no process crashes, all the

processes of Q2 commit send and receive omission failures with respect to the processes

of Q1.)

Remark. The proof is based on an indistinguishability argument as already used in the

proofs of some theorems (e.g., Theorem 9 and Theorem 18).

Solution in Chapter 7 of [367].

• Design and proof a consensus algorithm for the system model CSMPn,t[GO]. As a faulty

process may not crash, and may remain isolated from the correct processes, it cannot

decide the value decided by the correct processes. In this case, it is allowed to decide a

special default value denoted ⊥. Hence, if a process, that does not crash, decides ⊥, it

knows that it is faulty.

Let us remark that the existence of such an algorithm, shows that the model constraint

t < n/2 is sufficient to solve consensus in CSMPn,t[GO].

Solution in Chapter 7 of [356].



Chapter 11

Expediting Decision

in Synchronous Systems

Prone to Process Crash Failures

The last section of the previous chapter showed that there is no synchronous round-based consensus

(or interactive consistency) algorithm that can cope with t process crashes and allows the processes to

always decide in less than (t+ 1) rounds (i.e., whatever the failure pattern).

This chapter focuses first on the case where less than t processes crash in an execution. It shows

that the number of rounds can then be lowered to min(f + 2, t + 1) where f is the actual number

of crashes (0 ≤ f ≤ t). The corresponding algorithm is based on a differential decision predicate

involving the number of processes seen as crashed in the two last rounds.

The chapter presents also an unbeatable binary consensus algorithm, denoted CGM , where un-

beatability means that its decision predicate cannot strictly be improved. More precisely, if there is an

early deciding algorithm A based on a different decision predicate that improves the decision round

with respect to CGM in a given execution, there is at least one execution of A in which a process

strictly decides later than in CGM .

The chapter then presents the condition-based approach, which allows us to circumvent the min(f+
2, t+ 1) lower bound. It consists in restricting the allowable sets of input vectors. Finally, it is shown

that enriching the round-based synchronous model CSMPn,t[∅] with access to physical time and an

appropriate fast failure detector allows decision to be to expedited.

Keywords Consensus, Early decision, Early stopping, Interactive consistency, Process crash, Round-

based algorithm, Synchronous system.

11.1 Early Deciding and Stopping Interactive Consistency

Without loss of generality this section considers the interactive consistency agreement abstraction.

The results trivially apply to consensus.

In the following, given an execution E, f denotes the number of processes that crash in E. Hence

0 ≤ f ≤ t. While t is a parameter of the system model, and is known by the processes which can use

its value in their local algorithms, no process knows the value of f when it starts executing.

11.1.1 Early Deciding vs Early Stopping

While (t+ 1) rounds are necessary (and sufficient) in worst case scenarios (Theorem 42), it might be

supposed that, in executions where the number f of process crashes is small compared to the model
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upper bound t, the number of rounds could be correspondingly small. This section shows that this is

indeed the case. It presents a round-based algorithm which works in the model CSMPn,t[∅] and where

the processes decide in at most min(f + 2, t + 1) rounds. This is called early decision. Moreover,

when a process decides, it stops its execution, which means that a process does not send messages

after it has decided. This is called early decision/stopping.

A simple intuition for the (f+2) (and not (f+1)) lower bound is the following. As there are only

f failures in the considered execution, after (f + 1) rounds there is at least one process that executed

a round in which it saw no failures. Thereby, this process knows which value can be decided, but, as

f �= t, it does not know if the other processes are aware of it. Hence, it needs an additional round to

inform the other processes of this knowledge before deciding.

11.1.2 An Early Decision Predicate

From late decision to early decision Let us consider the non-early deciding interactive consistency

algorithm described in Fig. 10.4. The aim is to modify it in order to obtain an early-deciding algorithm.

This non-early deciding algorithm allows a process pi not to send a message in a round r when pi has

not received new pairs 〈k, v〉 during the previous round (r−1). As we have seen (Lemma 38), this does

not prevent the processes that terminate round (t + 1) from having the very same vector of proposed

values at the end of this round.

These “missing” messages can create a problem when we want a process pi to decide “as early as

possible”. This is because, if pi does not receive a message from process pj during a round r, it cannot

differentiate the case where pj crashed from the case where pj had nothing new to forward. To solve

this problem, a process is required to follow these behavioral rules:

• A process broadcasts a message at every round until it decides or crashes.

• Any message indicates if its sender was about to decide after broadcasting it (during the same

round).

These simple rules reduce the uncertainty on the state of pj as perceived by pi. Let r be the first

round during which pi does not receive a message from pj . It follows from the previous rules that this

message is missing either because pj decided during round r−1, or because pj crashed during (r−1)
(after it sent a message to pi) or during round r (before it sent a message to pi). Let us observe that, if

pj decided, it sent to pi all the pairs 〈k, v〉 it previously received during the rounds r′, 1 ≤ r′ ≤ r− 1.

A predicate for early decision All that remains is to state a predicate that allows a process pi to

early decide by itself (i.e., before knowing that another process decided). Hence, assuming that no

process decided up to round (r − 1), let us consider the following definitions:

• UPr: the set of processes that start round r.

• Rr
i : the set of processes from which pi received messages during round r ≥ 1.

• R0
i : the set of the n processes.

Let us notice that, while no process pi knows the value of UPr, it can compute the values of Rr
i and

Rr−1
i . The following relation is an immediate consequence of (a) the previous definitions, (b) the

previous sending rules, and (c) the fact that crashes are stable (no process recovers):

∀ r ≥ 1 : Rr
i ⊆ UP r ⊆ Rr−1

i .

Let us consider the particular case where, for pi, two consecutive rounds (r − 1) and r are such

that Rr
i = Rr−1

i . It follows from the previous relation that Rr
i = UPr = Rr−1

i , which means that

pi received during round r a message from every process that was alive at the beginning of round r.

This is illustrated in Fig. 11.1, where p1 crashes during round (r − 1) and p2 crashes during round r
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round rround r − 1

p1

p2

p3

p4

Rr−1
4 = UP r = Rr

4 = {2, 3, 4}

Figure 11.1: Early decision predicate

(this is indicated with crosses on p1 and p2 process axes). As far as messages are concerned, only the

messages that are received by non crashed processes are indicated.

It follows that Rr
i = Rr−1

i is the predicate we are looking for. It means that pi received (during the

rounds 1 to r) all the pairs 〈k, v〉 known by the processes that are alive at the beginning of r. To put it

another way, all the other pairs 〈	, w〉 are lost forever and consequently no process can learn them in a

future round. Process pi can consequently decide the current value of its local vector viewi.

Inform the other processes before deciding It is not because the predicate Rr
i = Rr−1

i is satisfied

at process pi, that Rr
j = Rr−1

j is necessarily satisfied at another process pj . As an example, when we

consider the end of round r in Fig. 11.1, p4 can be the only process that knows some pair 〈k, v〉 that has

been forwarded only to p1, which – before crashing – forwarded it only to p2, which in turn – before

crashing – forwarded it only to p4. In this case, if p4 decided during round r and stops executing just

after deciding, it would decide a different vector from the vector decided by other processes.

This issue can be easily solved by directing pi to execute an additional (r + 1) round during

which it forwards the new pairs 〈k, v〉 it learned during round r. It also indicates in the corresponding

message that its local early decision predicate was satisfied during round r. In this way, a process pj
that receives this message learns that the vector was decided by pi. Hence, pj learns that it can decide

in the next round (r + 2), i.e., after having forwarded all the pairs 〈k, v〉 it learned from pi during

round r(r + 1).

11.1.3 An Early Deciding and Stopping Algorithm

The early deciding algorithm based on the previous design principles is described in Fig. 11.2. As

indicated, this algorithm is obtained from the non-early deciding interactive consistency algorithm

described in Fig. 10.4. In order to make it easier to understand, the lines with exactly the same

statements are numbered the same way. The new lines are numbered N1 to N4, and the numbers of

the two lines that are modified are prefixed by M.

Local data structures In addition to the vector viewi[1..n] and the set variable newi, a process

manages three additional local variables: two Boolean variables and an array of integers.

• nbri[0..n] is an array of integers comprised between 1 and n, such that nbri[r] is the number of

processes from which pi received a message during round r, i.e., nbri[r] = |Rr
i |. By definition

nbri[0] = n.

As crashes are stable, the early decision predicate Rr−1
i = Rr

i can be re-stated nbri[r − 1] =
nbri[r]. (As only nbrr−1

i and nbrri are needed, the array nbri[0..n] can be trivially replaced by

two local variables. This is not done here for clarity of the exposition.)

• earlyi is a Boolean initialized to false. It is set to true when the local early decision predicate

is satisfied, or when pi learns that another process is about to decide.
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• decidei is a Boolean set to true when pi receives a message from a process pj indicating that

earlyj is satisfied.

Let us remember that the macro-operation broadcast() is unreliable. If a process crashes during

its invocation, an arbitrary subset of processes receive the message that has been broadcast.

Process behavior The lines that are modified with respect to the non-early deciding algorithm are

line M1 and M4. The first concerns the initialization. The second concerns the addition of the current

value of the Boolean earlyi to the message pi broadcasts at every round.

As far as the new lines are concerned, we have the following. Line N2 gives its value to nbri[r].
At line N3, pi sets decidei to true if, and only if, it has received a round r message from a process pj
indicating that pj is about to decide (i.e., earlyj is equal to true).

For the lines N1 and N4 let us first consider line N4. At that line, pi sets earlyi to true if, during

the current round, its local early decision predicate has become true or pi has received a round r
message with earlyj = true. To put it another way, earlyi is set to true as soon as pi learns (directly

from its local predicate, or indirectly from another process) that it can early decide.

Let r be the first round at which earlyi becomes true. During round (r + 1) pi broadcasts

EST(newi, true) thereby indicating that it is about to early decide during that round. It then early

decides (and stops) at line N1.

operation propose (vi) is

(M1) viewi ← [⊥, . . . ,⊥]; viewi[i] ← vi; newi ← {〈i, vi〉}; nbri[0] ← n; earlyi ← false;

(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(M4) broadcast EST(newi, earlyi) end if;

(5) for each j ∈ {1, . . . , n} \ {i} do

(6) if (newj received from pj) then recfromi [j] ← newj else recfromi [j] ← ∅ end if;

(7) end for;

(N1) if (earlyi) then return(viewi) if;

(N2) nbri[r] ← number of processes from which round r messages have been received;

(N3) decidei ←
∨
(earlyj received during round r);

(8) newi ← ∅;

(9) for each j such that (j �= i) ∧ (recfromi [j] �= ∅) do

(10) foreach 〈k, v〉 ∈ recfromi [j] do

(11) if (viewi[k] = ⊥) then viewi[k] ← v; newi ← newi ∪ {〈k, v〉} end if

(12) end for

(13) end for;

(N4) if
(
(nbri[r − 1] = nbri[r]) ∨ decidei

)
then earlyi ← true end if;

(14) if (r = t+ 1) then return(viewi) end if

(15) end synchronous round.

Figure 11.2: An early deciding t-resilient interactive consistency algorithm (code for pi)

11.1.4 Correctness Proof

Let varri denote the value of the local variable vari at the end of round r. The sentence “pi knows the

pair 〈k, v〉” is a shortcut to say “viewi[k] = v”. Process pi “learned” this pair at round 0 if i = k, or

at round r > 0 during which it receives for the first time a set newj such that 〈k, v〉 ∈ newj .

Lemma 42. If a process pi decides at line N1 of round r, it knows all the pairs 〈k, v〉 known by the

processes that had not crashed at the beginning of round (r − 1). Moreover, no more pairs can be

learned by a process in a round r′ ≥ r.

Proof If pi decides at round r, it previously set earlyi to the value true at line N4 of round (r − 1).
There are two cases.
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• Case 1. nbri[r − 2] = nbri[r − 1] at line N4 of round (r − 1). In this case, at every round

r′, 1 ≤ r′ ≤ r − 1, pi received a message from each process in Rr−1
i . Consequently, it knows

all the pairs known by the processes in Rr−1
i . Moreover, as nbri[r − 2] = nbri[r − 1], the set

Rr−1
i is equal to UP r−1 (the set of processes alive at the beginning of round (r − 1)). Hence,

pi knows all the pairs 〈k, v〉 known by the processes that had not crashed at the beginning of

round (r − 1). Consequently no other pair can ever be known by a process in the future, which

completes the proof of the lemma for this case.

• Case 2. decidei = true at line N4 of round (r − 1). In this case, there is a round r′ < r and

a chain of distinct processes pj1, . . . , pjx ending at pi such that (a) nbrj1[r
′ − 1] = nbrj1[r

′],
and (b) pj1 sent EST(−, true) to pj2 during round r′ + 1, which in turn sent EST(−, true) to

pj3 during round r′ + 2, etc., until pjx that sent EST(−, true) to pi during round r − 1, and pi
consequently set decidei to true when it received that message.

It follows from Case 1 that, at the end of round r′, pj1 knew all the pairs known by the processes

that had not crashed at the beginning of round r′. Hence, pi knows all these pairs (at least from

the chain of EST(−, true) messages starting at pj1 and ending at pjx). Consequently, pi knows

all the pairs 〈k, v〉 known by the processes that had not crashed at the beginning of round r′. As

no pair can be learned by a process in a later round, pi knows all the pairs 〈k, v〉 known by the

processes that had not crashed at the beginning of round (r − 1), which completes the proof of

the lemma.
�Lemma 42

Lemma 43. No two processes decide different vectors.

Proof We consider three cases. Let pi and pj be two processes that decide.

• Case 1: no process decides at line N1. The proof is then exactly the same as the proof of the

base non-early deciding algorithm (Lemma 38).

• Case 2: no process decides at line 14. The fact that viewr
i = viewr′

j follows from Lemma 42.

• Case 3: some processes (e.g., pi) decide at line N1 of a round r, while other processes (e.g., pj)
decide at line 14 of round (r + 1).

Let us first observe that, in this case, r = t or r = t+1. If pi decided at line N1 of round r < t,
the message EST(−, true) it broadcast at line 4M before deciding at line N1 was received

during round r by pj , which set decidej to true at line N3, entailing its decision at line 14 of

round (t+ 1) (case assumption). This is possible only if r = t or r = t+ 1.

It follows from Lemma 42 that pi knows all the pairs that can be known at the beginning of

round (r− 1). Moreover, from round 1 to round r, it transmitted all these pairs to pj . It follows

that viewr
i = viewt+1

j .
�Lemma 43

Theorem 43. Let 1 ≤ t < n. The algorithm described in Fig. 11.2 implements the interactive

consistency agreement abstraction in CSMPn,t[∅].

Proof The ICC-Termination property is a direct consequence of the synchrony assumption of the

model: no process executes more than (t + 1) rounds. The ICC-agreement property follows from

Lemma 43. The proof of the ICC-validity property is the same as for the non-early deciding algorithm.

�Theorem 43

Theorem 44. Let f denote the number of crashes in a given execution (0 ≤ f ≤ t). No process

executes more than min(f + 2, t+ 1) rounds.
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Proof As previously mentioned, the fact that a process executes at most (t+ 1) rounds follows from

the text of the algorithm and the synchrony assumption. For the (f + 2) rounds lower bound, let us

consider two cases.

• Case 1. There is a process pi that decides at line N1 of a round d ≤ f+1. In this case, just before

deciding at line N1 during round (f + 1), pi broadcast EST(−, true) at line 4M. It follows that

each process pj that terminates the round (f + 1) receives the message EST(−, true) sent by

pi, and consequently updates earlyj to true during the round (f + 1) (lines N3 and N4). It

follows that, if pj does not crash by the end of the round (f + 2), it decides at line N1 of this

round, which proves the theorem for this case.

• Case 2. No process decided by round d = f + 1. Let pi be any process that terminates this

round. As pi did not decide by the end of round (f + 1), we have nbri[r
′ − 1] �= nbri[r

′] for

any round r′, 1 ≤ r′ ≤ f . As there are exactly f crashes, it follows that we have:

– nbri[0] = n, nbri[1] = n − 1, nbri[2] = n − 2, etc., nbri[f − 1] = n − (f − 1) and

nbri[f ] = n− f (there is one crash per round, and the process that crashes does not send

a message to pi), and

– nbri[f + 1] = n− f .

Consequently nbri[f ]− nbri[f + 1] = 0. Hence, pi sets earlyi to true at line N4 of the round

(f +1), and if it does not crash during the round (f +2), it decides at line N1 of this round. Let

us finally observe that, as pi is any process that terminates round (f + 1), the reasoning applies

to all processes that execute round (f + 2), which completes the proof of the theorem.
�Theorem 44

11.1.5 On Early Decision Predicates

Let DIFF(i, r) denote the previous early decision predicate (namely, nbri[r]− nbri[i, 1] = 0).

Another early detection predicate Let faultyi[r] = n − nbri[r], i.e., the number of processes

that pi perceives as crashed. The predicate COUNT(i, r) ≡ (faultyi[r] < r) is another correct early

decision predicate that can be used instead of DIFF(i, r). This is because COUNT(i, r) is satisfied at

the first round r such that this round number is higher than the number of processes currently perceived

as crashed by pi. Put differently, from pi’s point of view, there are currently less crashed processes

than the number of rounds it has executed, i.e., for pi there is a round r′, 1 ≤ r′ ≤ r, without crashes.

Hence, at the end of this round, the vector viewi contains the values v of all the pairs 〈k, v〉 that were

known at the beginning of r′, which means that no more pairs can be known by any process in the

future.

The reader can check that the early-decision algorithm described in Fig. 11.2 works when, at

line N4, the decision predicate DIFF(i, r) ≡ (nbri[r] − nbri[i, 1] = 0) is replaced by the predicate

COUNT(i, r) ≡ (faultyi[r] < r).

Comparing the predicates COUNT() and DIFF(i, r) Hence the question: While both DIFF(i, r)
and COUNT(i, r) ensure that the processes decide in at most min(f + 2, t + 1) rounds in the worst

cases, is one predicate better than the other? We show here that DIFF(i, r) is better than COUNT(i, r).
To this end we prove the following theorem.

Theorem 45. (a) Given an execution, let r ≥ 2 be the first round at which COUNT(i, r) is satisfied.

We have COUNT(i, r)⇒ DIFF(i, r).
(b) Given an execution, let r ≥ 2 be the first round at which DIFF(i, r) is satisfied. There are failure

patterns for which DIFF(i, r) ∧ ¬COUNT(i, r).
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operation propose (vi) is

(1) esti ← vi; nbri[0] ← n; earlyi ← false;

(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(4) broadcast EST(esti, earlyi);
(5) if (earlyi) then return (esti) end if;

(6) let nbri[r] = number of messages received by pi during r;

(7) let decidei ←
∨
(earlyj values received during current round r);

(8) esti ← min({estj values received during current round r});
(9) if

(
(nbri[r − 1] = nbri[r]) ∨ decidei

)
then earlyi ← true end if

(10) if (r = t+ 1) then return(esti) end if

(11) end synchronous round.

Figure 11.3: Early stopping synchronous consensus (code for pi, t < n)

Proof Let us first prove item (a). As r is the first round during which COUNT(i, r) ≡ (faultyi[r] <
r) is satisfied, COUNT(i, r−1) is false, i.e., faultyi[r−1] ≥ r−1. It follows from faultyi[r] < r and

faultyi[r−1] ≥ r−1 that faultyi[r]−faultyi[r−1] < 1., i.e., (n−nbri[r])−(n−nbri[r−1]) < 1.

Combined with the fact that nbri[r − 1] ≥ nbri[r], we obtain nbri[r] − nbri[r − 1] = 0, which con-

cludes the proof of item (a).

Let us now prove item (b). To this end we exhibit a counter-example. Let us consider a run in

which 2 ≤ x ≤ t processes crashed before taking any step, and then no other process crashes.

The predicate COUNT(i, r) ≡ (faultyi[r] < r) becomes true for the first time at round x+1. Let

us now look at the predicate DIFF(i, r) ≡ (nbri[r]− nbri[r − 1] = 0). We have nbri[1] = nbri[2] =
n − x. Consequently, DIFF(i, 2) is satisfied. As x ≥ 2, it follows that ¬COUNT(i, 2) ∧ DIFF(i, 2),
which concludes the proof of item (b). �Theorem 45

Discussion The previous theorem shows that, while both the early decision predicates DIFF(i, r)
and COUNT(i, r) allow the processes to decide and stop by round r = min(f+2, t+1), the predicate

DIFF(i, r) ≡ (nbri[r] − nbri[r − 1] = 0) is better than the predicate COUNT(i, r) ≡ (faultyi[r] =
n − nbri[r]), in the sense that there are failure patterns for which DIFF(i, r) allows the processes to

terminate before round r = min(f + 2, t+ 1).

This is due to the fact that DIFF(i, r) is a differential predicate: it takes into consideration the

actual failure pattern, namely, a process computes the number of process crashes it perceives during a

round (the value of this number is nbri[r]−nbri[r−1]). Whereas the predicate COUNT(i, r) is based

only on the number of processes perceived as crashed by pi since the beginning of the execution. This

means that, whatever the actual failure pattern, COUNT(i, r) always considers the worst case scenario

in which there is one crash per round. However, when using DIFF(i, r), the fact that crashes occur in

the very same round is taken into account and allows for a faster decision.

As an example, let us consider the case where no process crashes. The algorithm with the predicate

DIFF(i, r) ≡ (nbri[r] − nbri[r − 1] = 0) allows each process to decide and stop in two rounds,

whatever the value of t. If any number of processes crash initially (i.e., before the algorithm starts),

and later no more process crashes, it allows the correct processes to decide in three rounds.

11.1.6 Early Deciding and Stopping Consensus

The algorithm described in Fig. 11.3 describes an early deciding and stopping consensus algorithm.

This algorithm, where a process decides the smallest value it has ever seen is directly obtained from the

interactive consistency early-deciding algorithm described in Fig. 11.2. Its proof is left to the reader.
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11.2 An Unbeatable Binary Consensus Algorithm

The notion of an unbeatable predicate for early deciding/stopping consensus algorithms in the model

CSMPn,t[∅] is due A. Castañeda, Y. Gonczarowski, and Y. Moses (2014). This notion is based on

knowledge theory. The associated binary consensus algorithm CGM , which is presented in this sec-

tion, is also due to the same authors.

11.2.1 A Knowledge-Based Unbeatable Predicate

Underlying intuition The idea is to allow processes to decide as soon as possible on a preferred

value (let us consider 0). The other value (1) can be decided by a process only when it is sure that no

process can decide on the preferred value 0. More operationally, we have the following:

• A process pi can safely decide on 0 as soon as it knows that every correct process knows that the

value 0 was proposed. This occurs when pi knows that each correct process received a message

indicating some process proposed 0.

• A process pi can safely decide on 1 as soon as it knows that no active process received a message

indicating a process proposed 0. In this case, if it was initially present, 0 disappeared from the

system.

The knowledge-based predicate PREF0 Given an execution, we use the following terminology:

• “A process pj is revealed to process pi in a round r” if either pi knows all the values known by

pj at the beginning of r, or pi knows that pj crashed before round r. Hence, if, in round r, pj is

revealed to pi, it cannot broadcast values not yet know by pi.

• “A round r is revealed to process pi” if every process pj is revealed to pi in round r. When this

occurs, pi knows all the values that are in the system at the beginning of round r.

The knowledge-based predicate PREF0, used to decide 0 as soon as possible, is defined as follows:

PREF0
def
= correct0(i, r) ∨ revealed0(i, r)

where

• correct0(i, r) denotes the predicate “pi knows that at least one correct process knows in round

r that 0 was proposed”, and

• revealed0(i, r) denotes the predicate “a round r′ ≤ r has been revealed to pi”.

Let us notice that, if correct0(i, r) holds, all correct processes will know 0 was proposed by the end

of round (r + 1).

An example illustrating the predicate correct0(i, r) Let us consider a process pi, whose proposed

value is 0, which, during the first round, broadcasts it and receives messages from the other processes.

Hence, at the end of the first round, it knows that every alive process knows the value 0 was proposed.

Therefore, the predicate correct0(i, 1) is satisfied, and (if it does not crash) pi can decide on 0 at the

of the first round. Moreover, this is independent of the possible crash of the other processes.

Let pj be a process pj which proposes value 1. According to the failure pattern, it can be the only

process that received the value 0 from pi; hence, correct0(j, 1) does not hold, and it cannot decide 0
in this round. Moreover, pj is prevented from deciding 1 because it knows 0 was proposed.

The reader can check that this scenario is not restricted to the first round, and, according to the

failure pattern, can occur at any round r.
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p1

p2

p3

p4

r = 1 r = 2

Figure 11.4: The early decision predicate revealed0(i, r) in action

An example illustrating the predicate revealed0(i, r) Let us consider an execution involving four

processes which all propose value 1, and where the failure and message pattern is as depicted in

Fig. 11.4.

During the first round, p4 receives a message from p2 and p4 but not from p1. Hence, it knows that

p1 crashed, but it does not know the value proposed by p1 nor whether it sent its value to p2 and p3
before crashing. Actually, before crashing, p1 sent its value to p3 only. During the second round, p4
receives a message from p3 (hence it learns that p1 proposed 1), but does not receive a message from

p2, which crashed after sending a message to p3.

Despite the fact that it sees a crash at every round, p4 knows, during the second round, that only

the value 1 has been proposed. Hence, revealed0(4, 2) is satisfied. Consequently, p4 can safely decide

1. It is easy to see that the local predicate revealed0(3, 1) is also satisfied.

11.2.2 PREF0() with Respect to DIFF()

Theorem 45 showed that the predicate DIFF(i, r) is strictly stronger than COUNT(i, r). The next the-

orem shows that (assuming an algorithm in which, at every round, each process broadcasts everything

it knows) PREF0() is strictly stronger than DIFF().

Theorem 46. (a) Given an execution, let r be the first round at which PREF0(i, r) is satisfied. We

have DIFF(i, r)⇒ PREF0(i, r).
(b) Given an execution, let r be the first round at which DIFF(i, r) is satisfied. There are failure

patterns for which PREF0(i, r) ∧ ¬DIFF(i, r).

Proof Let us first prove item (a). Since DIFF(i, r) is satisfied, we have nbri[r − 1] = nbri[r]. There-

fore, in round r, pi receives a message from any process pj that sends a message to pi in round r − 1.

Moreover, pi knows that all other processes crash before round r simply because it does not get any

message from them in round (r − 1). We conclude that round r is revealed to pi, and the predicate

revealed(i, r) holds. Consequently, PREF0(i, r) is satisfied.

To prove item (b), let us consider any execution in which (1) all processes propose 0, (2) pn crashes

without communicating its input to any process, and (3) all other processes are correct. Then, for every

process pi, 1 ≤ i ≤ n− 1, revealed(i, 1) is true, as pi proposes 0 and sends it to every other process.

Thus, PREF0(i, 1) is satisfied. In contrast, DIFF(i, r) is not satisfied because, as pi does not receive a

message from pn, we have nbri[0] = n ∧ nbri[1] = n− 1. �Theorem 46

11.2.3 An Algorithm Based on the Predicate PREF0(): CGM

As already indicated this binary consensus algorithm, which works in the model CSMPn,t[∅], is due

A. Castañeda, Y. Gonczarowski, and Y. Moses (2014).
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Local variables Each process pi manages the following local variables:

• valsi: the set of proposed values known by pi. It initially contains the value vi proposed by pi.

• knew0i: a Boolean indicating that 0 ∈ valsi at the end of the previous round.

• correct0i: a Boolean indicating the predicate correct0(i, r) is satisfied in the current round r.

• revealedi: a Boolean indicating the predicate revealed(i, r) is satisfied in the current round r.

• lgi: a local directed graph whose vertices are pairs 〈process id, round number〉. The function

vertices(lgi) (resp., edges(lgi)) returns its current set of vertices (resp., edges).

Initially this graph contains only the pair 〈i, 0〉. It is then enriched at every round r according to

the messages received by pi during round r.

Management of the local graphs lgi The algorithm is a full-information algorithm. This means

each process pi sends its local state to all other processes at every round. It then follows that the local

graph lgi includes all the causal message paths that pi can know until the current round.

There is a directed edge from the vertex 〈j, r〉 to the vertex 〈k, r + 1〉 if pi knows that pk received

a message from pj in round (r+1). As just mentioned, this message carries the local state of pj at the

end of round r. The relevant part of the local state of a process pj (i.e., the part that is transmitted) is

composed of its local variables valsi and lgi.
Considering the execution depicted in Fig. 11.4, the next figures presents the values of the local

graphs at the end of the rounds r = 1 (Fig. 11.5) and r = 2 (Fig. 11.6). (So not to overload the figure,

the tips of the arrows are not depicted on the graphs.)

p1

p2

p3

p4

r = 1 r = 2

〈3, 0〉

〈4, 0〉

〈3, 0〉 〈3, 1〉

〈4, 0〉

〈3, 0〉

〈4, 1〉

〈2, 0〉〈2, 0〉 〈2, 1〉

〈4, 0〉

〈2, 0〉

lg2(1) lg4(1)〈1, 0〉 lg3(1)

Figure 11.5: Local graphs of p2, p3, and p4 at the end of round r = 1

p1

p2

p3

p4

r = 1 r = 2

〈3, 0〉

〈4, 0〉

〈2, 0〉

〈1, 0〉

〈2, 1〉

〈3, 1〉

〈4, 1〉

〈3, 2〉

〈1, 0〉

〈2, 0〉

〈3, 0〉

〈4, 0〉 〈4, 1〉

〈3, 1〉

〈4, 2〉

lg3(2) lg4(2)

Figure 11.6: Local graphs of p3 and p4 at the end of round r = 2

Part 1 of the algorithm: communication and local state update This part is composed of the

lines 5 and 7-11. When it starts a new round r, a process pi sends its current local state to all

processes, namely, the pair composed of valsi and its local knowledge (saved in its local graph lgi) of

the message exchanges that occurred up to the previous round (line 5). If its local flag earlyi is true,

pi early decides the value 0 (line 6). If early is false and the value 0 was in the set valsi at the end

of the previous round, pi sets knew0i to true. This is because, as pi just broadcast valsi (line 5),
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operation propose(vi) is

(1) valsi ← {vi}; lgi ← ({〈i, 0〉}, ∅);
(2) earlyi, knew0i, correct0i, revealedi ← false;

(3) when r = 1, 2, . . . , (t+ 1) do

(4) begin synchronous round

(5) broadcast MY STATE(valsi, lgi);
(6) if (earlyi) then return(0) end if;

(7) if (0 ∈ valsi) then knew0i ← true end if;

(8) valsi ←
⋃
(valsj values received during round r);

(9) let n0i = number of messages received in round r with 0 ∈ valsj ;

(10) let nf i = number of processes from which no message was received in round r;

(11) lgi ←
⋃(

lgj graphs received during round r and directed edges (〈j, r − 1〉, 〈i, r〉)
)
;

% Testing correct0(i, r)
(12) if

(
0 ∈ valsi ∧ (knew0i ∨ (t− nf i ≤ n0i))

)
then correct0i ← true end if;

% Testing revealed(i, r)
(13) if

(
∃ r′ ≤ r : ∀pj :

(
〈j, r′〉 ∈ vertices(lgi)

)

∨
(
∃〈�, r′〉 ∈ vertices(lgi) : (〈j, r

′ − 1〉, 〈�, r′〉) /∈ edges(lgi)
))

(14) then revealedi ← true

(15) end if;

% Testing PREF0(i, r)
(16) if (correct0i) then return(0) end if;

(17) if (revealedi ∧ 0 /∈ valsi) then return(1) end if;

(18) if (revealedi ∧ 0 ∈ valsi) then earlyi ← true end if

(19) end synchronous round.

Figure 11.7: CGM : Early deciding synchronous consensus based on PREF0() (code for pi, t < n)

and this set contains 0, it knows that all non-crashed processes receive its set valsi during the current

round, and consequently knows 0 was proposed.

Process pi then updates its local state (valsi, n0i, nf i, lgi) according to the values it has received

and the number of processes from which it received them during the current round (lines 8-11).

Let us observe that, at line-11, the local graph lgi is enriched as depicted in Fig. 11.5 and 11.6.

In addition to the union of the graph lgj , pi adds the edge 〈j, r − 1〉, 〈i, r〉 for each pj from which it

received a message during round r. Hence, once updated at line 11 of round r, lgi implicitly contains

all causal message chains ending at the vertex 〈i, r〉.

Part 2 of the algorithm: trying to progress to a decision This part is composed of lines 12-18 in

which pi computes correct0(i, r) and revealed(i, r) to expedite the decision (lines 16-18). This part is

made up of three sets of statements.

• Process pi first computes correct0(i, r) (line 12). There are two cases.

– Case 1: 0 ∈ valsi and knew0i = true. In this case, pi knows that all non-crashed

processes know the value 0 was proposed. This is because pi sent it to them in its last mes-

sage MY STATE(valsi, lgi). The predicate correct0(i, r) is then satisfied, and accordingly

pi sets correct0i to true.

– Case 2: 0 ∈ valsi and knew0i = false. In this case, pi learned 0 was proposed in

the current round. If t − nf i ≤ n0i, during the current round r, at least (n − nf i + 1)
processes know 0 was proposed. (The “+1” comes from the process pi itself, which during

the current round learned 0 is a proposed value.) As at most (n − nf i) processes may

crash, it follows that at least one correct process knows 0 was proposed. Consequently, the

predicate correct0(i, r) is satisfied, and pi sets correct0i to true.

• Then, process pi computes revealed(i, r) (lines 13-14).

This predicate is true if a round r′ ≤ r has been revealed to pi, where “a round r′ is revealed to
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pi” if pi knows what was known by pj at the beginning of round r′, or pj crashed before round

r′. This is captured by the predicate of line 13:

∃ r′ ≤ r : ∀ pj :(
〈j, r′〉 ∈ vertices(lgi)

)
∨
(
∃ 〈	, r′〉 ∈ vertices(lgi) : (〈j, r′ − 1〉, 〈	, r′〉) /∈ edges(lgi)

)
.

Process pi verifies on lgi if a round is revealed to it, namely, if there is a round r′ ≤ r such that,

for each process pj , we have:

– a causal chain of messages from the vertex 〈j, r′〉 (pj at the beginning of r′ + 1) to 〈i, r〉
(pi at the end of r), which amounts to check 〈j, r′〉 ∈ vertices(lgi), or

– a vertex 〈	, r′〉 ∈ vertices(lgi), such that (〈j, r′ − 1〉, 〈	, r′〉) /∈ edges(lgi) (p� did not

receive a message from pj in round r′, hence pj crashed).

• Finally, pi strives to entail an early decision (lines 16-18).

– If correct0(i, r) is satisfied, it decides 0 (line 16).

– If correct0(i, r) is not satisfied, 0 /∈ valsi, but revealed(i, r) is satisfied (line 17), it safely

decides 1 (round r is revealed and no non-crashed process saw 0).

– Finally, if correct0(i, r) is not satisfied, revealed(i, r) is satisfied, and 0 ∈ valsi, pi sets

early to true (line 18), and proceeds to the next round. During the round (r + 1), it

broadcasts valsi # 0 (to inform all other processes on the 0 proposal), and decides (line 6).

Theorem 47. Let 1 ≤ t < n. The algorithm described in Fig. 11.7 implements the binary consensus

agreement abstraction in CSMPn,t[∅]. Moreover, a process executes at most min(f+2, t+1) rounds.

Proof (Sketch) The CC-termination property follows from the synchrony property of the model (the

progress of rounds is due to the model). The CC-validity property follows from the updates of valsi,
line 12, and lines 16-18.

CC-agreement property follows from the observation that the only way for a process to decide 1 is

to be sure that no process will ever know the value 0 was proposed. The formalization of this argument

is the topic of Exercise 2 of Section 11.7.

The lower bound on the number of rounds is an immediate consequence of Theorem 46 and The-

orem 44. �Theorem 47

11.2.4 On the Unbeatability of the Predicate PREF0()

As already indicated, PREF0() is unbeatable in the sense that it cannot strictly be improved. It is

possible that there are early deciding predicates that improve the deciding round of a process in a given

execution, but the deciding round of the same or another process in the same or another execution is

then strictly worse.

An example is the predicate PREF1(), which is the same as PREF0() except the roles of 0 and 1
are exchanged. Its aim is to decide 1 as soon as possible. In the executions where all processes propose

0, PREF0() is fast, whatever the failure pattern, while PREF1() might need up to (t+1) rounds. And

vice versa, in the executions where all processes propose 1, PREF1() is fast, while PREF0() might

need up to (t+ 1) rounds.

11.3 The Synchronous Condition-based Approach

11.3.1 The Condition-based Approach in Synchronous Systems

An input vector I[1..n] is a vector with one entry per process, such that I[i] contains the value vi
proposed by process pi. Let us remember that, in a synchronous system prone to process crash failures
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(CSMPn,t[∅]), both consensus and interactive consistency can be solved whatever the actual input

vector and the value of the model parameter t, i.e., 0 ≤ t < n.

The underlying idea The condition-based approach is due to A. Mostéfaoui, S. Rajsbaum, and M.

Raynal (2003). Its underlying idea is motivated by the following question: Is it possible to characterize

sets of input vectors for which the processes always decide in less than (t + 1) rounds whatever the

failure pattern? This section shows that the answer to this question is “yes”. To this end, it first defines

the notion of legal conditions and then presents a corresponding condition-based algorithm.

Definition of a condition A condition is a set of input vectors. Let C[x], 0 ≤ x ≤ t, be the set

(also called class) of conditions that allows consensus to be solved in at most ft(x) rounds, where

ft(x) ≤ t+1 and ft(x+1) < ft(x). The parameter x is called the degree of the class, and (by a slight

abuse of language) we also say that it is the degree of the conditions C that are in C[x], i.e., C ∈ C[x]
and C /∈ C[y] where y > x. Section 11.3.2 shows that the classes {C[x]}0≤x≤t define the following

hierarchy (Fig. 11.8), where C[0] contains the condition including all possible input vectors.

C[t] ⊂ C[t− 1] ⊂ · · · ⊂ C[x] ⊂ · · · ⊂ C[1] ⊂ C[0].

C[t]C[x]C[0]

Figure 11.8: Hierarchy of classes of conditions

Section 11.3.5 will present a consensus algorithm that, when instantiated with a condition C ∈
C[x], allows the processes to decide in at most ft(x) = t+ 1− x rounds whatever (a) the actual input

vector I ∈ C, and (b) the failure pattern.

This means that, if the condition C the algorithm is instantiated with belongs to C[t], the processes

decide in one round (which is clearly optimal, when the decided value is not fixed a priori). At the other

extreme, if the condition C the algorithm is instantiated with is the condition including all possible

input vectors, the processes decide in at most (t + 1) rounds. Hence, there is a tradeoff between the

number of input vectors of a condition C (as measured by its degree x) and the maximal number of

rounds needed to decide.

11.3.2 Legality and Maximality of a Condition

Not any set C of input vectors allows the processes to decide in less than (t+ 1) rounds whatever the

pattern of up to t process crashes and the input vector I ∈ C. The notion of legality is introduced to

capture the conditions that allow consensus to be solved in (t+ 1− x) rounds.

Notations

• V denotes the set of values that can be proposed.

• equal(a, I) denotes the number of occurrences of the value a in the input vector I .
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• dist(I1, I2) denotes the Hamming distance between the vectors I1 and I2 (the number of entries

in which they differ).

Legality A condition C is x-legal if there is a function h : C "→ V with the following properties:

• ∀ I ∈ C : #h(I)(I) > x,

• ∀ I1, I2 ∈ C :
(
h(I1) �= h(I2)

)
⇒

(
dist(I1, I2) > x

)
.

The intuition that underlies this definition is the following. Given a condition C, each of its input

vectors I allows a proposed value to be selected in order to be the value decided by the processes.

That value is extracted from an input vector by the function h(), namely h(I) is the value decided

from input vector I .

To this end, h() and all vectors I of C have to satisfy some constraints. The first constraint states

that the value that the processes have to decide from I (this value is h(I)) has to be present enough

in vector I . “Enough” means “more than x times”. This is captured by the first constraint defining

x-legality: ∀ I ∈ C : #h(I)(I) > x.

The second constraint states that, if different values are decided from different vectors I1, I2 ∈ C,

then I1 and I2 must be “far apart enough” from one another. This is to prevent processes that would

obtain different views of the input vector from deciding differently. This is captured by the second

constraint defining x-legality: ∀ I1, I2 ∈ C :
(
h(I1) �= h(I2)

)
⇒

(
dist(I1, I2) > x

)
.

The set of all x-legal conditions defines the class C[x]. Hence, a set C of input vectors for which

there is no function h() as defined previously does not define a legal condition, and consequently

C /∈ C[x]. Section 11.3.5 will describe a consensus algorithm that, when instantiated with the function

h() of a condition C ∈ C[x], allows the processes to decide in at most (t+1−x) rounds whatever the

input vector I ∈ C.

A relation with error-correcting codes The notion of a legal condition shows that there is a strong

connection relating the consensus agreement abstraction and error-correcting codes: each input vector

I encodes a value, namely the value that has to be decided from I . In this sense an input vector can

be seen as a codeword. Given an upper bound d on the number of rounds we want to execute, the

condition-based approach allows us to characterize which are the sets of input vectors (codewords)

that allow consensus to be implemented in at most d rounds (where d = t + 1 − x). It is the set

of conditions belonging to C[x]. The condition-based approach thereby establishes a strong relation

between agreement problems encountered in distributed computing and error-correcting codes.

The legal conditions Cx
max and Cx

min Assuming that the values that can be proposed can be totally

ordered, a natural example of an x-legal condition is the one that favors the largest value present in an

input vector. Let us call Cx
max this condition for a given degree x. Moreover, let max[I] denote the

greatest value in the input vector I . Cx
max is defined as follows:

Cx
max

def
= {I | equal(a, I) > x where a = max(I)}.

Theorem 48. The condition Cx
max is x-legal.

Proof Let max(I) be the associated decision function h(). Due to the definition of Cx
max, the function

max() trivially satisfies the first item of the definition of x-legality. Hence, we have only to show that

(max(I1) �= max(I2))⇒ (dist(I1, I2) > x) for any pair of vectors I1, I2 ∈ Cx
max.

Let a = max(I1) and b = max(I2). As a and b are different, one is greater than the other. Without

loss of generality, let us assume a > b. As b = max(I2), we conclude that a does not appear in I2.

As a appears more than x times in I1, it immediately follows that dist(I1, I2) > x, which concludes

the proof of the theorem. �Theorem 48
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Another natural example of an x-legal condition is the condition denoted Cx
min that favors the

smallest value present in an input vector.

The legal condition Cx
first Another example is the condition that favors the most frequent value

in an input vector. Let first(I) and second(I) be the values that appear the most frequently and

the second most frequently in the input vector I , respectively. (If two values are equally frequent,

we have first(I) = second(I); a vector I made up of a single value is such that first(I) = n and

second(I) = 0.) The condition Cx
first defined as follows:

Cx
first

def
= {I | equal(a, I)−#b(I) > x where a = first(I) and b = second(I)}

is x-legal. The associated function h() is the function first().

Maximal legal conditions An x-legal condition C is maximal if adding a vector to C makes it not

x-legal. More formally, C is maximal if C ∪ {I} is not x-legal when I /∈ C. The conditions Cx
max

and Cx
min are maximal x-legal conditions, while Cx

first is x-legal but not maximal.

Illustrating the previous legal conditions Cx
max and Cx

first Let us consider a system of n = 4
processes, where up to t = 3 can crash. Table 11.1 presents the conditions Cx

max and Cx
first for

0 ≤ x ≤ t = 3. The symbol “∈” means that the vector on the same line belongs to the condition

defined by the corresponding column.

Input vector C0
max C1

max C2
max C3

max C0
first C1

first C2
first C3

first

[0, 0, 0, 0] ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈
[0, 0, 0, 1] ∈ ∈ ∈
[0, 0, 1, 0] ∈ ∈ ∈
[0, 0, 1, 1] ∈ ∈
[0, 1, 0, 0] ∈ ∈ ∈
[0, 1, 0, 1] ∈ ∈
[0, 1, 1, 0] ∈ ∈
[0, 1, 1, 1] ∈ ∈ ∈ ∈ ∈
[1, 0, 0, 0] ∈ ∈ ∈
[1, 0, 0, 1] ∈ ∈
[1, 0, 1, 0] ∈ ∈
[1, 0, 1, 1] ∈ ∈ ∈ ∈ ∈
[1, 1, 0, 0] ∈ ∈
[1, 1, 0, 1] ∈ ∈ ∈ ∈ ∈
[1, 1, 1, 0] ∈ ∈ ∈ ∈ ∈
[1, 1, 1, 1] ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

Table 11.1: Examples of (maximal and non-maximal) legal conditions

11.3.3 Hierarchy of Legal Conditions

It is easy to see that Cx+1
max contains Cx

max while Cx
max does not contain Cx+1

max. Hence, Ct
max ⊂

Ct−1
max · · · ⊂ Cx

max · · · ⊂ C0
max. As ∀ x, 0 ≤ x ≤ t, Cx

max ∈ C[x], it follows (as previously mentioned)

that the classes {C[x]}0≤x≤t define a strict hierarchy, depicted in Fig. 11.8.
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11.3.4 Local View of an Input Vector

Let I be an input vector of an x-legal condition C. A view J of I (denoted J ≤ I) is a vector that is

identical to I except that at most x entries can be equal to ⊥.

From an operational perspective, a view captures the non-⊥ entries of an input vector that a process

obtains by receiving messages.

Lemma 44. Let C be an x-legal condition and I1 and I2 two input vectors of C. If there is a view J
such that J ≤ I1 and J ≤ I2, we have h(I1) = h(I2).

Proof Let us assume by contradiction that there is an x-legal condition C that has two vectors I1 and

I2 such that (a) there is a view J ≤ I1 and J ≤ I2, and (b) h(I1) �= h(I2).

As J ≤ I1 and J ≤ I2, we have dist(J, I1) ≤ x and dist(J, I2) ≤ x. From these inequalities, the

fact that J has at most x entries equal to ⊥, and the fact that the entries of J that differ in I1 or I2 are

its only entries equal to ⊥, it follows that dist(I1, I2) ≤ x.

However, as h(I1) �= h(I2), it follows from the second item of the definition of x-legality

of C, that dist(I1, I2) > x, which contradicts the previous observation, and concludes the proof.

�Lemma 44

The previous lemma allows the definition of the selection function h() associated with an x-legal

condition C to be extended to views as follows.

Extending to views the definition of the function h() If I is an input vector of an x-legal condition

C, and J is a view of I , then the function h() is extended as follows h(J) = h(I).

11.3.5 A Synchronous Condition-based Consensus Algorithm

A condition-based consensus algorithm is presented in Figure 11.9. The parameter x is the degree of

the condition C the algorithm is instantiated with. The function h() is the selection function associated

with this x-legal condition.

Local variables In addition to the local variable viewi (whose meaning is similar to the one of

the same variable used in the previous algorithm), a process pi manages two local variables, both

initialized to the default value ⊥. This default value is assumed to be smaller than any value that can

be proposed by a process.

• The aim of v condi is to keep (once known) the value h(I) decided from the input vector I .

• The aim of v tmfi is to contain the value that will be decided when (as we will see below) it is

not possible to use the function h() to decide a value from the input vector. (v tmf stands for

too many failures.)

Process behavior The behavior of pi depends on the round.

• During the first round, a process pi broadcasts the value it proposes (message EST1(vi) sent at

line 4), and builds its local view of the input vector during the receive phase (line 5). Then, pi
counts the number of entries of its view that are equal to ⊥. There are two cases.

– If equal(⊥, viewi) ≤ x (line 6), pi knows enough entries of the input vector in order

to use the selection function h() associated with the x-legal condition the algorithm is

instantiated with. In that case, pi computes h(viewi) and saves it in v condi.
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– If equal(⊥, viewi) > x (line 7), there are too many failures for h() to be used. This is

because, in order to be known before being decided, a value must be present at least once

in a local view of the input vector. Hence, when more than x entries of the local view of

pi are equal to ⊥, h() is meaningless. In this case, pi behaves as in a classic consensus

algorithm. It computes the greatest proposed value it knows and saves it in v tmfi .

The case of an x-legal condition such that x = t is particular. This is because, if x = t, we

necessarily have equal(⊥, viewj) ≤ x at any process that does not crash by the end of the first

round. Consequently, no process pj needs more rounds to know the value decided from the

condition. It follows that any pj can safely decide h(viewj) during the very first round (line 9).

• From round 2 until round (t + 1 − x), pi first broadcasts its current state (with the message

EST2(v condi, v tmfi), line 13), then it early decides the value of v condi, if it is not equal to

⊥ (line 14). Let us observe that, in this case, v condi was different from ⊥ at the end of the

previous round, and consequently, its value is carried by the message EST2() that pi has just

broadcast.

If v condi = ⊥, pi updates it to the value decided from the condition if it has received such a

value from another process (line 15). It also updates the value of v tmfi in case no value can be

computed from the condition (line 16).

Finally, if r = t + 1 − x, pi decides (line 18). The decided value is the non-⊥ value kept in

v condi if there is one. Otherwise, it is the value kept in v tmfi .

operation proposex (vi) is

(1) viewi ← [⊥, . . . ,⊥]; viewi[i] ← vi; v cond ← ⊥; v tmfi ← ⊥;

(2) when r = 1 do

(3) begin synchronous round

(4) broadcast EST1(vi);
(5) for each vj received do viewi[j] ← vj end for;

(6) case (equal(⊥, viewi) ≤ x) then v condi ← h(viewi)
(7) (equal(⊥, viewi) > x) then v tmfi ← max(all values vj received)

(8) end case;

(9) if (x = t) then return(v condi) end if

(10) end synchronous round;

(11) when r = 2, ..., t+ 1− x do

(12) begin synchronous round

(13) broadcast EST2(v condi, v tmfi);
(14) if (v condi �= ⊥) then return(v condi) end if;

(15) if (v condj �= ⊥ received during round r) then v condi ← v condj end if;

(16) v tmfi ← max(all v tmfj values received during r);

(17) if (r = t+ 1− x) then

(18) if (v condi �= ⊥) then return(v condi) else return(v tmfi) end if

(19) end if

(20) end synchronous round.

Figure 11.9: A condition-based consensus algorithm (code for pi)

11.3.6 Proof of the Algorithm

Theorem 49. let C be the x-legal condition used in the algorithm described in Fig. 11.9. Let us

assume the input vector I ∈ C. This algorithm implements the consensus agreement abstraction in

the system model CSMPn,t[∅]. Moreover, no process executes more than (t+ 1− x) rounds.

Proof CC-termination. The fact that no process executes more than (t + 1 − x) rounds follows di-

rectly from the synchrony assumption and the text of the algorithm (line 9 for x = t, and line 17-19
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for x ≤ t).

For the CC-Validity and CC-agreement properties of consensus, let us first consider the case x = t.
As x = t, the non-crashed processes execute line 9. They have consequently executed the assignment

v condi ← h(viewi) at line 6. It then follows from the extension of the definition of h() to views

that, for any process pi, we have v condi = h(viewi) = h(I), which is a value that appears more than

x times in I , i.e., at least once in any of the views obtained by the processes. Hence, the algorithm

satisfies both the CC-validity and CC-agreement properties for x = t.

Let us now consider the CC-validity property for the x-legal conditions such that x < t. Any

process pi that terminates the first round is such that (v condi �= ⊥) ∨ (v tmfi �= ⊥). Moreover, (for

the same reasons as in the case t = x) if v condi �= ⊥, it is a value of I . Similarly, if v tmfi �= ⊥, it

is a value of I .

It follows from the text of the algorithm that, if v condi is assigned at line 15, it takes the value of

another non-⊥ v condj variable, from which we conclude that any non-⊥ v condi variable contains a

value selected by h() which (due to the definition of h()) is a value of the input vector. It follows that

if a process pi decides the value v condi, it decides a value of the input vector I .

If a process pi decides the value of v tmfi , it does it at line 18. In this case we have v condi = ⊥,

from which we conclude that pi executed line 7 where v tmfi is assigned a proposed value. It then

follows from line 16, and the fact that ⊥ is smaller than any proposed value, that v tmfi always con-

tains a proposed value. Hence, if pi decides, it decides a proposed value.

Let us now address the CC-agreement property when t < x. We consider two cases.

• A process decides at line 14. Let r be the first round at which a process (say pi) decides at

line 14 of this round. Hence, pi decides v condi = v �= ⊥.

– Let us first consider the case of another process pj that decides at line 14 of round r.

Hence, pj decides v condi = v′ �= ⊥.

It follows from the text of the algorithm that there are processes pk and p� that have com-

puted v condk = h(viewk) = v and v cond� = h(view�) = v′ during the first round, and

then these values have been propagated to pi and pj directly or via other processes (line 13

and line 15). (Let us observe that pk and p� can be the same process, or can even be pi or

pj .)

It follows from Lemma 44, and the extension of the definition of h() to views, that

h(viewx) = h(viewy) for any pair of processes px and py that execute line 6. Hence,

we have v = v′ from which we conclude that no two processes that decide at line 14

during r decide differently.

– Let us now consider the case of a process pk that decides during a round r′ > r. Let us

observe that, at the beginning of round r, we necessarily have v condk = ⊥ (otherwise

pk would have decided at line 14 of round r). Let us also observe that any process pi that

decides at line 14 of round r broadcast EST2(v,−) before deciding. It follows that any

process pk that proceeds to round r + 1 is such that v condk = v at the end of r (line 15).

It follows from the text of the algorithm that pk will decide v condk = v during round

r + 1 (if it does not crash). Consequently no value different from v can be decided.

• No process decides at line 14. In this case, the processes that crash terminate at line 18 of round

r = t+1− x. We show that all the processes pi that execute line 18 of round r = t+1− x (a)

have the same value in v condi, and (b) have the same non-⊥ value in v tmfi , which proves the

CC-agreement property for this case.

P being the set of processes that execute line 18 of the round r = t+ 1− x, let us first observe

that as no process pi ∈ P decides at line 14 during a round r, each of them has necessarily
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executed line 7 during the first round (otherwise we would have v condi �= ⊥ at the end of the

first round and pi would have decided at line 14 of the second round).

We conclude from the previous observation that, at the end of the first round, equal(⊥, viewi) >
x and v tmfi �= ⊥ for each process pi ∈ P . It then follows from line 16 that these variables

remain forever different from ⊥. It also follows from equal⊥(viewi) > x that at least (x + 1)
processes have crashed during the first round. This means that at most t− (x+1) processes can

crash from round 2 until round t+ 1− x, i.e., during (t− x) rounds.

As t − (x + 1) processes can crash during (t − x) rounds, there is necessarily a round r′,
2 ≤ r′ ≤ t + 1 − x, with no crash. Moreover all the processes that execute round r′ exchange

their values v condi and v tmfi (line 13). Moreover, the values v tmfi sent by the processes of

P are not equal to ⊥. It follows that all the processes that execute round r′ have the same value

in v condi (this value can be ⊥), and in v tmfi (this value cannot be ⊥), which concludes the

proof of the agreement property.

�Theorem 49

The next corollary follows from the proof of the previous theorem.

Corollary 5. If at most f ≤ x processes crash, no process decides after the second round.

11.4 Using a Global Clock and a Fast Failure Detector

11.4.1 Fast Perfect Failure Detectors

What is a failure detector The notion of a failure detector was introduced in Section 3.3. A failure

detector is a device that provides each process with information on failures. According to the quality

of this information, several classes of failure detectors can be defined.

Duration of a round To simplify the presentation, let us assume that the synchronous model is such

that local computation takes no time while message transfer delays are upper bounded by duration D
(a message sent at time τ is received by time τ + D). The assumption that local computation takes

no time is without loss of generality as processing times can be included in D. This means that the

duration of a round is D time units.

The class of fast perfect failure detectors A fast perfect failure detector (FFD) is a distributed

object that provides each process pi with a set denoted suspectedi. This set contains process identities,

and pi can only read it. If j ∈ suspectedi we say “pi suspects pj” or “pj is suspected by pi”.

This object satisfies the following properties that involve a duration d, called maximal detection

time, and is such that d << D (hence the attribute fast of the failure detector class).

• Strong accuracy. No process pj is suspected by another process pi before pj crashes.

• Detection timeliness. If a process pj crashes at time τ , then from time τ + d, every non-crashed

process suspects it forever.

The first property is related to safety: no process is suspected before it crashes. The second

property is related to real-time liveness. It states that a process pi is informed of the crash of a process

pj at most d time units after the crash occurred. Let us nevertheless observe that, if a process pj crashes

at some time τ , it is possible that some processes are informed at time τ + d′, while other processes

are informed at time τ + d′′, etc., with 0 ≤ d′ < d′′ < d. The failure detector is perfect because it

never makes mistakes: any crashed process is suspected, and only crashed processes are suspected. (A

fast failure detector can be implemented with specialized hardware.)
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11.4.2 Enriching the Synchronous Model to Benefit from a Fast Failure Detector

Instead of round numbers, the behavior of a process is described with respect to date occurrences.

To this end, the synchronous system CSMPn,t[∅] is enriched with a global clock variable denoted

CLOCK , which a process can only read. It is assumed that CLOCK = 0 when the algorithm starts.

Hence, the system model is CSMPn,t[CLOCK , FFD].

The dates are defined from the durations d (as defined by the failure detector) and D (as defined

by the synchrony assumption). Hence, they are meaningful both from the application point of view

(D) and the failure detector point of view (d). A particular algorithm defines which are the dates that

are relevant for it.

11.4.3 A Simple Consensus Algorithm Based on a Fast Failure Detector

Considering the model CSMPn,t[CLOCK , FFD], the algorithm described in Fig. 11.10 allows the

processes to decide at time t× d+D. This is better than its counterpart in a pure synchronous system

which requires (t+ 1) rounds, i.e., (t+ 1)D times units.

Relevant dates The algorithm considers two types of rounds, rounds of duration D time units as

defined by the synchronous system, and rounds (called FFD-rounds) of duration d (maximal detection

time) related to the underlying failure detector. According to these rounds, the dates that are relevant

for a process pi are (i− 1)d for sending a message (line 2) and t× d+D for deciding (line 5).

Description of the algorithm The principle the algorithm relies on is the following. Each FFD-

round is coordinated by a process that is the only process allowed to send a message during this FFD-

round (lines 2-3). Process p1 is the coordinator of the first FFD-round, process p2 the coordinator of

the second FFD-round, etc. More precisely, at the beginning of the FFD-round (i− 1)d, process pi is

required to broadcast the pair (esti, i) (where esti is its current estimate of the decision value) if, and

only if, it suspects all the processes that were assumed to broadcast during the previous FFD-rounds

(i.e., if it suspects the processes p1 to pi−1). Let us observe that, if p1 does not crash, its broadcast

predicate is trivially satisfied when the algorithm starts (i.e., when CLOCK = 0).

If any, the message broadcast by a process pi is sent at time (i − 1)d and received by time (i −
1)d +D. If pi crashes during the broadcast, an arbitrary subset of processes receive its message, and

if pi crashes at time τ , a process pj starts suspecting pi forever at any time between τ and τ + d.

When a process pi receives a message, it stores the pair contained in the message into a set denoted

viewi (line 4). If a message is received by a process pi when a relevant date occurs for it (i.e., when

CLOCK = (i−1)d or CLOCK = t×d+D), this process first processes the message received (which

by assumption takes no time), and only then executes the statement associated with the corresponding

date.

Finally, at time t× d+D (line 5), any alive process pi decides and stops. The value it decides is

the value it has received that has been sent by the process with the highest identity.

Remark As at most t processes crash, the processes pt+2, ..., pn can never be round coordinators,

and consequently their values can never be decided (except when one of their values is also proposed

by a process px with 1 ≤ x ≤ t + 1). The algorithm is consequently unfair in the sense given in

Section 10.1.2.

Theorem 50. The algorithm described in Fig. 11.10 implements the consensus agreement abstraction

in the system model CSMPn,t[CLOCK , FFD]. Moreover, the decision is obtained in t× d+D time

units.
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operation propose(vi) is

(1) init esti ← vi; viewi ← ∅.

(2) when CLOCK = (i− 1)d do

(3) if ({1, 2, . . . , i− 1} ⊆ suspectedi) then broadcast EST(esti, i) end if.

(4) when EST(est, j) is received do viewi ← viewi ∪ {〈est, j〉}.

(5) when CLOCK = t× d+D do

(6) let 〈v, k〉 be the pair in viewi with the greatest process identity;

(7) return(v).

Figure 11.10: Synchronous consensus with a fast failure detector (code for pi)

Proof The CC-termination property follows from the synchrony assumptions of the synchronous sys-

tem and the underlying failure detector: when the clock is equal to t × d + D, all alive processes

decide. Moreover, when a process pi decides, viewi is not empty (because there is at least one correct

process among the (t + 1) coordinators), and contains only proposed values. Hence, the CC-validity

property is also met.

To prove the CC-agreement property we first introduce a definition and then prove a claim from

which CC-agreement is derived.

Definition. An FFD-round k is eligible if, at time (k − 1)d, the processes p1, ..., pk−1 have crashed

and pk either crashed or suspects them.

Let us observe that, if the FFD-round (t + 1) is eligible, then process pt+1 must be alive at time

td +D. This is because at most t processes can crash, and, as the FFD-round (t + 1) is eligible, the

processes p1 to pt have crashed. Let us also observe that no FFD-round k > t + 1 can be eligible.

Finally, let us notice that, due to the definition of eligibility, a process pi can broadcast a message in

the FFD-round i only if this FFD-round is eligible.

Claim. For 1 ≤ k ≤ t+1, if the FFD-round k is eligible, then either pk broadcasts EST(esti, v) or the

round (k + 1) is eligible.

Proof of the claim. If the FFD-round k is eligible and pk does not broadcast EST(esti, v), then pk
crashes by time (k − 1)d. In this case, due to the detection timeliness of the failure detector, it will be

suspected by all alive processes by time (k − 1)d + d = k × d, and then the FFD-round (k + 1) is

eligible. End of the proof of the claim.

Let us now prove the CC-agreement property. Let r be the largest eligible FFD-round. It follows

from the previous discussion that r ≤ t + 1. It then follows from the claim that process pr sends

EST(estr, v) to all other processes without crashing (otherwise r would not be the largest eligible

FFD-round). Moreover, no process with a larger identity ever broadcasts a message (this is because

for pj to broadcast a message, the FFD-round j has to be eligible, and r is the largest eligible round).

It follows that all processes that decide at time t × d + D, decide the value estr they have received,

which concludes the proof of the theorem. �Theorem 50

11.4.4 An Early Deciding and Stopping Algorithm

Decide in f × d + D time units Let us remember that f , 0 ≤ f ≤ t, denotes the actual number

of process crashes in an execution. This section presents a consensus algorithm suited to the model

CSMPn,t[CLOCK , FFD], in which any process (that does not crash) decides by D + fd time units.

This is better than min(f + 2, t + 1)D time units which is the bound attained by the early deciding
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algorithm presented in Section 11.1. To simplify the presentation, it is assumed that D is an integral

multiple of d.

Local variables at process pi Each process pi manages two local variables:

• esti is pi’s estimate of the decision value. Its initial value is vi, the value proposed by pi,.

• max idi contains a process identity. Its initial value is 0 (any value smaller than a process

identity).

Relevant dates The algorithm is described in Fig. 11.12. It is an extension of the previous fast

failure detector-based algorithm. It has consequently the same coordinator-based sequential structure.

More precisely, it also considers periods of length d, each coordinated by a process: process pi is

the only process that can send a message at the beginning of the time period defined by the clock

interval [(i− 1)d..i× d) (lines 2-3 are the same as in Fig. 11.10). Hence, as before, the first period is

coordinated by p1, the second by p2, etc. Therefore, the dates that are relevant for this algorithm are:

D, d+D, 2d+D, ..., t× d+D for all processes (line 6), plus the date (i− 1)d for each process pi
(line 2). These dates are represented on Fig. 11.11.

D

(j − 1)d +D

(i− 1)d

CLOCK

d +D

xd +D

Figure 11.11: Relevant dates for process pi

Early deciding fast failure detector-based algorithm As already mentioned, the statements exe-

cuted by pi when CLOCK = (i− 1)d (lines 2-3) are the same as in Fig. 11.10: if pi suspects all the

processes with a smaller identity, it sends the pair (esti, i) to all processes.

The statements executed by a process pi when it receives a message or when CLOCK = (j −
1)d+D are different from the ones in the previous algorithm. When process pi receives a pair (est, j)
it updates its own estimate esti (line 5) only if the identity j of the sender process is larger than

max idi (which has been initialized to a value smaller than any process identity). Hence, except for

its initial value, the successive values of esti come from processes with increasing identities.

Finally, at every date (j − 1)d +D, 1 ≤ j ≤ t + 1 (line 6), pi checks a predicate to see if it can

decide. This predicate is on the current output of the failure detector. More precisely, pi decides if it

does not suspect the process pj currently defined from the value of the clock. If the predicate is false,

pi received the message (if any) sent by pj . (This is because the difference between its sending time

and the current time is D. Moreover, if pj has not sent a message, it is because it did not suspect at

least one of its predecessors p1 to pj−1.) Hence, if j /∈ suspectedi, pi decides the current value of

esti and consequently executes return(esti) (line 7).

It is easy to see that the processes decide by D time units when the process p1 does not crash (in

that case they decide the value v1 proposed by p1). If p1 crashes while p2 does not, they decide by

time d+D. According to the failure pattern, the decided value is then the value v1 proposed by p1 or

the value v2 proposed by p2 (it is v1 if p2 has received v1 by d time units), etc.

Theorem 51. The algorithm described in Fig. 11.12 implements the consensus agreement abstraction

in the system model CSMPn,t[CLOCK , FFD]. Moreover, the decision is obtained in at most f×d+D
time units, where f is the actual number of process crashes.
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operation propose(vi) is

(1) init esti ← vi; max idi ← 0.

(2) when CLOCK = (i− 1)d do

(3) if ({1, 2, . . . , i− 1} ⊆ suspectedi) then broadcast EST(esti, i) end if.

(4) when EST(est, j) is received do

(5) if (j > max idi) then esti ← est; maxi ← j end if.

(6) when CLOCK = (j − 1)d+D for every 1 ≤ j ≤ t+ 1 do

(7) if (j /∈ suspectedi) then return(esti) end if.

Figure 11.12: Early deciding synchronous consensus with a fast failure detector (code for pi)

Proof Let us first observe that no process pi decides after d × f +D times units. Indeed, as f pro-

cesses crash and f ≤ t, there is at least one process pj such that 1 ≤ j ≤ t + 1 and the predicate

j /∈ suspectedi is consequently satisfied at the latest when when CLOCK = (j − 1)d + D. The

CC-termination property follows from this observation. Moreover, the CC-validity property is trivial

(for any pi, esti is initialized to vi, and then possibly updated only with another estimate value).

The proof of the CC-agreement property is based on the following definition.

Definition. An FFD-round k is active if, at time (k− 1)d, pk is not crashed and suspects the processes

p1, ..., pk−1. Let us observe that an active FFD-round is eligible, while an eligible FFD-round is not

necessarily active.

T = (j − 1)d +D

dd

pi decides

p� broadcasts EST(w, �)

∀x: j /∈ suspectedx

FFD-round � FFD-round k − 1

FFD-round k starts

Figure 11.13: The pattern used in the proof of the CC-agreement property

The timing pattern used in the proof is described in Fig. 11.13.

• Let us consider the first process (say pi) that decides. Let v be the value it decides. Process pi
has decided v at some time T = (j − 1)d+D for some j. It follows from the failure detector-

based decision predicate that, at time T , process pi was not suspecting pj . It follows from the

detection timeliness property of the failure detector that no process suspected pj at least up to

time T − d (Observation O1).

• Due to the simplifying assumption that D is an integral multiple of d, it follows that there is

an FFD-round k that starts at time T . Moreover, (due to O1) no process suspected pj at the

beginning of every FFD-round x < k (Observation O2).

• Due to the definition of “active FFD-round” and O2, it follows that none of the rounds from

(j + 1) until (k − 1) are active (Observation O3).

• On the other hand, as pj is alive at time T−d (see O1), and T−d = (j−1)d+D−d > (j−1)d,

process pj is alive at time (j − 1)d (Observation O4).

• It follows that there is at least one active FFD-round among the FFD-rounds 1 to j. The only

way for none of these FFD-rounds be active is that for any x in {1, . . . , j} process px crashes at



212

time (x − 1)d, and we know from O4 that this is false at least for pj . Hence, there is a largest

active FFD-round – say 	 – in the FFD-rounds from 1 to j (Observation O5).

• It follows from the text of the algorithm and the definition of an active FFD-round that p� (which

exists due to O5) broadcast EST(w, 	) at the beginning of the FFD-round 	, and this message is

received by all the processes by time (	− 1)d+D < T (Observation O6).

• It follows from the choice of 	 and O3 that there are no active FFD-rounds among the FFD-

rounds from (	 + 1) to (k − 1). Consequently, none of the processes from p�+1 to pk−1 sends

messages (Observation O7).

• It follows from O6 that, at time T , all processes have received EST(w, 	) and changed their esti
variable to w. Moreover, due to O7, esti is not overwritten. Hence, at time T , no estimate value

of an alive process is different from w. It follows that, whatever the messages sent after T , all

estimates remain equal to w. Hence, v = w, and no decided value can be different from w.

�Theorem 51

On the failure detector behavior Let us observe that when a process pi decides, it stops its exe-

cution as far as consensus is concerned but it continues executing the program it is involved in. If

process pi crashes later (i.e., outside the consensus algorithm), the failure detector detects its crash,

and this detection does not alter the correction of the consensus algorithm. Whereas, if pi terminates,

the failure detector must not consider its normal termination as a crash (such a false detection could

make the consensus algorithm incorrect). The failure detector detects crash failures and only crash

failures. A normal termination is not a failure.

11.5 Summary

This chapter was devoted to efficient consensus algorithms, where efficiency concerns the number

of rounds executed by an algorithm. Two algorithms ensuring that no process executes more than

min(f + 2, t + 1) have been presented. One is based on the counting of crashed processes, the other

one is based on a differential predicate, which provides a finer view of the execution and can be

exploited to favor early decision.

Then, the chapter presented an unbeatable predicate, and the associated consensus algorithm

CGM . Unbeatability means that, if there is an early deciding algorithm A based on a different deci-

sion predicate that, in some execution, improves the decision round with respect to CGM , there is at

least one execution of A in which a process strictly decides later than in CGM .

Finally, the chapter has presented the condition-based approach which allow us to bypass the lower

bound min(f+2, t+1) when the set of possible input vectors satisfies some predefined pattern, and the

enrichment of a synchronous system with a fast failure detector, which allows us to expedite decision.

11.6 Bibliographic Notes

• Early deciding agreement was first investigated by D. Dolev, R. Reischuk, and H.R. Strong

in [135].
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require that the input vector always belongs to the x-legal condition C it is instantiated with.

This algorithm directs the processes to decide in at most min(f +2, t+1− x) rounds in all the
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where they are used to circumvent the impossibility to solve consensus in asynchronous systems

prone to process crash failures [162]. Introductory surveys to failure detectors can be found in
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• Fast failure detectors were introduced by M. Aguilera, G. Le Lann, and S. Toueg in [19] along

with the algorithms presented in this chapter.

11.7 Exercises and Problems

1. Prove the early deciding consensus algorithm described in Fig. 11.3.

2. Let us consider the unbeatable binary consensus algorithm described in Fig. 11.7.

• Let lgri be the value of the graph lgi at the end of round r. Prove (by induction) that lgri
captures the causal past of pi at the end of round r (round invariant of the algorithm in

Fig. 11.7).

• With the help of the previous round invariant, prove the CC-agreement property of the

unbeatable algorithm described in Fig. 11.7.

3. Prove that the condition Cx
first defined in Section 11.3.2 is x-legal. Show it is not maximal.

Solution in [313].



Chapter 12

Consensus Variants:

Simultaneous Consensus

and k-Set Agreement

Considering the classic system model CSMPn,t[∅], this chapter presents two “variants” of the consen-

sus agreement abstraction. One is a strengthening of the agreement property, the other one a weaken-

ing. Hence, consensus lies in between.

The first one, called simultaneous consensus (SC), requires the processes to decide in the very same

round, which has to be as early as possible, despite any number of crash failures. Hence, simultaneous

consensus provides each process with strong global knowledge: not only does a process that decides

a value v during round r know that no other value can ever be decided by another process, but it also

knows that no other process decides at a different round.

The second one, called k-set agreement (k-SA), weakens the C-Agreement property, namely, it

allows up to k different values to be decided (hence, consensus is 1-set agreement). The chapter

presents two k-set agreement algorithms. The first one allows the processes to decide in at most

� tk� + 1 rounds. The second one is an optimal early deciding algorithm, in which a process decides

in at most min(�fk � + 2, � tk� + 1) rounds. Hence, the round cost of k-set agreement is the one of

Consensus divided by k.

Keywords Atomic round, Clean round, Condition-based simultaneity, Early decision, Failure dis-

covery, Failure pattern, Horizon, k-Set agreement, Simultaneous consensus, Waste.

12.1 Simultaneous Consensus: Definition and Its Difficulty

12.1.1 Definition of Simultaneous Consensus

As just indicated, the simultaneous consensus agreement abstraction is consensus strengthened by an

additional timing (round) agreement, stating that the processes decide during the same round.

Hence, this abstraction provides the processes with the one-shot operation propose() whose invo-

cations satisfy the following properties.

• SC-validity. A decided value is a proposed value.

• SC-data agreement. No two processes decide different values.

• SC-round agreement. No two processes decide at different rounds.

• SC-termination. Each correct process decides a value.
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12.1.2 Difficulty Early Deciding Before (t+ 1) Rounds

Using a non-early deciding algorithm Chap. 10 presented a non-early deciding consensus algo-

rithm (Fig. 10.2), which implements consensus in the system model CSMPn,t[∅], and where the pro-

cesses decide during the round (t + 1). Hence, this is an inefficient algorithm (from a round point of

view) that trivially satisfies the required decision simultaneity property.

Deciding before (t + 1) rounds The aim is to design an early deciding simultaneous consensus

algorithm. The problem is not as easy as it would seem at first glance. As we will see, unlike from the

base early deciding problem, the worst case is when no process crashes!

To better understand the intuition that underlies the solution, let us consider the particular failure

pattern in which t processes crashed before the execution starts. As t is the upper bound on the number

of process crashes, it follows that the (n− t) remaining processes define a failure-free system. During

the first round, each non-crashed process learns that, from then on, it is in a failure-free system.

Consequently the (n − t) correct processes can exchange their views of the system during the first

round and discover, during the second round, that each had the same view at the end of the first round.

Hence, at the end of the second round, each process can safely decide.

More generally, what makes things easier is when many crashes occur at the beginning of the

computation. Roughly speaking this is because a crash is stable (once crashed, a process remains

crashed forever), while the property “a process has not crashed” is not a stable property. This instability

and the occurrence of only a few crashes make agreement on an early round for a simultaneous decision

difficult to obtain.

Early decision vs simultaneity When looking for early decision only, a process strives discover a

round r without crashes. When this occurs, it knows that no more value can be learned, and it can

safely decide (after having propagated during round (r + 1) what it learned during round r).

When looking for simultaneous agreement, the processes have to agree on how many crashes have

occurred in order to be able to decide simultaneously before the last round (round t + 1). When y
processes crash “simultaneously” during a round r, in the sense that all the processes that terminate

this round detect these crashes, the “simultaneity” of these crashes allows the saving of (y−1) rounds,

i.e., the processes can safely decide during round t+1− (y− 1). This is the basic principle on which

the implementation of early deciding simultaneous agreement relies. The worst cases are when there

are no crashes (as already mentioned) and when there is one crash per round. In these cases, no round

can be saved and simultaneous decision cannot occur before the last round.

12.1.3 Failure Pattern, Failure Discovery, and Waste

Failure pattern In the context of early simultaneous consensus, a failure pattern F is a list of at

most t triples 〈j, kj , bj〉 where j is a process identity, kj a round number, and bj a set of processes.

Such a triple states that process pj crashes in round kj (hence, it sends no messages after this round),

and bj is the set of processes that do not receive the message sent by pj during round kj . It is supposed

that the list defining a failure pattern is well-defined, i.e., for any j, there is at most one triple 〈j,−,−〉.

Failure discovery The failure of a process pj is discovered in round r if r is the first round where

there is a process pi that (a) does not receive a round r message from pj and (b) completes round r
without crashing.

The notion of waste The discussion at the end of Section 12.1.2 suggests that determining the

earliest round at which the processes can simultaneously decide should take into account the pairs
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composed of a round number plus the number of processes perceived as crashed at the end of this

round. This intuition is formalized as follows.

• Let C[r, F ] (abbreviated to C[r] when the pattern F is implicit) be the number of processes

perceived as crashed by (at least) one of the processes that do not crash before the end of round r.

• For any round r, let dr = max(0, |C[r]|−r). As we will see, dr represents the number of rounds

that could be saved with respect to the worst case (namely, t+ 1 rounds), thanks to the crashes

that occurred and were seen by at least one process that terminated round r.

• Given a failure pattern F , let D(F ) = maxr≥0(dr). According to the definition of dr, this value

represents the best saving in terms of rounds that can obtained with failure pattern F . When

there is no ambiguity, D(F ) is denoted D.

Notion of inherent waste D and dr depend on the failure pattern. The quantity D is called the

waste inherent in the failure pattern F . This is because it represents the number of rounds that an

adversary has “lost” in its quest to delay the simultaneous decision as long as possible. As we will see,

the algorithm presented in Section 12.2 strives to compute the value dr, which makes it able to direct

the processes to simultaneously decide during the round (t+ 1−D).

12.1.4 A Clean Round and the Horizon of a Round

The notions of a clean round and waste are due to C. Dwork and Y. Moses (1990).

Notion of a clean round A round r is clean if no process is discovered to be faulty for the first time

during this round, i.e., C[r− 1] = C[r]. This means that a process that crashes during a clean round r
has sent its round r message to all the processes that proceed to round (r+1). Hence, while the notion

of an atomic round (introduced in Section 10.2.2) is associated with crashes only, the notion of a clean

round is not directly associated with crashes, but with their discovery by processes. The following

property is an immediate consequence of the definition of a clean round. (The same property holds for

atomic rounds.)

Property 4. Let r be a clean round r, and P the of processes that proceed to the round (r+1). During

round r, all the processes of P received messages from the same set of processes Q and P ⊆ Q.

A clean round is not necessarily a failure-free round or an atomic round. It is possible that a process

pi crashes in a clean round r but no process active at the end of r noticed its crash (pi crashed after

its sending phase and before the end of round r, or more generally pi crashed during r after sending

its round r message to the processes that terminate round r). Similarly, a failure-free or atomic round

is not necessarily clean. As an example, the failure-free round (r + 1) that follows a clean round r
during which a crash occurred is not clean. This is depicted on Figure 12.1 where round r is clean,

while round (r+1) is failure-free but not clean (because pi is discovered to be faulty for the first time

in round r).

pi

pj

pk

failure-free

round (r − 1)
clean

round r
failure-free

round (r + 1)

Figure 12.1: Clean round vs failure-free round
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Horizon of a round Given a process pi and a round r ≥ 1, let x be the greatest number of process

crashes that occurred between round 1 and round (r − 1) (inclusive) and are known by pi (to have

crashed in the first (r − 1) rounds) by the end of round r. By definition, x = 0 for r = 1. The notion

of horizon was introduced by T. Mizrahi and Y. Moses (2008).

The value hi(r) = r + t − x is called the horizon of pi at round r. We have hi(1) = t + 1. As

an example, if three processes crash by the end of the first round, and pi discovers their crash during

the second round (it received messages from them during the first round, but not during the second

round), we have hi(2) = 2 + t− 3 = t− 1.

The horizon notion (of a process pi at round r) is a key notion to determine the earliest round at

the end of which the same value can be simultaneously decided. The following simple theorem (which

will be exploited by the algorithm described in Section 12.2) explains why this notion is crucial.

t + r − xr t + 1
hi(r) =

t− x + 1 rounds

r = 0

x processes discovered crashed

Figure 12.2: Existence of a clean round

Theorem 52. Let x be defined as indicated previously, and pi be a process that knows x and terminates

round r. There is a clean round y such that r ≤ y ≤ hi(r) = r + t− x.

Proof Let us first observe that, as at least x faulty processes have been discovered by pi by the end

of the first (r − 1) rounds, at most (t − x) faulty processes can be still be discovered by pi. In the

worst case (one crash per round is discovered by pi), this occurs between round r (included) and round

(t+r−x) (inclusive) (see Fig. 12.2). But, from r to (t+r−x), there are (t+r−x)−r+1 = t−x+1
rounds, from which we conclude that, during one of the rounds, no crashed process can be discovered.

Hence, at least one of these rounds is clean. �Theorem 52

12.2 An Optimal Simultaneous Consensus Algorithm

The algorithm presented in this section is due to Y. Moses and M. Raynal (2009). It a variant of an

algorithm due to C. Dwork and Y. Moses (1990).

12.2.1 An Optimal Algorithm

Local variables Each process pi manages the following local variables. Some variables are pre-

sented as belonging to an array. This is only for notational convenience, as such arrays can be imple-

mented as simple variables.

• esti contains pi’s current estimate of the decision value at the end of r. Its initial value is vi, the

value proposed by pi.

• fi[r] denotes the set of processes from which pi has not received a message during the round r.

(So, this variable is the best current estimate that pi can have of the processes that have crashed.)

Let fi[r] = Π \ fi[r] (i.e., the set of processes from which pi has received a round r message).

• f ′
i [r−1] is a value computed by pi during the round r, but it refers to crashes that occurred up to

the round (r − 1) inclusive, hence the notation. It is the value
⋃

pj∈fi[r]
fj [r − 1], which means

that f ′
i [r − 1] is the set of processes that were known to have crashed at the end of the round

(r − 1) by at least one of the processes from which pi received a round r message. This value
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is computed by pi during the round r. As each process pi receives its own messages, we have

fi[r − 1] ⊆ f ′
i [r − 1].

• bhi[r] represents the best (smallest) horizon value known by pi at round r. It is pi’s best estimate

of the earliest round for a simultaneous decision. Initially, bhi[0] = hi(0) = t+ 1.

operation propose (vi) is

(1) esti ← vi; bhi[0] ← t+ 1; fi[0] ← ∅;

(2) when r = 1, 2, . . . do

(3) begin synchronous round

(4) broadcast EST(esti, fi[r − 1]);
(5) let f ′

i [r − 1] = union of the fj [r − 1] sets received during r;

(6) let fi[r] = set of processes from which pi has not received a message during r;

(7) esti ← min( all the estj received during r);
(8) let hi(r) = (r − 1) + (t+ 1− |f ′

i [r − 1]|);
(9) bhi[r] ← min

(
bhi[r − 1], hi(r)

)
;

(10) if r = bhi[r] then return(esti) end if

(11) end synchronous round.

Figure 12.3: Optimal simultaneous consensus in the system model CSMPn,t[∅] (code for pi)

Process behavior The algorithm executed by each process pi is described in Fig. 12.3. At the

beginning of a round r, each process pi broadcasts a message containing its current estimate of the

decision value (esti), and the set fi[r − 1] of processes it currently knows to be faulty (line 3). Then,

after the reception of the round r messages, pi computes the new values of f ′
i [r − 1], fi[r], esti, and

bhi[r] (lines 5-9).

The new value of esti is the smallest of the estimates values it has seen so far. As far as the value

of bhi[r] is concerned, we have the following.

• The computation of bhi[r] takes into account hi(r). This allows us to benefit from Theorem 52,

which states that there is a clean round y such that r ≤ y ≤ hi(r). When this clean round is

executed, any two processes pi and pj will have esti = estj , and (as they will receive messages

from the same set of processes, see Property 4) will be such that f ′
i [r − 1] = f ′

j [r − 1]. It

follows that, we will have hi(y) = hj(y), thereby creating the correct “seeds” for determining

the earliest round for a simultaneous decision.

• As we are looking for the first round where a simultaneous decision is possible, bhi[r] has to be

set to min
(
hi(0), hi(1), . . . , hi(r)

)
, i.e., bhi[r] = min

(
bhi[r − 1], hi(r)

)
.

Finally, according to the previous discussion, the algorithm directs a process pi to decide at the end of

the first round r that is equal to the best horizon currently known by pi, i.e., when r = bhi[r].

r t + 1r = 0

t− |f ′i [r − 1]| + 1 rounds

hi(r) = t + r − |f ′i [r − 1]|
hi(r) = t + 1−

(
|f ′i [r − 1]| − (r − 1)

)
(stated wrt r − 1)

|f ′i [r − 1]| processes known to have crashed

Figure 12.4: Computing the current horizon value

As far as hi(r) is concerned, we have hi(r) = t + r − |f ′
i [r − 1]|. It is expressed at line 8 as

a function of (r − 1) to emphasize the fact that it could be computed at the end of the round r − 1
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by an external omniscient observer. This formulation is described in Fig. 12.4, which is the same as

Fig. 12.2 except x is replaced by its value as known by pi, namely, x = |f ′
i [r − 1]|.

12.2.2 Proof of the Algorithm

Lemma 45. A decided value is a proposed value.

Proof The proof is an immediate consequence of the initialization of the esti local variable (line 1),

the reliability of the channels, and the min() operation used at line 7. �Lemma 45

Lemma 46. Let pi be a correct process. ∀r ≥ 0 we have hi(r) ≥ r.

Proof Since the processes in the set f ′
i [r − 1] are processes that have crashed by the end of the round

(r− 1), it follows that t− |f ′
i [r− 1]| ≥ 0. Consequently, hi(r) = r+ t− |f ′

i [r− 1]| ≥ r. �Lemma 46

Definition Considering an execution, let pi be a process that is correct in this execution.

• Let BHi = minr≥0hi(r). BHi is the smallest value ever attained by the function hi(r), i.e., the

smallest horizon value determined by pi.

• Let Li = max({r | hi(r) = BHi}). Li is the last round whose horizon value is BHi .

It follows from these definitions that if L′ > Li then hi(L
′) > hi(Li).

Lemma 47. Li is a clean round (i.e., no process is discovered to be faulty for the first time in that

round).

Proof Assume, by contradiction, that Li is not clean (recall that pi is a correct process). This means

there is a faulty process pz that is seen faulty) for the first time in round Li by some process py. Notice

that pz /∈ f ′
i [Li − 1] since pz was not discovered to be faulty in the previous rounds. There are two

cases.

• Case 1: pi receives a message from py in round (Li + 1).
(This case includes the case where pi and py are the same process). As py does not receive a

message from pz during Li, and a crash is stable, we have pz ∈ fy[Li]. Moreover, due to the

case assumption, and the fact that the round (Li + 1) message from py to pi carries fy[Li], it

follows that f ′
i [Li] contains f ′

i [Li − 1] ∪ {pz}. Consequently, |f ′
i [Li]| > |f ′

i [Li − 1]|. It follows

that hi(Li + 1) ≤ hi(Li), contradicting the definition of Li.

• Case 2: pi does not receive a message from py in round (Li + 1).
In this case, both pz and py are seen as faulty for the first time by pi during the round (Li + 1).
So, fi[Li+1] contains f ′

i [Li−1]∪{py, pz}. Since f ′
i [Li+1] (computed by pi during the round

Li + 2) contains fi[Li + 1], we have |f ′
i [Li + 1]| ≥ |f ′

i [Li − 1]|+ 2. Thus, we have

hi(Li + 2) = (Li + 2) + t− |f ′
i [Li + 1]|,

≤ (Li + 2) + t− (|f ′
i [Li − 1]|+ 2),

= Li + t− |f ′
i [Li − 1]|,

= hi(Li),

which again contradicts the definition of Li.
�Lemma 47

Lemma 48. Every correct process decides. Moreover, all processes that decide do so in the same

round and decide on the same value.



Chapter 12. Consensus Variants: Simultaneous Consensus and k-Set Agreement 221

Proof SC-termination. Let us consider a correct process pi. Notice that, due to the initialization and

line 9 we have ∀r : bhi[r] ≤ t+1, from which we conclude BHi ≤ t+1. So, to prove that pi decides

we have to show that pi does not miss the test r = BHi at line 10. This could happen if the first round

	 where bhi[	− 1] > BHi and bhi[	] = BHi is such that 	 > BHi . We prove that this cannot happen.

Let us observe that, due to Lemma 46, we have hi(	) ≥ 	. It then follows from bhi[	− 1] > BHi ,

hi(	) ≥ 	, bhi[	] = BHi , and line 9, that BHi = bhi[	] = min(bhi[	 − 1], hi(	)) = hi(	) ≥ 	, i.e.,

BHi ≥ 	, which establishes the result. It follows that pi decides no later than round t+ 1.

SC-round agreement for correct processes. Let us first show that no two correct processes pi and

pj decide at distinct rounds. Due to the algorithm, if pi and pj decide, they decide at round BHi and

BHj , respectively. We show that BHi = BHj . Due to Lemma 47, the round Li is clean. Hence, during

the round Li, pj receives the same messages that pi receives (Property 4). Thus f ′
i [Li−1] = f ′

j [Li−1]
and consequently, hi(Li) = hj(Li). Then, we have

BHj ≤ bhj [Li] (due to the definition of BHj),

bhj [Li] ≤ hj(Li) (due to line 9),

bhj [Li] ≤ hi(Li) (due to hi(Li) = hj(Li)), and

hi(Li) = BHi (due to the definition of Li),

from which we conclude BHj ≤ BHi . By symmetry the same reasoning yields BHi ≤ BHj , from

which it follows that BHi = BHj . This proves that no two correct processes decide at distinct rounds.

SC-round agreement for faulty processes. BH being the round at which the correct processes de-

cide, let us now consider the case of a faulty process pj . As pj behaves as a correct process until it

crashes, and as the correct processes decide in the same round BH , it follows that no faulty process

decides before BH , and if pj executes line 10 of round BH , it does decide as if it was a correct process.

SC-data agreement. The fact that no two processes decide different values comes from the exis-

tence of the clean round Li that appears before a process decision. During this round, all the processes

that are alive have received the same set of estimate values (Property 4), and selected the smallest of

them. It follows that, from the end of round Li, there is a single estimate value in the system, which

proves the data agreement property. �Lemma 48

Definition We now formally define S and C, which have been previously introduced more infor-

mally. Given an execution of propose, let F be the failure pattern that occurs in that execution.

• S[r] = S[r, F ] is the set of processes that complete round r according to F .

• C[r] = C[r, F ] =
⋃

pi∈S[r]
fi[r] is the set of the processes that are known to have crashed by at

least one of the processes that survives round r. Observe that f ′
i [r] ⊆ C[r] for any pi ∈ S[r].

Let us recall that dr = max(0, |C[r]| − r), for every round r, and the “waste” D = maxr≥0(dr)
(the number of rounds the adversary has lost in its quest to delay decision for as long as possible.)

The fictitious rounds r ≤ 0 are used for ease of exposition. As no process can be discovered faulty

before the first round, we assume C[r] = 0 for all r ≤ 0. Notice also that D ≥ 0, since C[0] = 0 and

D ≥ d0 = C[0]− 0 = 0.

Theorem 53. The algorithm described in Fig. 12.3 implements the simultaneous consensus agreement

abstraction in the system model CSMPn,t[∅]. In a run with failure pattern F , decision is reached in

round (t+ 1−D), where D = D(F ) is the waste inherent in F .
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Proof The proof of the SC-validity, SC-termination, SC-round agreement, and SC-data agreement

properties, follows from Lemma 45 and Lemma 48. We now show that the decision is obtained in

round (t + 1 − D). Let us consider an arbitrary run of the algorithm. It follows from the proof of

Lemma 48 that BHi = BHj for any pair of processes pi and pj that decide. Let BH denote this round.

The proof of the claim amounts to showing that BH ≤ t+ 1−D and BH ≥ t+ 1−D.

Let pi be a process that decides and R the last round such that |C[R]| − R = D (i.e., |C[R +
x]| − (R + x) < D = |C[R]| − R, for any x > 0). Let us observe that, due to lines 8-10 of the

algorithm, BH is attained at the round numbers that make the function hi() minimal. Moreover, it

follows from the definition of D and R that |C[R+ 1]| ≤ |C[R]|. Since C[R] ⊆ C[R+ 1], it follows

that C[R] = C[R+1], i.e., no new process failure is discovered in round (R+1), so this is clean and

we have |f ′
i [R]| = |C[R]|. Due to line 8 of round (R+1) we have hi(R+1) = R+ t+1−|f ′

i [R]| =
(t+ 1)− (|f ′

i [R]| −R) = t+ 1−D, from which we conclude BH ≤ t+ 1−D.

For the other direction let us recall that, due to Lemma 47, the round Li > 0 is clean. It follows that

f ′
i [Li−1] = C[Li−1], since any pi hears in round Li from all processes that survived round (Li−1).

Therefore, BH = t+1−(|f ′
i [Li−1]|−(Li−1)) = t+1−(|C[Li−1]|−(Li−1)) = t+1−d(Li−1) ≥

t+ 1−D, which completes the proof of the theorem. �Theorem 53

On the optimality of the algorithm As indicated in the bibliographic notes at the end of this chapter,

the value (t + 1 − D) is a lower bound for simultaneous decision. It is important to notice that the

algorithm presented in Fig. 12.3 requires t + 1 −D rounds in each and every execution. This comes

from the fact that D is defined from the failure pattern (which includes not only the round at which

processes crash, but also which processes do not receive messages when a process crashes).

This is in contrast with early deciding consensus algorithms where, while min(f + 2, t + 1) is a

lower bound on the number of rounds, not all executions requires min(f + 2, t + 1) rounds. Only

worst case executions require this number of rounds.

12.3 The k-Set Agreement Abstraction

12.3.1 Definition

The k-set agreement abstraction is a weakening of consensus in that processes may decide different

values, but at most k different values can be decided. Hence, consensus is 1-set agreement. This

agreement abstraction, introduced by S. Chauduri (1993), allows a better understanding of the tradeoff

between the quality of the result (the smaller k, the better agreement quality), and the number of

rounds needed to obtain it.

Similarly to consensus, this abstraction provides the processes with the one-shot operation denoted

propose(). It is defined by the following properties.

• SA-validity. A decided value is a proposed value.

• SA-agreement. At most k different values are decided.

• SA-termination. Each correct process decides a value.

12.3.2 A Simple Algorithm

A very simple algorithm that implements the k-set agreement agreement abstraction in the base syn-

chronous model CSMPn,t[∅] is presented in Figure 12.5. This algorithm assumes that the values

proposed by processes are totally ordered.

A process pi decides the smallest value it has ever seen, after having executed � tk� + 1 rounds.

The aim of this sequence of rounds is to ensure that, when they have been executed, there are at
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most k values in the system. From an operational point of view, during each round a process pi first

broadcasts its current estimate esti (this estimate is initialized to vi, the value it proposes). Then, after

it has received the estimates of the processes that are alive during the current round, pi updates esti to

the smallest value.

operation propose (vi) is

(1) esti ← vi;
(2) when r = 1, 2, . . . , � t

k
�+ 1 do

(3) begin synchronous round

(4) broadcast EST(esti);
(5) esti ← min(estj values received during r);
(6) if (r = � t

k
�+ 1) then return(esti) end if

(7) end synchronous round.

Figure 12.5: A simple k-set agreement algorithm for the model CSMPn,t[∅] (code for pi)

Theorem 54. The algorithm described in Fig. 12.5 implements the k-set agreement abstraction in the

system model CSMPn,t[∅]. It requires � tk�+ 1 for the processes to decide.

Proof The SA-validity property and the fact that no process executes more than � tk� + 1 rounds are

trivial. As far as the SA-agreement property is concerned, let t = α × k + β, where α = � tk� and

β = (t mod k). We show that at round r = α+ 1 there are at most β + 1 different estimates values in

the system. As β = t mod k < k, it follows that at most k different values can be decided.

Let us first observe that, if y processes crash by the end of a round r, there are at most (y + 1)
different estimates values at the end of r. This is because the processes that do not crash exchange

their estimates and consequently they all know their smallest estimate value w at the end of round r.

Moreover, it is possible that, at the beginning of r, the estimates w1, w2, ..., wy of the y processes that

crash during r are all different and smaller than w, e.g., w1 < w2 < · · · < wy < w. As each value wx

(1 ≤ x ≤ y) can be received by only one process that terminates round r, it follows that the processes

that terminate round r have at most (y + 1) different estimate values at the end of round r.

The worst case scenario is when k processes crash at every round from round 1 to round α = � tk�
(the pigeonhole principle). Due to the previous observation, it is then possible to have at least (k + 1)
different estimate values at the end of each of these rounds.

Let us consider the last round r = α+1. During this round, at most β = (tmod k) < k processes

can crash. It follows from the previous observation (taking y = β) that there are at most β + 1 ≤ k
different estimate values at the end of round r = α+1, which concludes the proof of the SA-agreement

property. �Theorem 54

Running time: k-set agreement with respect to consensus When comparing k-set agreement and

consensus (1-set agreement), the important point is that allowing up to k different values to be decided

(instead of a single one) divides the number of rounds (running time) by k.

Reducing the number of messages In the algorithm described in Fig. 12.5, each process broadcasts

its current estimate at every round, even if this estimate has not been modified in the previous round.

It is easy to improve this algorithm consists in directing a process to broadcast its current estimate

during a round r only if modified it during the previous round. This allows to save messages and

reduces consequently the message cost of the corresponding execution.
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operation propose (vi) is

(1) esti ← vi; nbri[0] ← n; earlyi ← false;

(2) when r = 1, 2, . . . , � t
k
�+ 1 do

(3) begin synchronous round

(4) broadcast EST(esti, earlyi)
(5) if earlyi then return(esti) end if;

(6) let nbri[r] = number of messages received by pi during r;

(7) let decidei ←
∨
(earlyj values received during current round r);

(8) esti ← min({estj values received during current round r});
(9) if

(
(nbri[r − 1]− nbri[r] < k) ∨ decidei

)
then earlyi ← true end if

(10) if (r = � t
k
�+ 1) then return(esti) end if

(11) end synchronous round.

Figure 12.6: Early stopping synchronous k-set agreement (code for pi, t < n)

12.4 Early Deciding and Stopping k-Set Agreement

This section presents an early deciding and stopping k-set agreement algorithm. Assuming that at

most f processes crash in a given execution, 0 ≤ f ≤ t, no process executes more than min
(
� tt� +

2, � tk�+ 1
)

rounds.

12.4.1 An Early Deciding and Stopping Algorithm

This algorithm, described in Fig. 12.6 is a straightforward generalization of the early deciding and

stopping consensus algorithm described in Fig. 11.3. The local variables are exactly the same. The

only modifications are the following ones.

• The maximal number of rounds is now � tk�+ 1 instead of (t+ 1).

• As we are interested in solving k-set agreement, it is not necessary for pi to know the smallest

value present in the system, it is sufficient for it to know one of the k smallest values present

in the system. This knowledge can be obtained by weakening the differential local predicate

PREF(i, r)
def
= nbri[r − 1] − nbri[r] = 0 into nbri[r − 1] − nbri[r] < k. This weakening is

due to the following observation (Figure 12.7). When nbri[r − 1]− nbri[r] < k, pi knows that

it is missing values from at most k − 1 processes in the system. In the worst case these k − 1
missing values are smaller than the value of esti at the end of r, from which we conclude that,

at the end of r, the value of its current estimate esti is one of the k smallest values present in the

system.

r

< k

nbi[r]

nbi[r − 1]

r − 1

Figure 12.7: The differential predicate PREF(i, r) for k-set agreement

12.4.2 Proof of the Algorithm

Lemma 49. A decided value is a proposed value.
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Proof The proof of the validity consists in showing that an esti local variable always contains a

proposed variable. This is initially true (round r = 0). Then, a simple induction-based reasoning

proves the property: assuming the property is true at a round r ≥ 1, it follows from the protocol code

(lines 5 and 8), and the fact that a process receives at least the value it has sent, that the property

remains true at round (r + 1). �Lemma 49

Lemma 50. Every correct process decides.

Proof The proof is an immediate consequence of the fact that a process executes at most �t/k� + 1
rounds, and the computation model is the synchronous round-based computation model. �Lemma 50

Lemma 51. No more than k different values are decided.

Proof Let EST 0 be the set of proposed values, and EST r be the set of esti values of the processes

that decide during round r ≥ 1 or proceed to round (r + 1). We first state and prove three claims.

Claim C1. ∀r ≥ 0: EST r+1 ⊆ EST r.

Proof of the claim. The claim follows directly from the fact that, during a round, the new value of an

esti variable computed by a process is the smallest of the estj values it has received. So values can

only disappear due to the minimum function used at line 8 or to process crashes. End of the proof of

the claim.

Claim C2. Let pi be a process such that earlyi is set to true at the end of round r. The local estimate

esti is one of the k smallest values in EST r.

Proof of the claim. Let v be the value of esti at the end of r (v ∈ EST r). If earlyi is set to true

at the end of r, either nbri[r − 1] − nbri[r] < k is satisfied or pi received a message carrying a pair

〈v1, true〉, and v1 has been taken into account when computing the new value of esti at line 8 during

round r, i.e., v ≤ v1. So, there is a chain of processes j = ja, ja−1, . . . , j0 = i that has carried the

Boolean value true to pi. This chain is such that a ≥ 0, nbj [r − a− 1]− nbj [r − a] < k is satisfied,

and any value v′ sent by a process participating in this chain is such that v ≤ v′ (as each process in the

chain computes the minimum of the values it has received). In particular, we have v ≤ v′′ where v′′ is

the value sent by the first process in the chain. (The case a = 0 corresponds to the “one process” chain

case where the local predicate is satisfied at pi.) Due to Claim C1, EST r ⊆ EST r−a. Consequently,

if v′′ is one of the k smallest values of EST r−a, v ≤ v′′ implies v is one of the k smallest values of

EST r.

So, taking r − a = r′, we have to show that nbj [r
′ − 1] − nbj [r

′] < k implies that the value

v′′ of estj at the end of r′ is one of the k smallest values of EST r′ . As the crashes are stable,

nbj [r
′ − 1] − nbj [r

′] < k, allows us to conclude that pj has received a message from all, except at

most (k − 1) processes that where not crashed at the beginning of r′. As pj computes the minimum

of all the values it has received, and misses at most k − 1 values of EST r′ , this means that the value

v′′ computed by pj at the end of r′ is one of the k smallest values present in EST r′ . End of the proof

of the claim.

Claim C3. Let pi be a process that decides at line 5 or line 10 during round r. Its Boolean flag earlyi
is then equal to true.

Proof of the claim. The claim trivially holds if pi decides at line 5. If pi decides at line 10, it decides

during the last round, namely r = �t/k�+ 1. Let us consider two cases.

• At round r, pi receives from a process pj a message such as earlyj = true. In this case, pi sets

earlyi to true at line 9, and the claim follows.
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• In the other case, no process pj has decided at a round r′ < r (otherwise, pi would have

received a message from pj such that earlyj = true). Let t = k x + y with y < k (hence,

x = �t/k� = r − 1). As nbri[r
′ − 1] − nbri[r

′] < k was not satisfied at every round r′ such

that 1 ≤ r′ ≤ x = r − 1, we have nbri[x] ≤ n − kx. Moreover, as pi has not previously

received from any pj a message such that earlyj = true, it follows that if, during r, pi does not

receive a message from pj it is because pj crashed. As at most t processes may crash, we have

consequently nbri[x+1] ≥ n−t = n−(k x+y). It follows that nbri[x]−nbri[x+1] ≤ y < k.

End of the proof of the claim.

To prove the lemma, we now consider two cases according to the line during which a process decides.

• No process decides at line 5. This means that a process pi that decides, decides at line 10 during

the last round. Due to claim C3, such a pi has then earlyi = true. Due to claim C2, it decides

one of the k smallest values in EST �t/k	+1.

• A process decides at line 5. Let r be the first round during which a process pi decides at this

line, and v be the value it decides.

– pi set its Boolean flag earlyi to true at the end of the round (r− 1). Its estimate esti = v
is consequently one of the k smallest values in EST r−1 (claim C2). It follows that two

processes that decide during r decide values that are among the the k smallest values in

EST r−1.

– pi sent the pair 〈v, true) to all the processes (line 4) before deciding at line 5 during round

r. This implies that a (non-crashed) process pj that does not decide during round r receives

v during r and uses it to compute its new value of estj . Due to the minimum function used

at line 8 it follows that, from now on, we will always have estj ≤ v.

Let us assume that pj does not crash. If it decides, it decides at r′ > r, and then it

necessarily decides a value v′ ≤ v. As EST r′ ⊆ EST r−1 (claim C1), we have v′ ∈
EST r−1. Combining v′ ≤ v, v′ ∈ EST r−1, and the fact that v is one of the k smallest

values in EST r−1, it follows that the value v′ decided by pj is one of the k smallest values

in EST r−1.
�Lemma 51

Theorem 55. The algorithm described in Fig. 12.6 implements the k-set agreement abstraction in

the system model CSMPn,t[∅]. Moreover, no process executes more than min(�f/k�+ 2, �t/k�+ 1)
rounds.

Proof The proofs of SC-validity, SC-termination, and SC-agreement follow from Lemmas 49, 50,

and 51.

As far as early decision is concerned, let us first observe that a process decides and stops at the

same round; this occurs when it executes return(esti) at line 5 or line 9. As observed in Lemma 50,

the fact that no process decides after �t/k�+ 1 rounds is an immediate consequence of the algorithm

code and the round-based synchronous model. So, considering that f processes crash, 0 ≤ f ≤ t, we

show that no process decides after the round �f/k� + 2. Let f = xk + y (with y < k). This means

that x = �f/k�.
The worst case scenario is when, for any process pi that evaluates the local decision predicate

nbri[r − 1]− nbri[r] < k, this predicate is false whenever possible. Due to the pigeonhole principle,

this occurs when exactly k processes crash during each round. This means that we have nbri[1] =
n− k, · · · , nbri[x] = n− kx and nbri[x+1] = n− f = n− (kx+ y), from which we conclude that

r = x+1 is the first round such that nbri[r−1]−nbri[r] = y < k. It follows that the processes pi that

execute the round (x+ 1) set their Boolean variable earlyi to true. Consequently, the processes that

proceed to (x+ 2) decide at line 5 during that round. As x = �f/k�, they decide at round �f/k�+ 2.

�Theorem 55
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12.5 Summary

Consensus has given rise to other distributed agreement abstractions. This chapter has presented two

of the most popular of them. The first one, called simultaneous consensus, is consensus plus the

property that all processes decide at the very same round. After addressing the technical difficulty of

implementing early deciding simultaneous consensus, the chapter has presented an algorithm where

the processes decide simultaneously in (t + 1 −D) rounds, where D is a parameter that depends on

the actual failure pattern. This algorithm is optimal in the sense that no other algorithm can be more

efficient.

The second abstraction presented was k-set agreement. This abstraction is a weakening of consen-

sus: instead of a single value, the processes can decide up to k different values (hence k represents the

disagreement degree allowed to the processes). The chapter first presented a simple k-set agreement

algorithm, and then an early deciding k-set agreement algorithm, which allows the processes to decide

in at most min(�f/k�+2, �t/k�+1) rounds. Hence, when compared to consensus, the disagreement

degree k divides the decision time by k.

12.6 Bibliographic Notes

• The notion of simultaneous decision was introduced by D. Dolev, R. Reischuk, and H. R.

Strong [135] and C. Dwork and Y. Moses [143] in the early nineties.
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is entirely devoted to knowledge-based reasoning.

• The notions of waste and clean round are due to C. Dwork and Y. Moses [143]. The notion of

horizon is due to T. Mizrahi and Y. Moses [289].

• The simultaneous decision consensus algorithm is due to Y. Moses and M. Raynal [300]. It is a

variant that revisits an algorithm introduced in [143].

• The condition-based simultaneous decision consensus algorithm presented in Exercise 1 of Sec-

tion 12.7 is due to Y. Moses and M. Raynal [301]. The condition-based approach was introduced

in [313].

The use of the condition-based approach to solve simultaneous consensus originated in [301],

where it is shown that t + 1 − max(x,D) is a lower bound on the number of rounds. This

means that, contrarily to what could be hoped, when considering condition-based consensus

with simultaneous decision, we can benefit from either the detection of failures (case t+1−D)

or from the condition (case t+1−x), but we cannot benefit from the sum of the savings offered

by both. Only one discount applies.

• The fact that (t+1−D) is a lower bound on the number of rounds for simultaneous consensus

is due to C. Dwork and Y. Moses [143]. A simpler proof appears in [300].

• The k-set agreement problem was introduced by S. Chaudhuri to investigate how the number

k of choices allowed to the processes is related to the maximal number t of processes that can

crash in a run [107]. A short introduction to this problem (both in synchronous and asynchronous

systems) appears in [364].

• While the k-set agreement problem can be solved in synchronous crash-prone systems for any

value of t < n, it is impossible to solve it in pure asynchronous systems when k ≤ t [75, 217,

383].

• Non-early deciding synchronous k-set algorithms are described in [43, 271, 378].
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• k-Set agreement algorithms in the context where processes can commit crashes, and send or

general omission failures are addressed in [357, 378].

• The early deciding and stopping algorithm described in Fig.12.6 and its proof are from [357].

• A proof that � tk�+1 is a lower bound on the number of rounds for the k-set agreement problem

can be found in [108, 329]. Topology-based proofs for this bound can be found in [176, 198].

• The condition-based approach has been extended in [71] to address the k-set agreement problem.

When k = 1 this extension boils down to the x-legal conditions introduced in [313].

12.7 Exercises and Problems

1. Let us consider that the input vector of simultaneous consensus always belongs to an x-legal

condition C, such that x < t. (The condition-based approach was described in Section 11.3.)

The algorithm described in Fig. 12.8 is a simple adaptation of the early deciding condition-

based consensus algorithm described in Fig. 11.9, in which the processes decide during the

round (t + 1 − x). This adaptation consists in the suppression of line 9 (because x < t) and

line 14 (to obtain simultaneous decision during the last round).

operation proposex (vi) is

(1) viewi ← [⊥, . . . ,⊥]; viewi[i] ← vi; v cond ← ⊥; v tmfi ← ⊥;

(2) when r = 1 do

(3) begin synchronous round

(4) broadcast EST1(vi);
(5) for each vj received do viewi[j] ← vj end for;

(6) case (#⊥(viewi) ≤ x) then v condi ← h(viewi)
(7) (#⊥(viewi) > x) then v tmfi ← max(all values vj received)

(8) end case;

(9) end synchronous round;

(10) when r = 2, ..., t+ 1− x do

(11) begin synchronous round

(12) broadcast EST2(v condi, v tmfi);
(13) if (v condj �= ⊥ received during round r) then v condi ← v condj end if;

(14) v tmfi ← max(all v tmfj values received during r);

(15) if (r = t+ 1− x) then

(16) if (v condi �= ⊥) then return(v condi) else return(v tmfi) end if;

(17) end if

(18) end synchronous round.

Figure 12.8: A condition-based simultaneous consensus algorithm (code for pi)

Modify this algorithm so that the processes early decide during the round (t+ 1−max(D,x)).

Hints.

• Round r, 1 ≤ r ≤ t + 1 − x, is a simple merge of round r of the algorithms described

in Fig. 12.3 and Fig. 12.8. The message broadcast by a process pi at round r now has to

piggyback four values, namely, v condi, vtmfi , esti, and fi[r − 1].

• In the merge of both algorithms, line 10 of the algorithm described in Fig. 12.3, and

lines 15-17 the algorithm described in Fig. 12.8 must be replaced by the statement if

(r = bhi[r]) ∨ (r = t+ 1− x) then ... end if.

Solution in [301, 367].

2. Let us consider the system model CSMPn,t[SO] (the send omission failure model introduced in

Section 10.6), where a faulty process is a process that crashes, or a process that forgets to send

messages (hence a faulty process that does not crash forgets to send at least one message).



Chapter 12. Consensus Variants: Simultaneous Consensus and k-Set Agreement 229

operation propose (vi) is

(1) esti ← vi;
(2) when r = 1, 2, . . . , � t

k
�+ 1 do

(3) begin synchronous round

(4) if (i is such that (r − 1)k < i ≤ r × k) then broadcast EST(esti) end if;

(5) esti ← any estimate estj received during round r if any, unchanged otherwise;

(6) if (r = � t
k
�+ 1) then return(esti) end if

(7) end synchronous round.

Figure 12.9: A simple k-set agreement algorithm for the model CSMPn,t[SO] (code for pi)

• Prove that the algorithm described in Fig. 12.9 implements k-set agreement in CSMPn,t[SO].

• Prove that this algorithm does not work in the general omission failure model CSMPn,t[GO],
which is is the same as CSMPn,t[SO] where in addition a process can omit to receive mes-

sages).

Solutions in [367].



Chapter 13

Non-blocking Atomic Commitment

in the Presence of Process Crash Failures

The non-blocking atomic commitment (NBAC) agreement abstraction originated in databases, and

is now pervasive in many distributed applications. It is a basic distributed agreement abstraction.

Let us consider a job that is split into n independent parts, each executed by a process. When each

process terminated the part assigned to it, the set of processes have to agree on the fate of the full

job. They have to commit it if everything went well at each of them (and then each process makes

its local results permanent) or abort it if something went wrong at one or several of them (and each

process then discards its result). To this end, the processes starts a non-blocking atomic commitment

algorithm. If locally everything went well, a process votes yes, otherwise it votes no. The idea is that

if all processes voted yes, they have to commit their local computation, and if a process voted no, they

have to abort them.

This chapter first defines the NBAC agreement abstraction, and then presents several algorithms

that implement it. It also defines the notions of fast commit and fast abort algorithms, and shows that

there is no NBAC algorithm that can be fast for both commit and abort.

Keywords Crash failure, Fast abort, Fast commit, Impossibility, NBAC, Synchronous system, Weak

fast abort, Weak fast commit.

13.1 The Non-blocking Atomic Commitment (NBAC) Abstraction

13.1.1 Definition of Non-blocking Atomic Commitment

Definition The NBAC agreement abstraction provides the processes with a single operation that a

process invokes once (hence it is a one-shot abstraction). This operation is denoted nbac propose().
It has an input parameter, whose value is yes or no. This agreement abstraction is defined by the

following properties. When the input parameter of the invocation of nbac propose() by a process pi
is yes (reps. no), we say that pi “votes” yes (reps. no).

• NBAC-validity. An invocation of nbac propose() can return only commit or abort.

– NBAC-justification. If a process returns commit, all processes voted yes.

– NBAC-obligation. If all processes vote yes and no process crashes, abort cannot be

decided.

• NBAC-agreement. No two processes decide differently.

• NBAC-termination. Every correct process decides.
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On the properties defining NBAC The NBAC-agreement and NBAC-termination properties are

similar to the ones of the previous agreement problems. In addition to defining the value domain of

the decision (commit or abort), the NBAC-validity property relates the decided value not only to the

proposed values (votes) but also to the failure pattern. Basically, it states that, in “good circumstances”,

the decision must be commit. These circumstances are described by the NB-obligation property,

namely, all processes voted yes and there are no crashes.

It is important to notice that, if the NBAC-Obligation property was suppressed, it would be possible

for the processes to always decide abort. Hence, this property implicitly states that the decision

abort must be justified, namely, either a process voted no, or there is a process crash.

It is also important to notice that the definition of NBAC does not prevent the correct processes

from deciding commit despite crashes (in this case all faulty processes voted yes before crashing).

This means that the decision commit or abort is deterministic “good circumstances” and when a

process votes no, but is not deterministic in the other cases (i.e., when all processes vote yes and there

are crashes before the end of the NBAC algorithm).

Hence, unlike consensus and k-set agreement, where process crashes are mentioned only in the

termination property (liveness), they appear naturally in the NBAC-termination property (any correct

process has to decide), but also in the NBAC-validity (NBAC-obligation) property (which is a safety

property).

Notation and multiset definition In the following commit and abort are coded 1 and 0, respec-

tively.

Moreover, the algorithms presented below use multisets. A multiset (also called a bag) is a set in

which the same value can appear several times. As an example, while {a, b, a, c} and {a, b, c} are the

same set, they are distinct multisets. The size of {a, b, a, c} as a set is 3, while it is 4 as a multiset.

13.1.2 A Simple Non-blocking Atomic Commitment Algorithm

A simple way to implement the NBAC agreement abstraction in the basic synchronous system model

CSMPn,t[∅] is to reduce it to the consensus agreement abstraction. Such a reduction (described in

Fig. 13.1) consists in adding a preliminary round to a consensus algorithm.

Let votei ∈ {yes, no} be the vote of process pi. During the additional preliminary round, the

processes exchange their votes, and each process computes a value vi it proposes to an underlying

consensus instance. If pi votes yes and receives a vote yes from every other process, then vi = 1.

Otherwise vi = 0 (in this case, during the preliminary round, pi received less than n votes or one vote

is no).

operation nbac propose (votei) is

(1) begin synchronous round % preliminary round %

(2) broadcast EST(votei);
(3) let msvotesi = multiset of votes received during the current preliminary round;

(4) if (|msvotesi| = n) ∧ (no /∈ msvotesi) then vi ← 1 else vi ← 0 end if

(5) end synchronous round; % end of the preliminary round %

(6) deci ← propose (vi); % underlying synchronous consensus instance %

(7) return(deci).

Figure 13.1: A consensus-based NBAC algorithm in CSMPn,t[∅] (code for pi)

The multiset used by pi is denoted msvotesi. A process pi first broadcasts its vote (line 2). Then,

it stores all the votes it receives during the preliminary round in msvotesi (line 3). If it receives n
votes and all of them are yes, it assigns 1 to its consensus proposal vi, otherwise it assigns 0 (line 4).

When the preliminary round terminates it starts the execution of an underling consensus instance to
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which it proposes the value vi (line 6). When this instance terminates it returns the value decided by

the consensus instance (line 7).

Theorem 56. The algorithm described in Fig. 13.1 implements the NBAC agreement abstraction in

the system model CSMPn,t[∅].

Proof (Sketch) It is easy to see that this algorithm is correct. Due to the underlying consensus

algorithm, no two processes decide differently. If all processes vote yes and there is no crash, each

process receives n votes yes and proposes vi = 1 to the underlying consensus. Consequently, the only

value that can be decided by the consensus instance is 1 (i.e., commit). If a process votes no, whether

there are crashes or not, no process can propose 1 to the underlying consensus, and consequently only

0 (i.e., abort) can be decided by the underlying consensus instance. Let us observe that, in both

cases, the decision is independent of the number of processes that crash during the execution of the

underlying consensus instance.

It is easy to see that, when no process votes no and processes crash during the preliminary round,

the value decided by the correct process is not predetermined. According to the failure pattern, it

can be commit or abort. (This value depends on which messages, sent by the faulty processes, are

received by the correct processes.) �Theorem 56

13.2 Fast Commit and Fast Abort

13.2.1 Looking for Efficient Algorithms

The time complexity of the previous algorithm is one round plus the cost of the underlying consensus

algorithm, i.e., 1+min(f+2, t+1) (remember that f is the actual number of process crashes). Hence

the natural question: Is it possible to design NBAC algorithms in which processes decide as soon as

possible?

Looking for fast operations The previous question is motivated by the fact that the proposed values

yes and no do not have the same power with respect to the values commit and abort that can be

decided.

A single vote no entails the decision abort, whatever the votes of the other processes and the

failure pattern. This means that if a process receives a vote no during the first round, it deterministically

knows that the decision is abort (i.e., whatever the other votes). Consequently it can decide abort by

the end of the first round. On the other hand, the majority of the cases involve “good circumstances”,

i.e., there is no crash and every process votes yes. Hence, the idea is to design an efficient NBAC

algorithm for these cases, i.e., an algorithm in which no process executes more than two rounds when

circumstances are good. These observations motivate the following definitions.

Fast abort An NBAC algorithm satisfies the fast abort property if no process decides after the first

round in all executions in which at least one process votes no.

Fast commit An NBAC algorithm satisfies the fast commit property if no process decides after the

second round in all crash-free executions in which all processes vote yes.

13.2.2 An Impossibility Result

This section shows that the fast commit property and the fast abort property are antagonistic: there is

no algorithm that can simultaneously satisfy both. The next theorem is due to P. Dutta, R. Guerraoui,

and B. Pochon (2004).
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Be as general as possible In order for the impossibility result to be as general as possible, we

consider NBAC algorithms such that:

• Until it stops or crashes, a process broadcasts a message to all processes at every round.

• Decide and stop are dissociated. The atomic statement return(v) previously used to simulta-

neously decide and stop is now decomposed into two atomic statements denoted decide(v) and

return(). The former allows the invoking process to decide v, while the latter stops its partic-

ipation in the algorithm. Hence, an NBAC algorithm is not required to force a process to stop

when it decides. According to its code, a process can continue executing the algorithm after it

has decided.

Theorem 57. Let t and n be such that 3 ≤ t < n. There is no deterministic NBAC algorithm that

satisfies both the fast commit property and the fast abort property in the system model CSMPn,t[∅].

Proof The proof is by contradiction. Let us assume that there is an NBAC algorithm A that satisfies

both the fast commit and fast abort deciding properties. The proof consists in building two executions

(denoted E3 and E5 in the following) that (a) cannot be distinguished by some processes, and (b) are

such that commit has to be decided in one of them while abort has to be decided in the other one.

To facilitate understanding the proof uses figures. Moreover, 1 is used as synonym of both yes

and commit, while 0 is used as synonym of both no and abort. The vote of a process is indicated

on its axis just before the first round. The notation dec(x) that appears on a process axis at the end of

some rounds means that the corresponding process decides x at the end of that round. As indicated

previously, this does not mean that that process stops its execution. Only processes p1, p2, p3, and

pi appear on the figures. As we will see, according to our needs p1, p2, or p3 will crash in some

executions (this is why the assumption t ≥ 3 is needed). Process pi is generic in the sense that it

stands for any other process 4 ≤ i ≤ n.

• Construction of an execution of algorithm A (E3) in which the value 0 is decided (Fig. 13.2).
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Figure 13.2: Impossibility of having both fast commit and fast abort when t ≥ 3 (E3)

– Execution E1 (left of Fig. 13.2). In this execution process p1 votes no, while all other

processes vote yes. Moreover, p1 crashes before sending any message during round r = 1
(hence no process will ever know pi’s vote).

As, by assumption the algorithm A satisfies the fast abort property, the processes p2, p3,

and pi decide 0 by the end of the first round.

– Execution E2 (center of Fig. 13.2). In this execution all processes vote 1, p1 crashes during

the broadcast of its round 1 message, and p2 is the only process that does not receive this

message. (This in indicated in the figure where the arrows representing the messages sent

by p1 are received by all processes except p2.)

Let us observe that, at the end of the first round, process p2 cannot distinguish E1 from

E2. In both executions it received the same messages during round r = 1 (namely, the

round 1 messages broadcast by each process).
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It follows that p2 has exactly the same local state at the end of the first round in E1 and

E2. As the algorithm A is deterministic and p2 decides 0 at the end of the first round of

E1, it has to decide the same value at end of the first round of E2. Hence, it decides 0 in

E2.

– Execution E3. This execution is similar to E2 except that (a) p2 crashes at the beginning

of round r = 2 (i.e., after it decided at the end of round 1), and (b) p3 crashes at the end of

round r = 2.

Let us observe that p2 has exactly the same local state at the end of the first round in both

executions E2 and E3. Hence, as algorithm A is deterministic, p2 decides the same value

(namely 0) at the end of the first round in both executions.

Moreover, it follows from the NBAC-agreement property of algorithm A that 0 is decided

in execution E3 by all processes that do not crash before deciding. Hence, there is a round

at which p3 decides 0.

• Construction of an execution E5 in which the value 1 is decided (Fig. 13.3).
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Figure 13.3: Impossibility of having both fast commit and fast abort when t ≥ 3 (E4, E5)

– Execution E4. This execution is a failure-free execution in which all processes vote 1
(the messages are not indicated in the figure). As algorithm A satisfies the fast commit

property, every process decides 1 at the end of the second round. Hence, p3 decides 1.

– Execution E5. This execution is similar to E4 except that

∗ the first round is the same as in E4,

∗ p1 and p2 crash during the second round and their round r = 2 messages are received

only by p3,

∗ any other process pi, 4 ≤ i ≤ n, receives messages from all processes except p1 and

p2 (they crashed before sending these messages), an

∗ p3 crashes at the beginning of the third round (before sending any message).

The local states of p3 at the end of the second round of E4, and at the end of the second

round of E5, are identical (p3 received the round r = 1 messages and the round r = 2
messages from every process, and its code is deterministic). It follows that, in execution

E5, p3 decides 1 at the end of round r = 2 (before crashing at the end of this round).

• In execution E3 (in which 0 is decided) and execution E5 (in which 1 is decided), all processes

pi, 4 ≤ i ≤ n, receive the same messages in round r = 1 and round r = 2. (More precisely,

in both E3 and E5, each pi, 4 ≤ i ≤ n, receives the round r = 1 messages from each process,

and the round r = 2 messages from each process except p1 and p2).

As p1, p2, and p3 do not broadcast messages from round r = 3, the processes pi, i ≥ 4, will

also receive the same messages in all the rounds r ≥ 3. It follows that no pi, 4 ≤ i ≤ n, can

distinguish E3 from E5. Consequently, they have to decide the same way in both executions,

which contradicts the fact that they decide 0 in E3 and 1 in E5, and concludes the proof.

�Theorem 57
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13.3 Weak Fast Commit and Weak Fast Abort

The previous impossibility result motivates the definition of weak fast commit and weak fast abort

properties that allow the design of NBAC algorithms that satisfy fast commit and weak fast abort (or

fast abort and weak fast commit). This section introduces such weakened properties. The idea is to

allow for one more round.

Weak fast abort An NBAC algorithm satisfies the weak fast abort property if no process decides

after the second round in all executions in which at least one process votes no.

Weak fast commit An NBAC algorithm satisfies the weak fast commit property if no process de-

cides after the third round in all crash-free executions in which all processes vote yes.

As we are about to see, it is possible to design NBAC algorithms that satisfy either fast commit

and weak fast abort or fast abort and weak fast commit.

13.4 Fast Commit and Weak Fast Abort Are Compatible

This section shows that it is possible to design algorithms that are fast (as defined previously) with

respect to commit (resp., abort) and weakly fast with respect to abort (resp., commit). Their very

existence shows that fast abort and fast commit are not entirely antagonistic. Moreover, due to the

impossibility stated in Theorem 57, these algorithms are optimal. All algorithms presented in this

chapter are due to P. Dutta, R. Guerraoui, and B. Pochon (2004).

13.4.1 A Fast Commit and Weak Fast Abort Algorithm

This section presents an NBAC algorithm that satisfies the fast commit property and the weak fast

abort property. This means that the processes decides in two rounds if (a) all processes vote yes and

no process crashes, or (b) a process votes no.

Decoupling deciding and stopping As stated in Section 13.2.2, each process broadcasts a message

at every round until it stops or crashes. Moreover, the statement return(v) is now decoupled into two

statements: decide(v) and return(). The first allows the invoking process to decide value v (hence

– from now on – the invoking upper layer can use value v), but the invoking process continues exe-

cuting the NBAC algorithm until it invokes return(), which terminates the participation in the NBAC

algorithm.

Local variables Each process pi manages the four following local variables.

• esti contains the current estimate of the decision value.

• decidedi is a Boolean which is initialized to false and set to true when pi decides.

• rec votesi[r] is a multiset that contains the estimates of the decision values received during

round r.

• crashedi[r] is the set of processes that pi perceives as crashed at the end of round r (i.e., the

processes from which pi has not received a round r message).

As rec votesi[r] and crashedi[r] are used only during the current round, the array-like notations

rec votesi[r] and crashedi[r] are used for ease of exposition only. They could be replaced by

rec votesi and crashedi.

13.4. Fast Commit and Weak Fast Abort Are Compatible
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operation nbac propose (votei) is

(1) esti ← votei; decidedi ← false;

(2) when r = 1 do

(3) begin synchronous round

(4) broadcast EST(votei);
(5) let rec votesi[1] = multiset of the votes votej received during the first round;

(6) if (|rec votesi[1]| < n) ∨ (0 ∈ rec votesi[1]) then esti ← 0 end if

(7) end synchronous round;

(8) when r = 2, ..., (t+ 1) do

(9) begin synchronous round

(10) if (decidedi) then broadcast DEC(esti); return() end if;

(11) broadcast EST(esti);
(12) if (DEC(v) received during round r)

(13) then esti ← v; decide(esti); decidedi ← true

(14) else let rec votesi[r] = multiset of the estimates estj received during r;

(15) let crashedi[r] ← { processes from which no message is received during r};

(16) if (0 ∈ rec votesi[r]) then esti ← 0 end if;

(17) if
(
(r = 2) ∧ (1 /∈ rec votesi[r])

)

(18) ∨
(
(r ≤ t− 1) ∧ (|crashedi[r]| ≤ r − 2)

)

(19) ∨
(
(r = t) ∧ (|rec votesi[t]| ≥ n− t+ 1)

)

(20) then decidedi ← true; decide(esti)
(21) end if;

(22) end if;

(23) if (r = t+ 1) then if (¬decidedi) then decide(esti) end if; return() end if

(24) end synchronous round.

Figure 13.4: Fast commit and weak fast abort NBAC in CSMPn,t[3 ≤ t < n] (code for pi)

Process behavior The algorithm is described in Fig. 13.4. During the first round the processes

exchange their votes (line 1). If process pi receives less than n votes, or receives a vote no (coded 0)

it updates its current estimate of the decision value esti to abort (coded 0) (lines 5-6). Then, during

a round r, 2 ≤ r ≤ t+ 1, pi does the following:

• If it decided during the previous round (we then have decidedi = true), pi broadcasts a mes-

sage DEC(esti) to inform the other processes, and then stops participating in the algorithm (line

10). Otherwise, it broadcasts its current estimate of the decision value (line 11).

• If it receives a message DEC(v) during the receive phase of the current round (line 12), pi adopts

v as its decision value and decides it (line 13). If it does not crash, pi will then stop at line 10 of

the next round.

• If pi neither stopped at line 10 nor received a message DEC(v) it enters lines 14-20 where it

first computes the values of rec votesi[r] and crashedi[r]. If it received an estimate no (coded

0), pi adopts abort (coded 0) as its current decision value. Let us observe that esti can be

downgraded from 1 to 0 but never upgraded from 0 to 1.

Then, pi strives to decide at line 20. This occurs if one of the following predicate is satisfied:

– If r = 2 and pi received only 0 estimates (line 17), it decides abort (line 20).

– If r ≤ t− 1 (r is not the last round), and pi does not see more than (r− 2) process crashes

(line 18), it decides its current decision estimate esti (line 20).

– If r = t, and pi received estimates from at least (n − t + 1) processes during this round

(line 19), it decides its current decision estimate esti (line 20).

The aim of line 18 is to ensure early decision in at most (f + 2) rounds when f processes crash

and f ≤ t − 2. The aim of line 19 is to ensure early decision in at most (f + 1) rounds when

f ≥ t+1. If one is interested in fast commit and weak fast abort but not in early decision in the

other cases, line 19 can be suppressed.
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• Finally, if r is the last round, pi decides (if not yet done) and terminates.

13.4.2 Proof of the Algorithm

Notations A message that carries an estimate equal to 1 (resp., 0) is called a “commit” (resp.,

“abort”) message. Let us remember that the value of a local variable xxi of a process pi at the end of

round r is denoted xxri .

CRASHEDr denotes the set of processes that have crashed by the end of round r. Let us re-

member that the value of this set can be seen by an external omniscient observer but is not necessarily

known by a process that terminates round r.

Lemma 52. If no process decided by round r − 1 ≥ 1, and two processes pi and pj that terminate

round r are such that estri �= estrj , then |CRASHEDr| ≥ r.

Proof Let us first observe that, if no process decides by round (r − 1), then no process receives a

DEC() message during round r. The proof is by induction on the round number r.

• Base case r = 2. Let us assume without loss of generality that est2i = 1 and est2j = 0. We have

to show that |CRASHED2| ≥ 2. Let us observe that we necessarily have est1j = 1 (otherwise,

pi would have received an abort message from pj during round r = 2, entailing the assignment

of 0 to esti at line 16).

Hence, pj has changed estj from 1 to 0 during round r = 2, which means that it received one

abort message that pi did not receive. Consequently, there is a process pk that sent an abort

message during round r = 2 and crashed before sending it to pi. Thus, est1k = 0.

Furthermore, as est2i = 1, it follows from line 6 that we also have est1i = 1, from which it

follows that all processes sent a commit message during the first round. As pk sent a com-

mit message during the first round, and an abort message during the second round, it received

less than n messages during the first round, from which we conclude that some process p�
crashed during the first round. Hence, at least two processes crashed by the end of round 2, i.e.,

|CRASHED2| ≥ 2.

• Induction. Let us assume that the lemma holds from round r = 2 until round r − 1. We show it

still holds at round r.

Assuming that no process has decided by round r, let pi and pj be two processes such that

estri = 1 and estrj = 0. It follows from the discussion for the base case that estr−1
i = 1.

Moreover, as estri = 1 and both pi and pj terminate round r, it follows that pi receives a commit

message from pj during round r, from which we conclude that estr−1
j = 1. As estrj = 0, it

follows that there is a process pk that sent an abort message during round r to pj and crashed

before sending it to pi. Hence, estr−1
k = 0.

As estr−1
i = 1 and estr−1

k = 0, and no process decided by round r− 2 (induction assumption),

it follows that |CRASHEDr−1| ≥ r − 1. Finally, as pk crashes during round r, we have

|CRASHEDr| ≥ r, which concludes the proof of the lemma.
�Lemma 52

Lemma 53. For any round r ≥ 2 and any process pi that terminates round r without having ever

received a DEC (() message, we have CRASHEDr−1 ⊆ crashedri .

Proof As pi terminates round r without having ever received a DEC () message, it executes line 15

during round r and updates crashedi. The lemma then follows from the fact that, if a process pj
crashes by the end of round (r − 1), it does not send message during round r and pi includes it in

crashedri . �Lemma 53
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Theorem 58. The algorithm described in Fig. 13.4 implements the NBAC agreement abstraction in

at most (t+ 1) rounds in the system model CSMPn,t[3 ≤ t < n].

Proof The NBAC-termination property is trivial: no process blocks in a round and there are at most

(t+ 1) rounds, whose progress is ensured by the computing model.

The NBAC-obligation property states that if a process decides abort, at least one process voted

no, or at least one process crashed.

If a process votes no, any process pi that terminates the first round receives the vote no or receives

less than n messages (because pj crashed before sending its vote no to pi). Whatever the case, pi
executes line 6, and est1i = 0. It follows that, during the second round, only abort messages are ex-

changed. Hence, for any process pi that executes the second round, the predicate of line 17 is satisfied,

and consequently pi decides abort at line 20 of the second round.

The NBAC-justification property states that, when all processes vote yes and there is no crash,

they all decide commit.

If no process crashes and all processes vote yes, rec votesi[1] contains n votes yes (line 5).

Hence, during the second round, only commit messages are exchanged. As no process crashes, each

process pi is such that crashed2i = ∅. It then follows from 3 ≤ t and crashed2i = ∅, that during

round r = 2, the predicate of line 18 (r ≤ t − 1) ∧ (|crashedi[r]| ≤ r − 2) is true at any process pi.
Consequently pi decides esti = 1 (i.e., commit) at line 20.

The NBAC-agreement property states that no two different values can be decided. Let r be the

earliest round during which a process decides, and pi be a process that decides during this round.

Moreover, let v be the value decided by pi. The proof consists in showing that (a) any process pj that

decides during r decides v, and (b) any process pj that terminates round r without deciding is such

that estrj = v. To this end, four cases are considered according to the value of r. Case 1: r = 2, Case

2: 3 ≤ r ≤ t− 1, Case 3: 3 ≤ r = t, and Case 4: 3 ≤ r = t+ 1.

• Case 1: r = 2. Let us first observe that, as r = 2 and 3 ≤ t, the predicate of line 19 cannot hold

at a process pi.

– Subcase v = 1. As pi decides 1, it received n votes yes during the first round, and did not

receive abort messages. Moreover, as 3 ≤ t < n and pi decides 1 during the second round,

it necessarily decides at line 20, and the only decision predicate which can be satisfied is

the one of line 18, from which we conclude that crashed2i = ∅ (the predicate of line 17

cannot be satisfied because 1 ∈ rec votesi[2]).

From crashed2i = ∅, we conclude that (a) all processes received n votes yes during the

first round, and (b) no process crashed before the end of this round. It follows that no

process can decide 0 in round r = 2 and any process pj that completes round 2 is such that

est2j = 1.

– Subcase v = 0. We consider two cases.

∗ pi decides because the predicate at line 17 is satisfied. In this case 1 /∈ rec votei[2].
This means that pi received only abort messages during the second round (including

from itself). Since it completes the second round, pi broadcast an abort message

during this round, and any process pj that completes the second round is such that

estj2
r = 0 (line 16). It follows that no process pj can decide 1 during a round r ≥ 2.

∗ pi decides because the predicate at line 18 is satisfied. This implies crashed2i = ∅. We

show that (crashed2i = ∅) ⇒ (1 /∈ rec votesi[2]) (and we are then in the previous

case).
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From crashed2i = ∅, we conclude that all the processes terminated the first round, and

consequently have the same value in esti at the end of the first round. As est2i = 0, pi
received at least one abort message during the second round, from which we conclude

that all processes are such that est1x = 0, i.e., we cannot have 1 ∈ rec votesi[2].

• Case 2: 3 ≤ r ≤ t− 1.

In this case pi decides at line 20 because the predicate at line 18 is satisfied. (It cannot decide

at line 13 due to a message DEC() because, by definition, r is the first round at which a process

decides.) Let us suppose by contradiction that pi decides v, while pj decides (1 − v) during r
or completes round r with estrj = 1− v.

As both pi and pj complete round r, each of them receives the round r message sent by the other

process. If one of them (say pi) has estr−1
i = 0, due to line 16 we would have estri = estrj = 0.

Hence, let us suppose that estr−1
i = estr−1

j = 1. It follows that during round r, some process

pk sent an abort message (carrying estr−1
k = 0), which is received by one of pi or pj , but not

by both. As estr−1
k = 0 and estr−1

i = estr−1
j = 1, it follows from Lemma 52 applied to pk and

either of pi or pj at the end of round (r − 1)) that |CRASHEDr−1| ≥ r − 1.

As r is the first round in which a process decides, pi did not receive a message DEC() dur-

ing a round lower than or equal to r. It follows from this observation and Lemma 53 that

CRASHEDr−1 ⊆ crashedri . Combined with |CRASHEDr−1| ≥ r−1, we obtain |crashedri | ≥
r − 1, which contradicts the fact that pi decides at line 20 because the predicate at line 18 is

satisfied (to be satisfied, this predicate requires |crashedi|[r] ≤ r−2). It follows that pj decides

v during round r or completes round r with estj [r] = v.

• Case 3: 3 ≤ r = t.
In this case no process decides by round (t − 1) inclusive. If all the processes that complete

the round (t− 1) have the same estimate value, then agreement follows. Hence, let us suppose

that two processes px and py are such that estt−1
x �= estt−1

y . It follows from Lemma 52 that

|CRASHED t−1| ≥ t− 1, from which we conclude that there are at most n− (t− 1) processes

that terminate round (r − 1).

As pi decides v during round r = t, it can only decide due to predicate of line 19, from which

we conclude that it received (n− t+1) messages during round t. Combined with the fact that at

most n− (t−1) processes terminate round (r−1), this means that exactly (n− t+1) processes

terminate round t− 1.

It follows that, if another process pj decides during the same round t, it received the very same

(n− t+ 1) messages as pi during this round, and consequently also decides v.

If pj terminates round r = t without deciding, it received less than (n− t+1) messages, which

means that it received exactly n− t messages (because at most t processes may crash). Hence,

t processes crashed by the end of round r = t. It follows that pi is correct (because it sent its

round r = t message and terminates round t). Consequently, pj receives the message DEC(v)
sent by pi during the round r = t+ 1 and decides v during round t+ 1.

• Case 4: 3 ≤ r = t+ 1.

In this case no process decided by round r = t. Let us assume that two processes are such that

estt+1
i �= estt+1

j . It follows from Lemma 52 that |CRASHED t+1| ≥ t+1, which is impossible

as at most t process may crash in the considered synchronous model. The NBAC-agreement

property follows from estt+1
i = estt+1

j .
�Theorem 58

Theorem 59. The NBAC algorithm described in Fig. 13.4 satisfies fast commit, weak fast abort, and

early decision (i.e., no decision occurs after min(f + 2, t+ 1) rounds).
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Proof Weak fast abort. Let us consider an execution in which at least one process pi votes no. Ev-

ery process pj that terminates round 1 sets estj to 0 (because it receives the vote no from pi or pi
crashes). It follows that all processes that execute the second round exchange only abort messages.

Consequently, the predicate of line 17 is satisfied for each process that executes the second round.

Hence, any process that completes the second round decides 0 during this round.

Early decision. We consider three cases.

• f ≤ t − 2. Let us consider a process pi that completed round (f + 1) without deciding, and is

executing round (f + 2). Let us also suppose that it does not receive a DEC() message during

round (f + 2) (otherwise it would decide during this round). Moreover, it follows from the

management of crashedri (line 15) that, at any round r, we have |crashedri | ≤ f .

When pi executes round r = f + 2, there are two cases:

– if r = f + 2 ≤ t − 1 then the decision predicate of line 18 is satisfied, and consequently

pi decides at line 20 of this round.

– if r = f + 2 = t then pi receives at least n − f = n − (t − 2) EST() messages during

round r = t. In this case the predicate of line 19 is satisfied, and pi decides at line 20 of

round r = t.

• f = t− 1. In this case any process pi that has not decided by the end of round f , and does not

crash, receives either a message DEC() or at least n− f = n− (t − 1) messages EST() during

round t. Whatever the case, it decides by the end of this round (at line 13 if it receives a message

DEC(), or otherwise at line 20 due to the predicate of line 19).

• f = t. In this case it follows directly from the text of the algorithm (line 23) that no process

executes more than f + 1 = t+ 1 rounds.

Fast commit property. This property follows from early decision when f = 0. �Theorem 59

13.5 Other Non-blocking Atomic Commitment Algorithms

13.5.1 Fast Abort and Weak Fast Commit

Required properties It is possible to design an NBAC algorithm that satisfies the fast abort property

and the weak fast commit property. This means that the algorithm directs the processes to decide in

one round when a process votes no, and in three rounds when all processes vote yes and no process

crashes.

An algorithm Such an algorithm is described in Fig. 13.5. It is nearly the same as the fast commit

weak fast abort algorithm described in Fig. 13.4. When looking at both algorithms, the lines with the

same number are exactly the same, while the line number of the four lines that differ is prefixed by the

letter M. The function of these modified lines is as follows:

• The aim of modified line M6 is to force a process to decide abort (i.e., 0) during the very first

round if a process votes no (or a crash occurred).

• Lines M16, M17, and M18 are modified in order for the processes to decide in three rounds

when there is no crash and all processes votes yes (weak fast commit), while preserving early

decision (i.e., min(f + 2, t+ 1) in all executions).

The reader can check that Lemma 52 and Lemma 53 remain valid for the algorithm in Fig. 13.5.

The proofs that it implements the NBAC agreement abstraction, and satisfies early decision when

f ≥ 1 are case analysis similar to those one of Theorem 58 and Theorem 59, respectively.
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operation nbac propose (votei) is

(1) esti ← votei; decidedi ← false;

(2) when r = 1 do

(3) begin synchronous round

(4) broadcast EST(votei);
(5) let rec votesi[1] = multiset of the votes votej received during the first round;

(M6) if (|rec votesi[1]| < n) ∨ (0 ∈ rec votesi[1]) then decide(0); decidedi ← true end if

(7) end synchronous round;

(8) when r = 2, ..., t+ 1 do

(9) begin synchronous round

(10) if (decidedi) then broadcast DEC(esti); return() end if;

(11) broadcast EST(esti);
(12) if (DEC(v) received during round r)

(13) then esti ← v; decidedi ← true; decide(esti)
(14) else let rec votesi[r] = multiset of the estimates estj received during r;

(15) let crashedi[r] ← { processes from which no message received during r};

(M16) if (0 ∈ rec votesi[r]) ∨
(
(r = 2) ∧ (|rec votesi[r]| < n− 1)

)

(M17) then esti ← 0 end if;

(M18) if
(
(3 ≤ r ≤ t− 1) ∧ (|crashedi[r]| ≤ r − 2)

)

(19) ∨
(
(r = t) ∧ (|rec votesi[t]| ≥ n− t+ 1)

)

(20) then decidedi ← true; decide(esti)
(21) end if

(22) end if;

(23) if (r = t+ 1) then if (¬decidedi) then decide(esti) end if; return() end if

(24) end synchronous round.

Figure 13.5: Fast abort and weak fast commit NBAC in CSMPn,t[3 ≤ t < n] (code for pi)

13.5.2 The Case t ≤ 2 (System Model CSMPn,t[1 ≤ t < 3 ≤ n])

The impossibility result stated in Theorem 57 is for t ≥ 3. When t ≤ 2 it is possible to design an

NBAC algorithm that satisfies both the fast abort property and the fast commit property. This can be

interesting in systems where process crashes are rare.

Such an algorithm is described in Fig. 13.6. It consists of three rounds. A process executes at least

two rounds but can decide at any round (let us recall that a process stops when it crashes or when it

executes the statement return()). At the beginning of every round, a process pi broadcasts its current

estimate of the decision value (that initially is its vote).

• During the first round, a process pi decides abort (0) if it receives a vote no or sees a process

crash. It then stops at line 11 of the second round.

• During the second round, pi stops if it previously decided abort. Otherwise, it decides abort

and stops if it receives an abort estimate during this round (line 13). If it received only commit

estimates (1), pi decides commit if it received at least (n − 1) such estimates, otherwise its

updates esti to abort (line 14).

• Finally, if pi has not stopped before the third round, it stops if it has already decided commit

in the previous round (line 19). Otherwise, pi decides commit if it received an estimate whose

value is commit, and decides abort if it has not (line 21). Finally pi stops (line 22).

The proof of this algorithm is a simple case analysis left to the reader.

13.6 Summary

This chapter was on the non-blocking atomic commitment (NBAC) agreement abstraction. This ab-

straction transforms a set of yes/no votes (one per process) into a single output ∈ {commit, abort},
such that, if all processes vote yes and there is no failure, the output is commit; whereas if a process
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operation nbac propose (votei) is

(1) esti ← votei;
(2) when r = 1 do

(3) begin synchronous round

(4) broadcast EST(esti);
(5) let rec votesi[1] = multiset of the estimates received during the first round;

(6) if (|rec votesi[1]| < n) ∨ (0 ∈ rec votesi[1]) then esti ← 0; decide(0) end if

(7) end synchronous round;

(8) when r = 2 do

(9) begin synchronous round

(10) broadcast EST(esti);
(11) if (esti = 0) then return() end if;

(12) let rec votesi[2] = multiset of the estimates received during the second round;

(13) if (0 ∈ rec votesi[2]) then decide(0); return() end if;

(14) if (|rec votesi[2]| ≥ n− 1) then decide(1) else esti ← 0 end if;

(15) end synchronous round;

(16) when r = 3 do

(17) begin synchronous round

(18) broadcast EST(esti);
(19) if (esti = 1) then return() end if;

(20) let rec votesi[3] = multiset of the estimates received during the third round;

(21) if (1 ∈ rec votesi[3]) then decide(1) then decide(0) end if;

(22) return()
(23) end synchronous round.

Figure 13.6: Fast commit and fast abort NBAC in the system model CSMPn,t[t ≤ 2] (code for pi)

votes no, the output is abort. Hence, in all the executions in which all processes vote yes and there

are process crashes, the output is not deterministically defined, it can be either commit or abort. This

actually depends on the failure pattern. This abstraction can be implemented in the system model

CSMPn,rt[∅].
The chapter then introduced the notion of fast abort (the decision abort is obtained in one round

if a process votes no), and fast commit (the decision commit is obtained in two rounds if all processes

vote yes and there is no failure). It was shown that there is no NBAC algorithm that satisfies both fast

abort and fast commit.

The notions of weak fast abort and week fast commit were then introduced (each allows for one

more round). An algorithm satisfying fast abort and weak fast commit and an algorithm satisfying fast

commit and weak fast abort were presented.

NBAC is an agreement abstraction that is pervasive in a lot distributed applications. This is the case

when the computing entities (processes) need to agree on the fate of their works according to whether

each of them succeeded (votes yes) or one of them did not (votes no) in their local computations. The

output commit means then each process successfully executed its local computation, and consequently

the resulting global computation can be committed (saved, published, posted, etc.).

13.7 Bibliographic Notes

• The atomic commitment agreement abstraction originated in databases [192], and then flooded

operating systems [264], and distributed computing [197, 204].

• The non-blocking attribute (which means NBAC algorithms have to terminate despite process

crash failures) was first addressed in [395]. More information can be found in [61].

• Timer-based NBAC algorithms suited to synchronous systems are described in [45].

• The notions of fast commit/abort and weak fast commit/abort are due to P. Dutta, R. Guerraoui

and B. Pochon [141]. The algorithms presented are from the same authors.
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• Parts of several books are devoted to the NBAC agreement abstraction, its practical develop-

ments or its theoretical foundations (e.g.,[61, 193, 272]).

• Relations between the consensus and NBAC agreement abstractions are investigated in [194,

206].

13.8 Exercises and Problems

1. Prove the algorithm described in Fig. 13.6.

2. Consider the system model CSMPn,t[t = 1]. Is it possible to design an NBAC algorithm that

always terminates in two rounds? If the answer is “yes”, design and prove such an algorithm. If

the answer is “no”, provide an impossibility proof.



Chapter 14

Consensus in Synchronous Systems

Prone to Byzantine Process Failures

This chapter addresses the interactive consistency and consensus agreement abstractions in the system

model BSMPn,t[∅], i.e., in synchronous systems where up to t processes can be Byzantine. Let us

remember that a Byzantine process is a process that behaves in an arbitrary way.

A simple interactive consistency algorithm is first presented that works for n = 4 processes, one

of them being potentially Byzantine. The chapter then shows that n > 3t is an upper bound on the

maximal number of processes that may be faulty when implementing the consensus (or interactive

consistency) agreement abstraction in the synchronous round-based model prone to process Byzantine

failures. This upper bound has to be compared with the corresponding bounds for the crash failure

model, and the omission failure models (see Table 14.1).

Failure model Upper bound

Crash failure CSMPn,t[∅], t < n
Send omission failure CSMPn,t[SO], t < n

General omission failure CSMPn,t[GO] t < n/2
Byzantine failure BSMPn,t[∅] t < n/3

Table 14.1: Upper bounds on the number of faulty processes for consensus

The chapter presents several algorithms that implement Byzantine consensus. The first one is opti-

mal with respect to the value of t (i.e., t < n/3) and the number of rounds (namely, t+1) but requires

messages whose size increases exponentially with respect to t. In the literature, this algorithm is called

the exponential information gathering (EIG) algorithm. Whereas the second algorithm presented is

much more simple and uses a constant message size but assumes t < n/4 and requires 2(t + 1)
rounds. The chapter also presents an elegant reduction of multivalued consensus to binary consensus

in the presence of t < n/3 Byzantine processes. Finally, it is shown that enriching the synchronous

model with signatures allows the constraint on t to be weakened from t < n/3 to t < n/2.

Keywords Binary consensus, Byzantine process, Common coin, Consensus, Constant message size,

Fair message scheduling, Impossibility, Interactive consistency, Local coin, Message authentication,

Message-passing, Multivalued consensus, Random number, Reduction algorithm, Signature-based al-

gorithm, Synchronous system.
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14.1 Agreement Despite Byzantine Processes

14.1.1 On the Agreement and Validity Properties

On the agreement property Due to the very nature of a Byzantine process, if such a process decides

a value, it is impossible to direct it to decide the same value as the correct processes. The (uniform)

agreement property “no two processes decide different values” is meaningless in the context of Byzan-

tine failures, where the best that can be stated is “no two correct processes decide different values”.

On the validity property It is possible that all Byzantine processes propose the same fake value

while they correctly execute the consensus algorithm, and each correct process proposes a value, such

that this value is proposed only by it. Hence, the fake value is the most proposed value. As all

processes correctly execute their algorithm, there is no way to distinguish a correct process from a

faulty one, and it is not possible (without additional assumptions) to prevent the fake value from being

decided. The same occurs if all processes propose different values (each Byzantine process proposing

a different fake value).

There is also the fact that the notion of a “value proposed by a Byzantine process” cannot be

properly defined. A Byzantine process can have duplicitous behavior, behaving as if it proposed v
with respect to some processes, and v′ �= v to other processes. (The duplicitous behavior of Byzan-

tine processes was also addressed in Section 4.2 devoted to the ND-broadcast and URB-broadcast

communication abstractions.)

It follows that the validity property, which relates the output to the inputs, cannot be “a decided

value is a value proposed by a correct process”. Several validity properties suited to the Byzantine

failures can be envisaged. The choice of a specific validity property usually depends on the upper

layer problem that has to be solved.

14.1.2 A Consensus Definition for the Byzantine Failure Model

Definition In the context of synchronous systems, we consider the validity property which, while

remaining useful, is the least constraining one (from the consensus algorithm point of view).

• BC-validity. If all correct processes propose the same value v, only v can be decided.

• BC-agreement. No two correct processes decide different values.

• BC-termination. Each correct process decides a value.

Hence, when the correct processes do not propose the same value, this validity definition allows

them to decide a value proposed by a correct process, a value proposed by a Byzantine process, or

even any other value.

The case of binary consensus In this case, only 0 and 1 can be proposed and this is known by the

correct processes. It follows that, if a Byzantine process proposes another value, it can be discovered

as faulty.

Theorem 60. In the case of binary consensus, the previous BC-validity property implies that a value

decided by a correct process is always a value proposed by a correct process.

Proof If all correct processes propose the same value v ∈ {0, 1}, BC-validity implies they decide v.

If some of them propose 0, while other propose 1, as only 0 or 1 can be decided, the theorem follows.

�Theorem 60

As the previous theorem relies on the fact that consensus is binary, and not on the synchrony of

the system, it is also valid in the Byzantine asynchronous system model.
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14.1.3 An Interactive Consistency Definition for the Byzantine Failure Model

The definition of interactive consistency given in Section 10.2 is slightly modified as follows to adapt

to the Byzantine failure model. Byzantine interactive consistency (BIC) is defined as follows:

• BIC-validity. Let Di[1..n] be the vector decided by a correct process pi. ∀ j : 1 ≤ j ≤ n, if pj
is correct, Di[j] is the value proposed by pj .

• BIC-agreement. No two correct processes decide different vectors.

• BIC-termination. Every correct process decides on a vector.

14.1.4 The Byzantine General Agreement Abstraction

This agreement abstraction (ByzG in short) was introduced by L. Lamport, R. Shostack, and M. Pease

(1982) in the context of synchronous Byzantine systems. It addresses the broadcast of a message by

a given process (the general) to the other processes (his lieutenants). It is defined by the following

properties.

• ByzG-validity. If the sender process (general) is correct, no correct process (lieutenant) delivers

a message different from the message it sent.

• ByzG-agreement. No two correct processes deliver different messages.

• ByzG-termination. Every correct process delivers a message.

It is easy to see that the processes can deliver an arbitrary value when the sender is Byzantine.

When considering the Byzantine failure model BSMPn,t[∅], interactive consistency consists in

n ByzG instances (each process is the sender in a separate instance, and all instances are executed

simultaneously).

14.2 Interactive Consistency for Four Processes Despite One Byzantine

Process

This section presents a simple algorithm (executed by all correct processes) that implements Interactive

Consistency in the system model BSMPn,t[t = 1, n = 4].

14.2.1 An Algorithm for n = 4 and t = 1

Let p1, p2, p3 and p4 be the four processes. The aim of each correct process pi is to compute a local

vector viewi[1..4] such that the correct processes decide the same vector and viewi[j] is the value

proposed by pj if it is correct; ⊥ is a default value that cannot be proposed by a process.

Local variables Each process pi manages two local arrays.

• rec1i[1..4] is a one-dimensional array; rec1i[j] is destined to contain the value proposed by pj ,
as known by pi. If pi does not know it, we have rec1i[j] = ⊥. Otherwise, rec1i[j] = v means

“pj said to pi that its proposed value is v” (remember that pj might be Byzantine).

• rec2i[1..4, 1..4] is a two-dimensional array where rec2i[x, j] = v means “px told pi that it

received v from pj”.
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operation propose (vi) is

(1) when r = 1 do

(2) begin synchronous round

(3) broadcast EST1(vi):
(4) for each j ∈ {1, 2, 3, 4} do

(5) if (value v received from pj) then rec1i[j] ← v else rec1i[j] ← ⊥ end if

(6) end for

(7) end synchronous round;

(8) when r = 2 do

(9) begin synchronous round

(10) broadcast EST2(rec1i):
(11) for each j ∈ {1, 2, 3, 4} do

(12) if (array rec1j received from pj) then rec2i[j] ← rec1j else rec2i[j] ← [⊥,⊥,⊥,⊥] end if;

(13) end for;

(14) for each j ∈ {1, 2, 3, 4} do

(15) let a, b and c be the three values in rec2i[x, j] with x �= j;

(16) if (there is a majority value v among a, b and c) then viewi[j] ← v else viewi[j] ← ⊥ end if

(17) end for;

(18) return(viewi)
(19) end synchronous round.

Figure 14.1: Interactive consistency for four processes despite one Byzantine process (code for pi)

Behavior of a (correct) process The algorithm is described in Fig. 14.1. Each process pi exe-

cutes two synchronous rounds. During the first round, pi broadcasts the value it proposes (message

EST1(vi), line 3). Then, if it receives a value v from process pj , it updates rec1i[j] to v, otherwise it

assigns ⊥ to rec1i[j].
During the second round, each process pi broadcasts what it has learned during the first round

(message EST2(rec1i), line 10). Then, if it receives a vector rec1j from pj , is updates rec2i[j]
(i.e., line j of the two-dimensional array rec2i[1..4, 1..4]). Otherwise, it assigns the default vector

[⊥,⊥,⊥,⊥] to rec2i[j] (line 12). Finally, according to the values in the array rec2i, pi computes the

value of the vector viewi locally returned as output.

The value of viewi[j] is computed as follows. Let {x1, x2, x3} = {1, 2, 3, 4}\{j}, rec2i[x1, j] =
a, rec2i[x2, j] = b, and rec2i[x3, j] = c. As an example, rec2i[x1, j] = a means that a is the value

that px1 received from pj during the first round, and then forwarded to pi during the second round. If

px1 did not receive a value from pj during the first round, or did not send a message to pi during the

second round, a = ⊥. If there is a majority value v among a, b and c (i.e., at least two of a, b and c are

equal to v), pi assigns v to viewi[j]. Otherwise, it assigns it the default value ⊥.

As we are about to see, if pj is correct, v is the value it proposed. However, if viewi[j] = ⊥, then

pi is faulty. Let us observe that pj can be faulty while we have viewi[j] = v (in this case, it is possible

that the faulty process pj sent v to some correct process and v′ to another one).

14.2.2 Proof of the Algorithm

Theorem 61. The algorithm described in Fig. 14.1 implements the interactive consistency agreement

abstraction in BSMPn,t[t = 1, n = 4].

Proof The BIC-termination property follows directly from the synchrony assumption.

BIC-validity. We have to show that, for any two correct processes pi and pj , viewi[j] = vj (where

vj is the value proposed by pj). In addition to pi, let pk and p� be two distinct correct processes (pj
is one of pi, pk or p�, or the fourth process if it is correct). As pi, pk, p� and pj are correct it follows

from the algorithm that:

• rec1i[j] = rec1k[j] = rec1�[j] = vj at the end of the first round, and
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• rec2i[i, j] = rec2i[k, j] = rec2i[	, j] = vj , at the end of the second round.

Let us consider the three values a, b and c obtained by suppressing rec2i[j, j] from rec2i[1, j],
rec2i[2, j], rec2i[3, j] and rec2i[4, j] (line 15). It follows from the previous observation that at least

two of these values are equal to vj . Hence, viewi[j] = vj (line 16) which completes the proof of the

validity property.

BIC-agreement. We have to show that if pi and pk are two correct processes, then ∀j : viewi[j] =
viewk[j]. If pj is correct, the proof follows from the BIC-validity property, where it was shown that

viewi[j] = vj and viewk[j] = vj as soon as pi, pk and pj are correct.

Hence, let us assume that pj is a faulty process. Let px denote the third process that, in addition to

pi and pk, is correct. If viewi[j] = viewk[j] = viewx[j] = ⊥, the BIC-agreement property follows.

Hence, let us consider that some process (e.g., pk) computes viewk[j] = v �= ⊥. Due to lines 15-16

this means that at least two of the values in rec2k[i, j], rec2k[k, j] and rec2k[x, j] are equal to v. Let

us consider two cases.

• Case 1 (left part of Fig. 14.2). During the second round process pk received v �= ⊥ from both

pi and px. This means that, as pi is correct, we have rec1i[j] = v and pi sent v to both pk and

px during the second round. We can also conclude that, as px is correct, we have rec1x[j] = v
and px sent it to both pk and pi during the second round.

It follows that pi is such that rec2i[i, j] = rec2i[x, j] = v, i.e., v appears at least twice in

rec2i[i, j], rec2i[k, j] and rec2i[x, j]. Then, due to lines 15-16, pi assigns v to viewi[j], which

concludes the case.

viewk[j] = v

r = 1
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pi

px

rec1i[j] = v
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v
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Figure 14.2: Proof of the interactive consistency algorithm in BSMPn,t[t = 1, n = 4]

• Case 2 (right part of Fig. 14.2). During the second round process pk received v �= ⊥ from only

one of pi and px (say py where y = i or y = x). Hence, we have rec2k[y, j] = rec1y[j] = v.

As viewk[j] = v �= ⊥, it follows from lines 15-16 that pk received v �= ⊥ from at least two pro-

cesses (unlike pj), from which we conclude that it received rec1k[j] = v from itself and conse-

quently rec2k[k, j] = rec1k[j] = v. As pi is correct, it received rec1y[j] = v and rec1k[j] = v
and we have rec2i[y, j] = rec2i[k, j] = v. Hence, pi is such that rec2i[y, j] = rec2i[k, j] = v,

and it assigns v to viewi[j], which concludes the proof of the agreement property.
�Theorem 61

14.3 An Upper Bound on the Number of Byzantine Processes

This section presents a fundamental result related to Byzantine failures, namely, it is impossible to

solve the interactive consistency (and consensus) agreement abstraction in BSMPn,t[t ≥ n/3]. This
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result is due to M. Pease, R. Shostack and L. Lamport (1980).

Theorem 62. Neither the interactive consistency nor the (or consensus) agreement abstraction can be

implemented in the system model BSMPn,t[t ≥ n/3].

The original proof of this theorem considers first the case of a system three processes, among

which one is Byzantine, and then uses an appropriate reduction technique to address the general case

of a system of n processes in which t ≥ n/3 may be Byzantine. Instead of presenting this proof we

deduce Theorem 62 from a more general theorem which states that Byzantine k-set agreement cannot

be solved if n ≤ 2t + t
k , and whose proof is direct, i.e., it is not reduction-based. Taking k = 1,

Theorem 62 follows.

Byzantine k-set agreement This abstraction is a simple weakening of Byzantine consensus. The

only difference lies in the agreement property.

• BkSA-validity. If all correct processes propose the same value v, only v can be decided.

• BkSA-agreement. At most k different values are decided by the correct processes.

• BkSA-termination. Each correct process decides.

The BkSA-validity property is particularly weak. If all correct processes do not propose the same

value, they can decide any set of k different values (i.e., even values not proposed by correct processes).

Its interest lies in the fact it enlarges the scope of the necessary condition (namely, to be implemented,

any strongStronger validity property requires a constraint on t as strong as or even stronger than the

one stated in Theorem 63). This theorem is due to Z. Bouzid, D. Imbs, and M. Raynal (2016).

Theorem 63. There is no algorithm that implements the k-set agreement agreement abstraction in the

system model BSMPn,t[n ≤ 2t+ t
k ].

Proof The proof is made up of two parts.

Part 1 of the proof. Given an execution, let C be the set of correct processes and F the set of faulty

processes. Assuming |C| ≤ t + t
k and |F | = t, let us partition the set C composed of all correct

processes into (k + 1) subsets S1, ..., Sk+1, such that any of these subsets contains �n−t
k+1� or �n−t

k+1�
processes (hence, ∀ i, j ∈ [1..(k + 1)] : |Si| − |Sj | ≤ 1). This system is represented in the left part

of Fig. 14.3, where a line connecting two sets means that each process in a set are connected to each

process in the other set (remember that the message-passing communication graph is complete). Let

Si = C \ Si.

Claim: |Si| ≤ t.
Proof of the claim. Let us assume by contradiction that |Si| > t. As Si and Si define a partition of C,

we have |Si| + |Si| = |C| ≤ t + t
k . As |Si| > t, it follows that |Si| < t

k . Moreover, as Si contains

k sets (all subsets Sx of C except Si), and their cardinality differs at most by 1, there is necessarily

a subset Sj ∈ Si such that |Sj | > t
k . For the same cardinality reason, it follows from |Sj | > t

k that

|Si| ≥ t
k . But we showed that |Si| < t

k , which is a contradiction. Consequently the initial assumption

|Si| > t is incorrect. End of proof of the claim.

Let us assume (for a future contradiction) that there is an algorithm Ak that implements k-set

agreement in BSMPn,t[n ≤ 2t + t
k ], where (thanks to the claim) we have |Si| ≤ t for every i,

1 ≤ i ≤ (k + 1).

Part 2 of the proof. Let us suppose that for each i, 1 ≤ i ≤ (k + 1), the processes of Si execute

algorithm Ak with the same input value vi, these values being such that (i �= j)⇒ (vi �= vj).

To specify the behavior of the Byzantine processes, let us consider the right part of Fig. 14.3.

The Byzantine processes of F simulate (k + 1) sets of processes, F1, ..., Fk+1, such that each set Fi

correctly executes Ak with the initial value vi, the same as Si (hence, the processes of Fi appear as
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Figure 14.3: Communication graph (left) and behavior of the t Byzantine processes (right)

being correct to Si, which includes only correct processes). Moreover, the processes of Fi ignore the

messages sent by Si and receive only those sent by Fi ∪ Si.

For each i, 1 ≤ i ≤ n, the processes of F behave as Fi with respect to Si. We say that the

processes of F “play (k + 1) duplicity roles”.

As, for each i, |Si| ≤ t (see the claim), it follows that, the processes of Si (which are correct)

cannot distinguish the case where the processes of F are Byzantine and play (k + 1) different roles,

while the processes of Si are correct, from the case where the processes of F are correct, while the

processes of Si are Byzantine. Hence, as by assumption algorithm Ak is correct, it follows from its

BkSA-termination and BkSA-validity properties that, for each i, 1 ≤ i ≤ n, the processes of Si decide

vi. Hence, (k + 1) values are decided by the correct processes, which violates the BkSA-agreement

property. Consequently, there is no algorithm Ak. �Theorem 63

Scope of the theorem While the previous reasoning relies on the fact that communication is by

message-passing (Byzantine processes send different messages to each set Si), it is independent of the

fact that the system is synchronous or asynchronous. Hence, the proof is valid for both BSMPn,t[n ≤
2t+ t

k ] and BAMPn,t[n ≤ 2t+ t
k ].

14.4 A Byzantine Consensus Algorithm for BSMPn,t[t < n/3]

This section presents an algorithm that implements the Byzantine consensus agreement in abstraction

the system model BSMPn,t[t < n/3]. It follows from its very existence that the Byzantine bound

< t < n/3 is tight.

The first Byzantine algorithm for the model BSMPn,t[t < n/3] is due to L. Lamport, R. Shostack

and M. Pease (1982). This algorithm solves the Byzantine Generals problem (as defined in Sec-

tion 14.1.4). We present here a Byzantine consensus algorithm due to A. Bar-Noy, D. Dolev, C.

Dwork, and H.R. Strong (1992), which is known under the name exponential information gathering

with recursive majority voting (EIG) algorithm. This algorithm is a clever adaptation of L. Lamport

et al.’s Byzantine Generals algorithm to consensus. It is optimal from both a resilience point of view

(t < n/3) and a time complexity point of view (it requires (t + 1) rounds). It uses messages whose

size increases exponentially with the round number (hence its name).
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14.4.1 Base Data Structure: a Tree

The algorithm consists of two parts. The first directs each process pi to associate a value with each

node of a local tree treei, while the second exploits this tree to extract a value that will be decided by

pi.

The EIG tree This tree has (t + 2) levels. Level 0 is associated with the root and level (t + 1) is

associated with the leaves. Moreover, a node at level 	 has (n− 	) children. Each node has a label (key

element of the algorithm), which is a sequence α of process indexes (or process identities) separated

by ”;”, e.g., α = i1; i2; i3; · · · ; i�. If 	 = 0, α is the empty sequence denoted ε. |α| denotes the length

of the sequence α.

• The label of the root is the empty sequence ε (|ε| = 0).

• The label α of a node at level 	, 1 ≤ 	 ≤ t+1, is a sequence of 	 distinct process indexes (hence

|α| = 	), such that

– the label of its parent is α from which the last element is suppressed, and

– the label of each of its (n − 	) children is α followed by ix (denoted α; ix), which is the

index of a process not appearing in α.

As an example, if 	 = 3, and α = i1; i2; i3, the label of its parent is i1; i2 and the labels of its

(n− 3) children are i1; i2; i3; ix, where ix ∈ {i1, . . . , in} \ {i1, i2, i3}.

It is important to see that the structure of the tree and the labeling of its nodes is static. An example of

EIG tree is depicted in Fig. 14.4.

2 431

level 0

level 1

level 2
1;2 1;4 2;1 2;3 2;4 3;1 3;2 3;4 4;2 4;34;11;3

Figure 14.4: EIG tree for n = 4 and t = 1

Intuitive meaning of a node labeled i1; i2; · · · ; i� The algorithm will direct each process pi to

assign, level by level (i.e., round by round), a value to treei[α] for each possible value of α, each

level corresponding to a round. The meaning of treei[α] = v, where α = i1; i2; · · · ; i�−1; i�, is the

following:

• at round r = 	 = |α|, pi was told by pi� , that

• during the round r − 1 = 	− 1 = |α| − 1, pi� was told by pi�−1
, that

• during the round r − 2 = 	− 2 = |α| − 2, pi�−1
was told by pi�−2

that ... etc., that,

• during the round r = 1, pi2 was told by pi1 that it (pi1) proposed v.

Hence, if α is a path of distinct correct processes, treei[α] = v means that α is a process path along

which the value v, proposed by the first process in the sequence α, was forwarded from round to round

until pi.
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operation propose(vi) is

% Part 1: communicating to fill each node of the tree with a value %

(1) treei[ε] ← vi;
(2) when r = 1, 2, . . . , (t+ 1) do

(3) begin synchronous round

(4) let msg = {〈α, treei[α]〉 such that
(
i /∈ α ∧ |α| = r − 1

)
}; % (r − 1)-level nodes of treei

(5) broadcast MSG(msg);
(6) for each j ∈ {1, . . . , n} do

(7) for each label α at level (r − 1) of treei do

(8) if (〈α, v〉 received from pj ∧ (j /∈ α) then treei[α; j] ← v else treei[α; j] ← ⊥ end if

(9) end for

(10) end for

(11) end synchronous round;

% Part 2: Local extraction of the value decided from treei %

(12) for each treei[α] such that |α| = t+ 1 do deci[α] ← treei[α] end for; % leaves of treei %

(13) for � from t by step −1 until 0 do % � = level of treei %

(14) for each treei[α] such that |α| = � do % level � of the tree %

(15) if a majority of children treei[α; j] of treei[α] have the same value v in deci[α; j]
(16) then deci[α] ← v else deci[α] ← ⊥ end if

(17) end for

(18) end for;

(19) return(deci[ε]).

Figure 14.5: Byzantine EIG consensus algorithm for BSMPn,t[t < n/3]

14.4.2 EIG Algorithm

Local variables Each process manages two trees which have exactly the same structure.

• The first one is treei. The nodes treei[α] such that |α| = r are filled at round r.

• The second one, called deci, is used in the second part of the algorithm. Once the values of all

the nodes of treei have been computed (end of round (t+ 1)), the tree deci is filled in from the

leaves to its root in such a way that the root deci[ε] provides pi with the value it has to decide.

Part 1 of the algorithm The algorithm is described in Fig. 14.5. Its first part (lines 1-9) consists of

the initialization of treei[ε] to vi (line 1), followed by (t + 1) synchronous rounds during which pi
computes the values of its local representation of the EIG tree treei. Hence, this part is information

gathering. At every round, each process proceeds as follows.

• Send phase. A process pi first constructs (line 4), and then broadcasts (line 5), a message msg
containing its (r−1)-level of treei in which i /∈ α (let us remember that a process index appears

at most once in a path of the EIG tree). This means that msg contains all the pairs 〈α, treei[α]〉
such that i /∈ α and α = r − 1 (line 4).

• Reception phase. Then, considering all the nodes of treei at level (r − 1), pi computes the

values of the nodes at level r. Let α be any label such that |α| = r − 1 and j /∈ α. For any

such α, if pi received the pair 〈α, v〉 from pj , it assigns v to the node treei[α; j]. Otherwise, it

assigns it the default value ⊥.

If during a round r, pi receives a message MSG() containing a pair 〈β,−〉 such that β is not

the label of a node at level (r − 1) of treei, it discards it (such a message is evidently from a

Byzantine process).

At the end of (t + 1) rounds, pi has assigned a value to each node of treei. It now has all the

ingredients to locally compute the value to decide.

Remark It treei[i1; · · · ; i�] �= ⊥ and treei[i1; · · · ; i�, i�+1] = ⊥, process pi�+1
is faulty. More

generally, if treei[α] = ⊥, there is a faulty process in the process sequence α.
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Part 2 of the algorithm As just mentioned, this part is purely local: it does not involve communi-

cation. The computation of the decided value by pi involves the second tree deci and proceeds from

its leaves to its root. This is done in two stages.

• Process pi first initializes the leaves of the tree deci (i.e., all deci[α] where |α| = t+ 1). This is

simple copy of the values associated with the leaves of treei (line 12).

• Then, pi executes (t+1) local iterations, each one proceeding from a level 	 of deci to the level

(	− 1) (lines 13-18).

For each treei[α] at level 	, if a majority of the children deci[α; j] of the node deci[α] have the

same value v, then v is assigned to deci[α], otherwise ⊥ is assigned to deci[α].

Cost of the algorithm The time complexity (number of rounds) is trivially (t + 1). In each round,

each process broadcasts a message. As there are (t+ 1) rounds, the message complexity is n2(t+ 1).

Moreover, as shown by the structure of treei, each process broadcasts the next (increasing) level

of the tree at every round. It follows that the bit complexity of the algorithm is proportional to n(n−
1) · · · (n− (t+ 1)), i.e., O(nt) (which gives its name to the EIG algorithm).

14.4.3 Example of an Execution

Let us illustrate EIG with n = 4 and t = 1. Process pi is Byzantine, while the processes p2, p3, and

p4 are correct. Moreover, the correct processes propose the same value v.

• During the first round, while it is assumed the same message is sent to all, p1 sends MSG(〈ε, a〉)
to p2, and MSG(〈ε, b〉) to p3 and p4. As the processes p2, p3, and p4 propose the same value

v, they broadcast the same message, namely, MSG(〈ε, v〉). Fig. 14.6 shows the values of tree2,

tree3, and tree4 when these messages have been received and processed. For p2 we have

tree2[1] = a, and tree2[2] = tree2[3] = tree2[4] = v. For p3 and p4, we have tree3[1] =
tree4[1] = b, and tree3[x] = tree4[x] = v for ≤ x ≤ 4.

1 2 3 4 1 2 3 4

Levels 0 and 1 of tree2 Levels 0 and 1 of tree3 and tree4

ε ε
v

b v v v

← labels →
v v va

v

Figure 14.6: EIG trees of the correct processes at the end of the first round

• During the second round, p2 broadcasts a fake message, while the messages broadcast by the

other processes depend on the values they received during the first round.

– p1 broadcasts the message MSG ({〈2, a〉, 〈3, b〉, 〈4, b〉}).
– p2 broadcasts the message (MSG {〈1, a〉, 〈3, v〉, 〈4, v〉}).
– p3 broadcasts the message (MSG {〈1, b〉, 〈2, v〉, 〈4, v〉}).
– p4 broadcasts the message (MSG {〈1, b〉, 〈2, v〉, 〈3, v〉}).

Let us consider process p2. The values assigned to the level 2 nodes of tree2, at the end of the

second (and last) round, are described on Fig. 14.7.

When it receives the round r = 2 messages from p1, itself, p3, and p4, p2 does the following.
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1 2 3 4

a v v

a ba bv vb vb v v v

1; 2 1; 3 1; 4 2; 1 2; 3 2; 4 3; 1 3; 2 3; 4 4; 1 4; 2 4; 3

v

ε
v

Figure 14.7: EIG tree tree2 at the end of the second round

– Due to the message from p1, p2 assigns a to tree2[2; 1], and assigns b to both tree2[3; 1]
and tree2[4; 1]. (To be more explicit, p2 assigns b to tree2[3; 1] because the message from

p1 – which is Byzantine – says that p4 proposed b.)

– Due to the message from p2, p2 assigns a to tree2[1; 2], and assigns v to both tree2[3; 1]
and tree2[4; 1].

– Due to the message from p3, p2 assigns b to tree2[1; 3], and assigns v too both tree2[2; 3]
and tree2[4; 3].

– Due to the message from p4, p2 assigns b to tree2[1; 4], and assigns v to both tree2[2; 4]
and tree2[3; 4].

It is easy to see that, when executing the loop of lines 12-18, we obtain dec2[1] = b, and dec2[2] =
dec2[3] = dec2[4] = v, from which it follows that dec2[ε] = v.

14.4.4 Proof of the EIG Algorithm

Lemma 54. If pi is correct, and treei[α; j] = v at the end of round r = |α| + 1, the pair 〈α, v〉 was

received by pi from pj during round r.

Proof The proof follows directly from line 8 of the EIG algorithm. �Lemma 54

Lemma 55. If pi and pj are correct and α = α′; j, we have deci[α] = treej [α
′].

Proof The proof is by induction, starting from the leaves. The base case (leaves) follows immediately

from Lemma 54: pi stored in deci[i1; · · · ; it; j] the value v = treej [i1; · · · ; it] it received from pj
during the round (t+ 1).

Induction step. Let α be the label of an internal node. Hence, |α| ≤ t. As the degree of the

nodes decreases by one at each level of the tree, and the root has degree n, it follows that the degree

of treei[α] is at least n− |α| ≥ n− t ≥ 2t+ 1. Consequently, a majority of the children treei[α;x]
of treei[α] are such that px is a correct process.

Let pk be a correct process. Due to the induction assumption, we have deci[α; k] = treek[α].
Moreover, as both pk and pj are correct processes, it follows from Lemma 54 (applied to the receiver

pk and the sender pj during round |α| = |α′| + 1) that we have treek[α] = treej [α
′] (during round

|α| = |α′|+ 1, pj broadcast a message EST() carrying the pair 〈α′, treej [α
′]〉, which was received by

all correct processes). Therefore, deci[α; k] = treek[α] = treej [α
′].

As a majority of the children treei[α; k] of treei[α] are such that pk is a correct process, and each

of these pk is such that deci[α; k] = treek[α] = treej [α
′], we have deci[α] = treej [α

′]. �Lemma 55
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Meaning of Lemma 55 Let α′ = ε and α = j, where pj is a correct process. Applying the previous

lemma, we obtain deci[j] = treej [ε] at any correct process pi. Hence, this lemma states how a correct

process pi learns the value proposed by a correct process pj .

Lemma 56. If all correct processes propose the same value v, no value v′ �= v can be decided.

Proof Assume all correct processes propose v. The value decided by a correct process pi is the

majority value of deci[1], ..., deci[n]. It follows from Lemma 55 that, for each correct process pj , we

have deci[j] = treej [ε] = v. As there is a majority of correct processes, v is a majority value in the

set of variables deci[1], ..., deci[n], which proves the lemma. �Lemma 56

Definitions Given an execution:

• A (node) label α is common if, for any two correct processes pi and pj , deci[α] = decj [α].

• A subtree has a common frontier if there is a common node on every path from its root to each

of its leaves.

Lemma 57. Let α be a label. If there is a common frontier in the subtree rooted at α, then α is

common.

Proof The proof is based on an induction of the height of α in treei. The base case is when α is the

label of a leaf (height k = 1). The proof follows directly from the definition of “common frontier”,

which states the very existence of a common label (the leaf α in this case).

Induction step. Let us assume that α is the label of the root of a subtree whose height is (k + 1),
and the lemma holds for each of its labels (nodes) with height k. Let us assume by contradiction that α
is not common. As the subtree rooted at α has a common frontier (lemma assumption), it follows that

each subtree rooted at a child of (the node labeled) α must have a common frontier. As the children of

α have height k, it follows from the induction assumption that they are all common. Therefore, for any

α;x, which is a child of α, we have (from the definition of “common”) that deci[α;x] = decj [α;x],
for any pair of correct processes pi and pj . The lemma then follows from the fact that all correct

processes pi compute the same value for each deci[α;x] (i.e., for each child α;x of α). As they then

apply the same deterministic function (majority value or ⊥) to the values deci[α;x], where α;x is a

child of α, they obtain the same value for deci[α] = decj [α] for any pair of correct processes, which

concludes the proof of the lemma. �Lemma 57

Lemma 58. No two correct processes decide different values.

Proof Let us first observe that any path, from a child of the root to a leaf, contains (t + 1) different

processes. Hence, at least one of them, say α, is such that α = α′; j where pj is correct. It follows

from Lemma 55 that deci[α
′; j] = treej [α

′]. As this is true for any correct process pi, p�, etc., we have

deci[α
′; j] = dec�[α

′; j], etc. Therefore, α is common. It follows that the whole tree has a common

frontier, and, due to Lemma 57, the root is common (i.e., and deci[ε] = decj [ε] at any pair of correct

processes, and BC-agreement follows. �Lemma 58

Theorem 64. The EIG algorithm described in Fig. 14.5 implements the Byzantine multivalued con-

sensus agreement abstraction in the system model BSMPn,t[t < n/3].

Proof The BC-termination follows from the synchrony property of the system model. The BC-validity

and BG-Agreement properties follow from Lemma 56 and Lemma 58, respectively. �Theorem 64
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14.5 A Simple Consensus Algorithm with Constant Message Size

14.5.1 Features of the Algorithm

The EIG algorithm meets two bounds associated with consensus in BSMPn,t[t < n/3], namely, the

upper bound on the number of faulty processes (t < n/3) and the lower bound on the number of

rounds (t + 1). Unfortunately, it requires processes to exchange a number of messages whose size is

exponential with respect to the number of faulty processes (O(nt)).

This section presents a simple and elegant consensus algorithm, due to P. Berman and J.A. Garay

(1993), in which each message has a constant size (it carries a single proposed value). This algorithm

requires n > 4t and processes decide after 2(t + 1) rounds. Hence, it is suited to the synchronous

model BSMPn,t[t < n/4].

14.5.2 Presentation of the Algorithm

Rotating coordinator paradigm and underlying principle The algorithm is based on the rotating

coordinator paradigm (which has proved to be a valuable paradigm in the design of a lot of distributed

algorithms). This means that each round is (partially) under the control of a coordinating process.

The identity of the process that coordinates a given round r is predetermined from the value of r
(consequently, given a round r, each process knows which process is the round r coordinator).

The algorithm is presented in Fig. 14.8. As in the previous algorithms, each process maintains a

current estimate (esti) of the decision value. In order to ensure the BC-validity property, it is based on

the following principle.

1. If the occurrence number of the most current estimate value passes some threshold, this value

will be the decided value.

2. Otherwise, the coordinator paradigm is used to force an estimate value to be adopted by enough

processes in order that its occurrence number passes the given threshold so that the previous

requirement is satisfied.

Implementing the principle To implement the previous principle the algorithm uses a sequence of

stages, each made up of two rounds, each of them being related to item 1 or item 2 stated previously.

During each stage, a process pi computes a new estimate of the decision value (kept in the local

variable esti, initialized to the value vi it proposes). The aim of the sequence of stages is to guarantee

that a value eventually becomes “present enough” to pass the threshold. More precisely, we have the

following.

• The first round of stage k (i.e., the round whose number is r = 2k−1) is an estimate determina-

tion. The processes exchange their current estimate values esti, and each process pi determines

the one it sees the most often and keeps it in most freqi. (If several values are equally “most

common”, one is deterministically selected and saved in most freqi.)

• The second round of stage k (the round whose number is r = 2k) is an estimate adoption.

For each process pi, as indicated previously, if the occurrence number of the estimate v it has

seen the most often passes the threshold, pi adopts it as the new estimate. The other case is

solved by the rotating coordinator paradigm as follows. During round r = 2k, process pk acts a

coordinator: it broadcasts its most freqk value to all processes pi (which save it in coord vali)
in order they adopt it in case they cannot adopt their most freqi value.

Let us notice that, as at most t processes are faulty, a sequence of (t + 1) stages necessarily

includes a stage whose coordinator is a correct process. So, this coordinator will impose the

same estimate value on the correct processes if, up to this stage, no estimate value was “present

enough” to pass the threshold.
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operation propose(vi) is

(1) esti ← vi;
(2) when r = 1, 3, . . . , 2t− 1, 2t+ 1 do

(3) begin synchronous round

(4) broadcast EST1(esti);
(5) let reci = multiset of values received during round r;

(6) most freqi ← most frequent value in reci;
(7) occ nbi ← occurrence number of most freqi
(8) end synchronous round;

(9) when r = 2, 4, . . . , 2t, 2(t+ 1) do

(10) begin synchronous round

(11) if (i = r/2) then broadcast EST2(most freqi) end if;

(12) if (a value v is received from pr/2) then coord vali ← v else coord vali ← vi end if;

(13) if (occ nbi > n/2 + t) then esti ← most freqi else esti ← coord vali end if;

(14) if (r = 2(t+ 1)) then return(esti) end if

(15) end synchronous round.

Figure 14.8: Constant message size Byzantine consensus in BSMPn,t[t < n/4]

The threshold value is n/2 + t. As shown by Lemma 59, this threshold is required to guarantee

the BC-agreement property despite up to t Byzantine processes. Let us notice that

(n > 4t)⇔ (2n > n+ 4t)⇔
(
n >

n

2
+ 2t

)
⇔

(
n− t >

n

2
+ t

)
.

The algorithm uses a multiset denoted reci. It is a set in which the same value can appear several

times, e.g., {a, b, a, c} is a multiset with four elements (while as a set it contains only three elements).

14.5.3 Proof and Properties of the Algorithm

Lemma 59. Let t < n/4 and consider the situation where, at the beginning of stage k, the correct

processes have the same estimate value v. They will never change their estimate value thereafter.

Proof It follows from the lemma assumption that the multiset reci of any correct process pi (line 5)

contains at least (n− t) copies of v at the end of the first round of stage k (round r = 2k− 1). Hence,

we have occ nbi ≥ n− t (line 7).

Moreover, as n > 4t, we have n−t > n/2, from which it follows that v is the single most common

value in reci. Consequently the local variable most freqi is assigned value v (line 6).

From n > 4t we obtain n − t > n/2 + t (see above), from which we conclude that during

the second round of stage k (round r = 2k) the estimate esti of each correct process pi is set to

most freqi, i.e., keeps the value v. �Lemma 59

Theorem 65. The algorithm described in Fig. 14.8 implements the Byzantine multivalued consensus

agreement abstraction in the system model BSMPn,t[t < n/4]. It requires 2(t+ 1) rounds.

Proof The BC-validity property (if all correct processes propose the same value, this value is decided)

is an immediate consequence of Lemma 59. The BC-termination property follows from the synchrony

assumption: a correct process decides at the end of round 2(t+ 1) (line 14).

Let us now prove that the algorithm satisfies the BC-agreement property. Since there are (t + 1)
stages, and at most t Byzantine processes, there is at least one stage coordinated by a correct process.

Let k be the first stage coordinated by a correct process pk, and pi be any correct process. At the end

of stage k, pi has some value v in esti. Let us consider two cases according to the value assigned to

esti by pi at line 13.
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• Process pi executes esti ← most freqi. In this case, due to the predicate used at line 13,

we conclude that at least (n/2 + t + 1) processes sent v as an estimate value at the beginning

of the stage k. Therefore, as at most t processes are Byzantine, the coordinator pk of stage k
(which is correct) received at least (n/2 + 1) copies of v from correct processes. Hence, px
has seen a single most frequent value (namely a majority value). Consequently, it broadcasts

most freqx = v (line 11 during the second round of stage k).

Let us consider any correct process pj �= pi when it executes line 13 during the second round of

stage k.

– Case 1: pj executes estj ← coord valj . As coord valj = most freqx, pj assigns v to

estj , which proves the property for that case.

– Case 2: pj executes estj ← most freqj . It follows from the fact that pi received (n/2 +
t+1) copies of v during the first round of stage k that pj received at least (n/2+1) copies

of v. Hence, pj executed most freqj ← v at line 6 of the first round of stage k. In this

case also, pi and pj adopt the same value for their estimates.

• No correct process pi executes esti ← most freqi. In this case, all correct processes executed

esti ← coord vali, and consequently, they all have the same estimate value at the end of stage

k (remember that, as pk is correct, it sent the same value to all the processes).

In both cases, due to Lemma 59, the correct processes will not modify these estimates in the future,

from which the BC-agreement property follows. �Theorem 65

Properties of the algorithm A noteworthy property of this algorithm is its simplicity. Another one

lies in the fact that each message has a bounded size (equal to the number of bits needed to encode a

proposed value).

The algorithm requires 2(t+1) rounds and (t+1)[n(n−1)+(n−1)] = (t+1)(n2−1) messages

(assuming a process does not send messages to itself).

14.6 From Binary to Multivalued Byzantine Consensus

14.6.1 Motivation

This section presents an algorithm that builds a multivalued consensus algorithm on top of a binary

consensus algorithm in the system model BSMPn,t[t < n/3]. Such a construction has two main

advantages.

• The first advantage is related to bit complexity. As we will see, the construction that is pre-

sented leads to substantial savings of bits when compared to a multivalued Byzantine consensus

built directly on top of the bare round-based synchronous model BSMPn,t[t < n/3]. It is nev-

ertheless important to recognize that this gain in bit complexity is not obtained for free; two

additional rounds are required.

• The second advantage concerns the value that is decided by the correct processes. Namely, the

construction allows the correct processes to never decide a value proposed only by Byzantine

processes.

More precisely, the value decided by the correct processes is either the value proposed by a

correct process (and this is always the case when the correct processes propose the same value)

or the default value ⊥. Hence, as an interesting side effect, when a correct process decides ⊥, it

learns that not all correct processes have proposed the same value.
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(As a simple example, we can consider a set of sensors that are sensing the same thing, e.g.,

its temperature. The previous property means that even when t sensors report arbitrary values,

these bad values will never corrupt the state of the sensing system.)

14.6.2 A Reduction Algorithm

The algorithm described in Fig. 14.9 is due to R. Turpin and B. Coan (1984). In order to prevent

confusion, the operation of the multivalued consensus is denoted mv propose(), while the operation

of the underlying binary consensus is denoted bin propose().

The underlying binary consensus It is assumed that the binary values are 1 and 0. The binary

consensus is assumed to satisfy the following properties: (a) BC-termination (any correct process

decides), (b) BC-agreement (no two correct processes decide differently), and (c) BC-validity (if all

correct processes propose the same value, that value is decided).

The BC-validity property is crucial for the multivalued consensus construction. This comes from

Theorem 60, which states that, in the context of Byzantine binary consensus, the decided value is

always a value that has been proposed by a correct process.

operation mv propose(vi) is

(1) esti ← vi;
(2) when r = 1 do

(3) begin synchronous round

(4) broadcast EST1(esti);
(5) let rec1i = multiset of values received during the first round;

(6) if (∃v : #v(rec1i) ≥ n− t) then auxi ← v else auxi ← ⊥ end if

(7) end synchronous round;

(8) when r = 2 do

(9) begin synchronous round

(10) broadcast EST2(auxi);

(11) let rec2i = multiset of values received during the second round;

(12) if (∃v �= ⊥ : #v(rec2i) ≥ n− t) then bpi ← 1 else bpi ← 0 end if;

(13) if (∃v �= ⊥ : v ∈ rec2i) then let v = most frequent non-⊥ value in rec2i;
(14) resi ← v
(15) else resi ← ⊥
(16) end if

(17) end synchronous round;

(18) b deci ← bin propose(bpi);
(19) if (b deci = 1) then return(resi) else return(⊥) end if.

Figure 14.9: From binary to multivalued Byzantine consensus in BSMPn,t[t < n/3] (code for pi)

From binary to multivalued consensus The idea of the construction is for the processes to first

exchange the values they propose, and then compute a binary value from these exchanges. After

each process has computed a binary value, the processes execute the underlying binary agreement,

and finally, according to the binary value that is returned, decide either a value proposed by a correct

process or ⊥. That default value prevents the processes from deciding a value proposed only by

Byzantine processes.

From an operational point of view, when looking at Fig. 14.9, the underlying binary consensus

appears at line 18. It is preceded by two additional rounds. From a round-based synchrony point

of view, line 19 (which is a simple local statement) is considered to be part of the last round of the

underlying binary consensus (as there is no message exchange, there is no need to consider that this

line requires another round). More precisely, we have the following. Let C denote the set of processes

that are correct in the execution considered.
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• First additional round (lines 2-6). A process pi first broadcasts the value vi it proposes. It then

computes an auxiliary value auxi from the proposed values it has received. If there is a proposed

value v that it has received at least (n− t) times, it saves s it in auxi, otherwise it considers the

default value ⊥. The aim of this round is to establish the following property (Lemma 60):

PR1 ≡
[
∀i, j ∈ C :

(
(auxi �= ⊥) ∧ (auxj �= ⊥)

)
⇒

(auxi = auxj = v) ∧ (v has been proposed by at least one correct process)
]
.

Hence, from a global point of view, this additional round replaces the set of values proposed by

the processes with a non-empty set including at most two values (namely a value v proposed by

a correct process and ⊥).

• Second additional round (lines 8-16). The exchange pattern of this round is similar to the previ-

ous one where esti is replaced by auxi. The aim of this round is twofold.

– First pi computes the binary value bpi it will propose to the underlying binary consensus

(bpi stands for binary proposal). If pi has received the same proposed value (aux = v �= ⊥)

from at least n− t processes, it has received enough copies of v to be certain that v is the

most frequent non-⊥ value received by any correct process, hence bpi = 1. Otherwise,

bpi = 0.

– Then pi computes the value that it will return if the binary consensus returns the value

1. That value, kept in resi, is either the most frequent non-⊥ value that pi has received

during this round, or ⊥ if it has received only messages carrying ⊥. (If several non-⊥
values appear equally as most frequent, one of them is arbitrarily selected.)

As we will see in the proof, this round establishes the following property (Lemma 61):

PR2 ≡
[
(∃i ∈ C : bpi = 1)⇒ (∀j ∈ C : resj = resi = v �= ⊥)

]
.

• Using the binary consensus (lines 18-19). Finally, pi proposes bpi to the underlying binary

consensus. If 1 is returned, pi decides the value it has previously saved in resi (which is either

a value v �= ⊥ or ⊥). If 0 is returned, pi decides ⊥ whatever the content of resi.

14.6.3 Proof of the Multivalued to Binary Reduction

Let us recall that C denotes the set of processes that are correct in the execution considered.

Lemma 60. ∀i, j ∈ C :
[
(auxi �= ⊥) ∧ (auxj �= ⊥)

]
⇒

[
(auxi = auxj = v) ∧ (v has been

proposed by at least one correct process)
]
.

Proof Let pi and pj be two correct processes such that (auxi �= ⊥) ∧ (auxj �= ⊥). It follows from

auxi �= ⊥ that there is a proposed value v such that #v(rec1i) ≥ n − t (line 6). In the worst case,

at most t copies of v received by pi are from faulty processes. Hence, any correct process (e.g., pj)
has received at least (n − 2t) copies of v. As n > 3t, we have n − 2t > t, which means that pj has

received at least t+ 1 copies of v (Observation O1).

Similarly, it follows from auxj �= ⊥ that there is a proposed value w such that #w(rec1j) ≥ n−t.
Hence, pj has received at least n− t messages with a copy of w (Observation O2).

It follows from O1 and O2 that pj received≥ t+1 copies of v and≥ n−t copies of w. This means

that if v �= w, pj has received values from at least (n+1) processes. (Let us recall that communications

are point-to-point and consequently, when a message arrives, the receiver knows which is the sender

process. Hence if a faulty process sends several messages during the same round, it is immediately

discovered.) This contradicts the fact that there are exactly n processes, from which it follows that

w = v.
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The fact that v has been proposed by a correct process follows from the observation that pi has

received v from a set of (at least) n− t processes, and as n > 3t⇒ n− t > 2t > t, this set includes

at least one correct process. �Lemma 60

Lemma 61. (∃i ∈ C : bpi = 1)⇒ (∀j ∈ C : resj = resi = v �= ⊥).

Proof Let pi be a correct process such that bpi = 1. It follows from line 12 that there is a non-⊥
value v such that pi has received at least n − t messages EST2(v). It follows from the second part of

Lemma 60 that v has been proposed by a correct process.

As the system is synchronous and there are at most t faulty processes, any correct process pj
receives at least n − 2t messages EST2(v) during the second round. Moreover, (due to the first part

of Lemma 60) a correct process sends either EST2(v) or EST2(⊥). It follows that a correct process

receives at most t messages EST2(w) with w �= v.

The worst case scenario is depicted in Fig. 14.10. Process pi receives n − t messages EST2(v)
(n − 2t from correct processes and t from Byzantine processes) and t messages EST2(⊥) (from cor-

rect processes). Process pj receives n − 2t messages EST2(v) (from correct processes), t messages

EST2(w) with w �= v (from Byzantine processes), and t messages EST2(⊥) (from correct processes).

pi

pj

n− t messages EST2(v) received

n− 2t from correct processes

t from Byzantine processes

t messages EST2(⊥) received

n− 2t messages EST2(v) received

from n− 2t correct processes

t messages EST2(⊥) received

t messages EST2(w) received

from t Byzantine processes

from t correct processes

from t correct processes

Figure 14.10: Proof of Property PR2

As n− 2t > t, it follows that v is the most frequent non-⊥ value received by pj during the second

round (and similarly for pi). Hence, both pi and pj execute line 14, and we have resi = resj = v �= ⊥.

�Lemma 61

Theorem 66. The algorithm described in Fig.14.9 implements the Byzantine multivalued consensus

agreement abstraction in the system model BSMPn,t[t < n/3]. Moreover, it satisfies the following

additional property: no value proposed only by Byzantine processes can be decided.

Proof As for the other synchronous algorithms, the BC-termination property follows directly from

the synchrony property of the system model.

Let us consider the BC-validity property (if all correct processes propose the same value, that value

is decided). Hence, let us assume that all correct processes propose value v. As there are at least n− t
correct processes, any correct process pi is such that ∃v : #v(rec1i) ≥ n−t (line 6) and consequently

sets auxi to v. Therefore, there are at least (n − t) processes that broadcast EST2(v). It follows that

each correct process pi assigns 1 to bpi and v to resi (lines 12-14). As all correct processes propose

1 to the underlying binary consensus, it follows from its BC-validity property that they all decide 1
(line 18); hence, v is decided by each correct process (line 19).

Let us now prove the BC-agreement property: no two correct processes decide differently. If all

correct processes decide ⊥, the agreement property is trivially satisfied. So, let us consider that a
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correct process pi decides a value v �= ⊥, which means that pi decides 1 from the underlying binary

consensus. It follows then from Theorem 60 that at least one correct process pj has proposed bpj = 1.

The agreement property follows then immediately from Lemma 61 and the fact that a correct process

px decides the value kept in resx.

Let us finally show that the value proposed by a Byzantine process (and not proposed by a correct

process) is never decided. (Let us notice that it is possible that all Byzantine processes propose the

same value while each correct process proposes its own value.) If follows from Theorem 60 that, if a

non-⊥ value v is decided by a correct process, there is a correct process pi that has proposed bpi = 1.

It then follows that pi has received n−t messages EST2(v) with v �= ⊥ (line 12). Finally, we conclude

from Lemma 60 that v is a value that has been proposed by a correct process. �Theorem 66

14.6.4 An Interesting Property of the Construction

Let v be the value most proposed by the correct processes (it is possible that several values are equally

most proposed) and #v be the number of correct processes that propose it. The previous algorithm

has the following interesting property (which follows from Lemma 60, Lemma 61 and Theorem 66).

• If #v ≥ n− t, then v is decided by the correct processes (let us observe that, in this case, there

is a single most proposed value).

• If #v < n− 2t, then ⊥ is decided by the correct processes.

• If n − 2t ≤ #v < n − t, then the value (v or ⊥) decided by the correct processes depends on

the behavior of the Byzantine processes.

n− t ≤ #v ≤ n

n− 2t ≤ #v < n− t

1 ≤ #v < n− 2t

deterministic non-deterministic deterministic

⊥ is decided v is decided⊥ or v is decided

1 n− 2t nn− t

Figure 14.11: Deterministic vs non-deterministic scenarios

Let us consider an omniscient observer who knows which are the correct processes and the values

that they propose. In the first and the second cases, the omniscient observer can compute the result

in a deterministic way. However, this no longer possible in the last case. The value that is decided

actually depends on the behavior of the Byzantine processes (which can favor values proposed by

correct processes, or entail a ⊥ decision). These different cases are depicted on Figure 14.11.

14.7 Enriching the Synchronous Model with Message Authentication

14.7.1 Synchronous Model with Signed Messages

Digital signatures This section considers that each process can safely sign the messages it sends.

This means that a sender can append its signature to every message it sends. This signature contains

a sample portion of the message encoded in such a way that a receiver can always verify that the

message is authentic (it has not been modified by another process). Let us remember that, as every

channel is point-to-point, a receiver always knows which process sent the message it receives.
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It is assumed that no process pi can forge the signature of another process pj , and consequently

cannot change the content of the messages sent by any other process. This restricts the possible

behavior of a Byzantine process. Such a process can only crash or fail to relay messages.

The model BSMPn,t[∅] enriched with message authentication is denoted BSMPn,t[SIG].

Signatures define a more restricted model The round-based synchronous model enriched with

signatures is a computation model strictly more restricted than the round-based synchronous model.

This is due to the following observation. On the one hand, breaking signatures theoretically re-

quires an “infinite” computation power. On the other hand, a round-based synchronous model enriched

with signatures assumes that no process has enough power to break signatures. More specifically, a

synchronous model enriched with signatures provides the processes with a strong security abstrac-

tion (signatures) that by assumption can never be defeated. Such an assumption is not considered in

the base synchronous model, and consequently processes are not prevented from having an “infinite

computing power” in such a base system in order to break signatures if they were used.

Using signatures: notion of a valid message In a signature-based algorithm each process signs

every message it broadcasts. During the first round a process sends a signed message containing its

value. Then, at every round r, a process that receives a message signs and forwards it during round

(r + 1).
A message m received during round r by a process pi is valid if it carries a value v with a list of r

signatures which are (a) pairwise different, and (b) different from the signature of pi. Such a message

m is denoted [v : pa : pb : · · · : px], where v is a value signed by pa, and then the pair [v : pa] has been

signed by pb giving [v : pa : pb], etc.

Its meaning is the following. During the first round process pa has sent the signed message [v : pa]
to process pb, that during the second round sent the signed message [v : pa : pb] to process pc, etc.,

until px that during round r sent the signed message [v : pa : pb : · · · : px].

14.7.2 The Gain Obtained from Signatures

Behavioral restriction In a signature-based algorithm, a process systematically discards all the mes-

sages it received that are not valid. When writing an algorithm, the elimination of these messages

remains implicit. It is easy to see that signatures restrict the faults of Byzantine processes to sending

erroneous values, to crashing, or failing to relay messages.

Upper bound on t for the consensus problem As far as the consensus problem is concerned, the

constraint on t becomes t < n/2, the same upper bound as in the synchronous general omission failure

model. This is not counter-intuitive as signatures restrict the possible behavior of a Byzantine process

to crashing or failing to relay messages, which are exactly the failures allowed in the general omission

failure model.

Signatures vs error detecting codes Byzantine behaviors include malicious behaviors from pro-

cesses that do their best to pollute the computation of the correct processes. This is not always the

case in practice. When Byzantine behavior is not intentional, signatures can be replaced by error-

detecting codes. From an implementation point of view, the advantage is then that error-detecting

codes are much less expensive than signatures.

14.7.3 A Synchronous Signature-Based Consensus Algorithm

Description of the algorithm A consensus algorithm based on signatures is described in Fig. 14.12.

This algorithm is due to D. Dolev and H.R. Strong (1983).
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Each process pi first builds a signed message with the value it proposes (line 2). Then the processes

execute (t+ 1) synchronous rounds. When it starts a new round a process pi broadcasts the messages

in the set to senti (line 5). This set contains the valid messages that pi received during the previous

round, and to which it appends its signature (lines 7-9).

Finally, when it executes round (t + 1), pi decides a value (lines 10-18). For each process pj ,
process pi first computes the value vj proposed by pj . If pj is correct, the value belongs to all the

valid messages received during the round (t+ 1) whose first signature is pj’s signature (lines 11-15).

If there is such a value, pi saves it in rec vali[j]. Finally, if there is a single most common value in

rec vali, pi decides it, otherwise it decides the default value ⊥.

Remark on the underlying communication model As formulated in the algorithm described in

Figure 14.12, a process broadcasts a set of messages during every round (line 5) and receives each

message separately (line 7). This formulation simplifies the presentation of the algorithm.

An exponential number of signed messages Let us assume that all processes are correct. There are

n messages during the first round, n2 during the second round, etc., until nt+1 messages during the

last round. Hence the number of messages exchanged is O(nt).

operation propose(vi) is

(1) esti ← vi; rec vali[1..n] ← [⊥, . . . ,⊥];
(2) to sendi ← { message made up of esti signed by pi };

(3) when r = 1, 2, · · · , t+ 1 do

(4) begin synchronous round

(5) broadcast EST(to sendi);
(6) to sendi ← ∅;

(7) for every valid message m received during round r do

(8) add m′ to to sendi where m′ is m signed by pi
(9) end for;

(10) if (r = t+ 1) then

(11) foreach j ∈ {1, . . . , n} do

(12) if (all the valid messages m received during round t+ 1 starting with pj’s signature carry v)

(13) then rec vali[j] ← v else rec vali[j] ← ⊥
(14) end if

(15) end for;

(16) if (there is a single most common value v in rec vali[1..n]) then deci ← v then deci ← ⊥ end if;

(17) return(deci)
(18) end if

(19) end synchronous round.

Figure 14.12: A Byzantine signature-based consensus algorithm in BSMPn,t[SIG; t < n/2] (code

for pi)

14.7.4 Proof of the Algorithm

Theorem 67. The algorithm described in Fig. 14.12 implements the Byzantine multivalued consensus

agreement abstraction in the system model BSMPn,t[SIG; t < n/2].

Proof The BC-termination property follows from the synchrony assumption.

To prove the BC-validity property, we have to show that, if all the correct processes propose the

same value v, then v is decided. Let us consider a correct process pi that proposes value v. Due to

n > 2t, we have n− t ≥ t+ 1 from which it follows that there is a path of (t+ 1) correct processes
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from pi to any other correct process. Thus, at round (t + 1), each correct process pj receives at least

one valid message that carries v and originated at pi. Moreover, due to signatures, no valid message

with the prefix [v : pi] has been corrupted by a faulty process. Hence, any correct process pj is such

that rec valj [i] = v at the end of round (t+1). It then follows from the n > 2t assumption that, if all

correct processes propose the same value v, a majority of the entries in rec valj [1..n] are equal to v,

and consequently, all correct processes decide v.

For the BC-agreement property, we have to show that no two correct processes decide different

values. To this end we show that rec vali = rec valj for any two correct processes pi and pj . Let

rec vali[x] = v. If px is correct, the proof that rec valj [x] = v is the same as for the BC-validity

property.

Hence, let us assume that px is faulty. As rec vali[x] = v, there is a round r ≤ t during which a

correct process py received a valid message m = [v : px : . . .]; as this message is valid, it carries r
distinct signatures. As n− t ≥ t+1, there is a path of (t+1−r) correct processes from py (included)

to pj (excluded) that have not yet signed and forwarded the message. Due to the algorithm, during the

rounds from (r + 1) to (t+ 1), the correct processes on this path sign and forward this message from

py to pj , and consequently we have rec valj [x] = v at the end of the round (t+ 1), which proves the

BC-agreement property. �Theorem 67

14.8 Summary

This chapter introduced definitions for the interactive consistency and consensus agreement abstrac-

tions suited to Byzantine process failures. It has shown that t < n/3 is a necessary requirement for

implementing Byzantine consensus in a synchronous model. It has also presented several Byzantine

consensus algorithms. One is the well-known exponential information gathering (EIG) algorithm,

which is optimal with respect to t and the number of rounds but uses messages whose size increases

exponentially with respect to rounds. A much simpler algorithm has also been presented, which uses

constant message size but requires t < n/4 and 2(t + 1) rounds. The chapter also presented a re-

duction of multivalued consensus to binary consensus in the system model BSMPn,t[t < n/3], and

showed that the enrichment of the system model with signed messages allows the upper bound on t to

be improved from t < n/3 to t < n/2.
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• Early stopping despite Byzantine failures is addressed in [53, 135].
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14.10 Exercises and Problems

1. Modify the EIG algorithm, described in Section 14.4, so that it works in the system model

CSMPn,t[∅]. Then, prove it is correct. (Hint: only Part 2 of the algorithm needs to be modified.)

Solution in [271].

2. In the synchronous general omission failure model CSMPn,t[-GO] processes may crash or,

at some rounds, forget to send or receive messages to any subset of processes. Consensus

can be solved in both the models CSMPn,t[-GO, t < n/2] and BSMPn,t[SIG, t < n/2]
(BSMPn,t[t < n/2] enriched with message authentication).

Does any algorithm implementing consensus in the system model CSMPn,t[-GO, t < n/2]
work in system model the BSMPn,t[SIG, t < n/2], and vice versa? Explain why. More

generally, discuss the difference between these models from a consensus point of view.

Solution in [367].



Part V

Agreement in Asynchronous Systems

This part of the book is devoted to agreement in asynchronous systems. It is composed of five chapters.

• Chapter 15 presents three agreement abstractions, which can be solved, despite asynchrony and

process crashes, when the number of processes that may crash remains a minority, i.e., in the

system model CAMPn,t[t < n/2]. These agreement abstractions are renaming, approximate

agreement, and safe agreement. The additional assumption t < n/2 is the weakest the model

CAMPn,t[∅] has to be enriched with for these abstractions to be implementable.

• Chapter 16 presents three fundamental results of fault-tolerant asynchronous distributed com-

puting. The first one is a universal construction for all the objects (abstractions) defined by a

sequential specification. This construction is based on the total order broadcast abstraction. The

second result is the equivalence between this broadcast abstraction and consensus. The third

one, known as FLP impossibility, is the impossibility of solving consensus in the system model

CAMPn,t[∅].
• Chapter 17 presents several approaches that allow us to circumvent the previous impossibility.

Each of these approaches consists in a specific enrichment of the model CAMPn,t[∅] to obtain

the model CAMPn,t[CONS]. One consists in adding a scheduling assumption, a second one

in adding an appropriate failure detector, and the last one in using the additional computability

power provided by randomization.

• Chapter 18 presents implementations of distributed oracles such as failure detectors and random

numbers. Of course, their implementations on top of CAMPn,t[∅] require assumptions, which

can be expressed as behavioral assumptions the system must satisfy.

• Finally, Chapter 19 addresses the implementation of consensus when processes can commit

Byzantine failures., i.e., in the system model BAMPn,t[t < n/3].
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Chapter 15

Implementable Agreement Abstractions

Despite Asynchrony and a Minority of

Process Crashes

This chapter addresses the implementation of agreement abstractions in asynchronous systems where

the processes communicate by reading and writing atomic registers. We have seen in Chap. 5 that

atomic registers can be built in asynchronous message-passing systems only if t < n/2. Implementa-

tions of read/write registers in the system model CAMPn,t[t < n/2] have been presented in Chap. 6

and Chap. 8.

This chapter presents two approaches to build read/write-implementable agreement abstractions in

the message-passing model CAMPn,t[t < n/2].

• The first one consists in stacking a read/write-based implementation of an abstraction on top of

CAMPn,t[t < n/2] enriched with read/write registers. This approach is illustrated with two

abstractions: renaming and approximate agreement.

• The second approach consists in building an abstraction directly on top of the message-passing

system model CAMPn,t[t < n/2], where “direct” means “without building an intermediate

layer providing processes with read/write registers”. This approach is illustrated with the imple-

mentation of the safe agreement abstraction.

Let us remember that read/write registers are universal in sequential computing (the tape of a

Turing machine is a sequence of read/write registers). As already suggested in the introduction of

Chap. 8, it is important to observe that atomic read/write registers are not universal in CAMPn,t[t <
n/2], namely, there are plenty of objects/abstractions that cannot be implemented on top of read/write

registers in the presence of asynchrony and process crashes. (As an example, while a stack can be built

on top of read/write registers in sequential computing, this is no longer true in the classic distributed

model CAMPn,t[t < n/2].)

Keywords Agreement abstraction, Approximate agreement, Asynchrony, Crash failure, Lower bound,

Majority of correct processes, Read/write register, Renaming, Safe agreement, Snapshot.

15.1 The Renaming Agreement Abstraction

15.1.1 Definition

The renaming abstraction was introduced by H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reis-

chuk (1990). Since then, it has received a lot of attention.
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Process indexes vs process names Up to now we have considered that the identity idi of a pro-

cess pi was its index i. This chapter considers that indexes and identities are different. Indexes can

only be used for addressing purposes (this will be defined precisely in the statement of the “index

independence” property).

Each process pi has an initial (permanent) name denoted idi (also called its initial identity). This

name can be seen as a particular value that uniquely identifies it (e.g., its IP address). Hence, for any

process pi we have idi ∈ {1, . . . , N}, where N is the size of the name space. Moreover, N is very big

compared to n. As an example, let us consider n = 100 processes whose names are made up of eight

letters. As there are 26 letters in the alphabet, the size of the name space is N = 826 and consequently

n << N .

Initially a process pi knows only n and idi. It does not know the initial names of the other pro-

cesses. Moreover, two initial names idi and idj can only be compared (with <, =, or >).

Renaming: definition Renaming is an agreement abstraction that allows the processes to obtain

new names in a new name space whose size M is much smaller than N . Hence, given M , the re-

naming abstraction is called M -renaming. It provides the processes with a single operation, denoted

new name(), which can be invoked at most once by a process and returns it its new name. Hence,

M -renaming is a one-shot agreement abstraction. It is defined by the following properties.

• R-termination. The invocation of new name() by a correct process terminates.

• R-validity. A new name is an integer in the integer interval [1..M ].

• R-agreement. No two processes obtain the same new name.

• R-index independence. ∀ i, j, if a process whose index is i obtains the new name v, this process

could have obtained the very same new name v if its index had been j.

The R-index independence property states that, for any process, the new name obtained by this

process is independent of its index. This means that, from an operational point of view, the indexes

define only an underlying communication infrastructure, i.e., an addressing mechanism that can be

used only to access entries of shared arrays. Indexes cannot be used to compute new names. This

property prevents a process pi from choosing i as its new name without any communication. This is

an adaptivity-related property: If only p50 and p100 need to obtain new names, the size M of the new

name space must be much smaller than 50.

Adaptivity Let p be the number of processes that participate in a renaming execution, i.e., the num-

ber of processes that invoke new name(). Let us observe that the renaming problem cannot be solved

when M < p.

• Size-adaptivity. An algorithm implementing the renaming abstraction satisfies the size-adaptivity

property if the size M of the new name space depends only on p, the number of participating

processes. We have then M = f(p), where f(p) is a function of p such that f(1) = 1 and, for

2 ≤ p ≤ n, p− 1 ≤ f(p− 1) ≤ f(p). If M depends only on n (the total number of processes),

the algorithm is not size-adaptive.

Let us consider an execution of a size-adaptive algorithm in which a single process pi participates.

It follows from the definition of size-adaptivity, that pi obtains the new name 1 whatever its index i.
Hence, any size-adaptive algorithm satisfies the index independence property.

15.1.2 A Fundamental Result

Lower bound on the size of the new name space An important result associated with the renaming

abstraction in asynchronous read/write systems, due to M. Herlihy and N. Shavit (1999), is the fol-

lowing one. Except for some “exceptional” values of n, the value M = 2n− 1 is the lower bound on
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the size of the new name space. For the exceptional values of n, which have been characterized by A.

Castañeda and S. Rajsbaum (2008), we have M = 2n−2 (more precisely, there is a (2n−2)-renaming

algorithm for the values of n such that the integers in the set {
(
n
i

)
: 1 ≤ i ≤ �n2 �} are relatively

prime).

This means that M = 2p − 1 is a lower bound for size-adaptive algorithms (in this case, there

is no specific value of p that allows for a lower bound smaller than 2p − 1). Consequently, the use

of an optimal size-adaptive algorithm means that, if “today” p′ processes acquire new names, their

new names belong to the integer interval [1..(2p′− 1)]. If “tomorrow” p′′ additional processes acquire

new names, these processes will have their new names in the integer interval [1..(2p − 1)], where

p = p′ + p′′.

The price of communication by read/write registers only The lower bound M = 2n−1 (or M =
2n − 2 for specific values of n) for implementations which are not size-adaptive, or M = 2p − 1 for

implementations which are size-adaptive defines the price that has to be paid by any implementation of

the renaming abstraction when processes communicate by accessing atomic read/write registers only.

This means that, when considering optimal size-adaptive M -renaming algorithms (i.e., M = 2p−
1, where p is the number of participating processes), while only p new names are actually needed,

obtaining them requires a space of size M = 2p − 1 in which (p − 1) new names will never be used

and it is impossible to know in advance which names in the interval [1..2p − 1] will not be used.

This intrinsic uncertainty is the price to pay to obtain size-adaptive M -renaming algorithms based on

read/write atomic registers.

15.1.3 The Stacking Approach

Here we present an M -renaming algorithm (where M = 2p − 1) that works at an abstraction level

where the processes communicate through a snapshot communication abstraction (as defined in Sec-

tion 8.2.4). Snapshot objects can be built on top of read/write atomic registers, i.e., in the system model

CAMPn,t[t < n/2] (let us remember that t < n/2 is the upper bound on the number of processes

that may crash in a run when building a read/write register in CAMPn,t[∅]). A direct implementation

of a snapshot object, based on the SCD-broadcast communication, abstraction has been introduced

in Section 8.1. “Direct” means that the message-passing algorithm implementing snapshot does not

require the construction of read/write registers.

It follows that the algorithm presented in Fig. 15.2 considers the architectural decomposition de-

scribed in Fig. 15.1.

Application layer

Base model CAMPn,t[t < n/2]

constructing the operation new name()

constructing the operations write() and snapshot()

snapshot abstraction

M-renaming abstraction

Figure 15.1: Stacking of abstraction layers for distributed renaming in CAMPn,t[t < n/2]
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15.1.4 A Snapshot-based Implementation of Renaming

This section presents a snapshot-based size-adaptive M -renaming implementation that provides the

participating processes with an optimal new name space, i.e., M = 2p − 1. This construction, which

is due to H. Attiya and J. Welch (2004), is an adaptation of an algorithm, due to H. Attiya, A. Bar-Noy,

D. Dolev, D. Peleg, and R. Reischuk (1990), to the asynchronous snapshot-based model.

Internal representation: a snapshot object The internal representation of the renaming abstraction

is an SWMR (single-writer/multi-reader) snapshot object denoted STATE . As we have seen this

object is an array of SWMR atomic registers denoted STATE [1..n] such that STATE [i] can be written

only by pi (by invoking STATE .write(i,−)), while the whole array can be read atomically by pi by

invoking STATE .snapshot(). (An example of a run of such a snapshot object is depicted in Fig. 8.6).

Each atomic register STATE [i] is a pair made up of two fields: STATE [i].init id, whose aim is

to contain the initial name of pi, and STATE [i].prop, whose aim is to contain the last proposal for a

new name issued by pi. Each STATE [i] is initialized to 〈⊥,⊥〉.

The algorithm implementing the operation new name() This algorithm is described in Figure 15.2.

The local register propi contains pi’s current proposal for a new name. When pi invokes new name(idi)
it sets propi to 1 (line 1) and enters a while loop (lines 2-13) that it will exit after it has obtained a new

name (statement return(propi), line 6).

operation new name(idi) is

(1) propi ← 1;

(2) while true do

(3) STATE .write(i, 〈idi, propi〉);
(4) statei ← STATE .snapshot();
(5) if (∀ j �= i : statei [j].prop �= propi)
(6) then return (propi)
(7) else let set1 = {statei [j].prop | (statei [j].prop �= ⊥) ∧ (1 ≤ j ≤ n)};

(8) let free = the increasing sequence 1, 2, . . . from which

the integers in set1 have been suppressed;

(9) let set2 = {statei [j].init id | (statei [j].init id �= ⊥) ∧ (1 ≤ j ≤ n)};

(10) let r = rank of idi in set2;

(11) propi ← the rth integer in the increasing sequence free

(12) end if

(13) end while.

Figure 15.2: A simple snapshot-based size-adaptive (2p− 1)-renaming algorithm (code for pi)

The principle that underlies the algorithm is the following. A new name can be considered as a

slot, and processes compete to acquire free slots in the interval [1..2p − 1]. After entering the loop, a

process pi first updates STATE [i] (line 3) to announce to all processes its current proposal for a new

name (let us note that it also implicitly announces it is competing for a new name).

Then, thanks to the snapshot() operation on the snapshot object STATE (line 4), pi obtains a

consistent view (saved in the local array statei) of the system global state (as far as the competition

for new names is concerned). Let us note that this view is consistent because it was obtained from

an atomic snapshot operation. Then the behavior of pi depends on the view of the global state it has

obtained, more precisely on the value of the predicate

∀ j �= i : statei [j].prop �= propi.

There are two cases.

• Case 1: the predicate is true. This means that, according to the global state obtained by pi, no

process pj is competing with pi for the new name propi. In this case, pi considers the current

value of propi as its new name and consequently returns it and stops (line 6).
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• Case 2: the predicate is false. In this case, several processes are competing to obtain the same

new name propi. So, pi constructs a new proposal for a new name and enters the loop again.

This proposal is built by pi from the global state of the system it has obtained and saved in statei
(line 4).

The set

set1 = {statei [j].prop | (statei [j].prop �= ⊥) ∧ (1 ≤ j ≤ n)}

(line 7) contains the new name proposals (as known by pi), while the set

set2 = {statei [j].init id | (statei [j].init id �= ⊥) ∧ (1 ≤ j ≤ n)}

(line 9) contains the initial names of the processes that pi sees as competing for a new name.

The determination of a new proposal by pi is based on these two sets: set1 is used in order

not to propose a new name already proposed, while set2 is used to determine a free slot. This

determination is done as follows.

First, pi considers the increasing sequence (denoted free) of the integers that are “free” and

can consequently be used to define new name proposals. This is the sequence of the increasing

positive integers from which the proposals in set1 have been suppressed (line 8). Then, pi
computes its rank r with respect to the processes that (from its point of view captured in its local

array statei[1..n]) want to acquire a new name (lines 9–10). Finally, given the sequence free

and r, pi defines its new name proposal as the rth integer in the sequence free (line 11).

15.1.5 Proof of the Algorithm

Theorem 68. The algorithm described in Fig. 15.2 is an optimal size-adaptive implementation of the

M -renaming agreement abstraction (i.e., M = 2p−1 and p is the number of participating processes).

Proof Let us first observe that the indexes are used only to address the entries of the snapshot object

STATE , from which it follows that the implementation satisfies the R-index independence property.

As far as the R-agreement property is concerned, let us assume by contradiction that two different

processes pi and pj obtain the same new name x. Let us assume without loss of generality that the last

invocations of STATE .snapshot() (line 4) issued by pi and pj , just before deciding their new names,

are such that the snapshot invocation of pi is linearized before the snapshot invocation of pj .
Let statei and statej be the corresponding arrays obtained by pi and pj just before returning their

new names. It follows (a) from the previous linearization order that statej [i] = x and (b) from the fact

that both return the new name x that we have statei[i] = x and statej [j] = x. Hence, when evaluated

by pj , the predicate of line 5 is false and consequently pj cannot return x at line 6. This contradicts

the initial assumption and concludes the proof of the agreement property.

As far as the R-validity property is concerned we have the following. Let us consider a run in

which at most p processes participate and let pi be a process that returns a new name (line 6). If the

new name is 1, the validity property is trivially satisfied. Hence, let us consider that the new name of

pi is greater than 1. it follows from the very definition of the value p that, when pi has defined its last

proposal for its new name (line 11), at most (p− 1) processes have already defined new name propos-

als. Hence, when considering the pair (set2, r) defined at lines 9 and 10, the rank of idi in set2 is at

most p (it is p if idi is the greatest initial identity among the p participating processes). It then follows

from (a) the definition of the sequence free (line 8), (b) r ∈ {1, . . . , p}, and (c) the determination of

propi at line 11 that pi proposed a value ≤ p+ (p− 1) as a new name, which completes the proof of

the validity property.
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For the R-termination property, let us assume by contradiction that there is a non-empty sub-

set Q of correct participating processes that do not terminate. Let τ be a time after which all the

faulty participating processes have crashed and all correct participating processes not in Q have ter-

minated. It follows that there is a time τ ′ ≥ τ after which all the processes of Q repeatedly in-

voke STATE .snapshot() at line 4 and always obtain the same array of initial names from the fields

STATE [1..n].init id of the snapshot object STATE . Consequently, after τ ′, the processes of Q
obtain distinct ranks in STATE [1..n].init id (lines 9–10), with each process always obtaining the

same rank. Moreover, let pi be the process of Q which has the smallest initial name (idi) among the

processes of Q and r be the rank of idi in the array STATE [1..n].init id.

As, after τ ′, all the processes of Q repeatedly execute lines 7–11, there is a time τ ′′ ≥ τ ′ such

that pi is the only process that proposes propi = z as a new name, where z is the rth integer in

its sequence free (all other processes of Q propose greater names). Hence, when pi evaluates the

predicate ∀j �= i : statei[j] �= propi (line 5) after τ ′′, it finds it is satisfied and consequently returns

z as its new name (line 6), which contradicts the initial assumption and completes the proof of the

termination property. �Theorem 68

15.2 The Approximate Agreement Abstraction

The approximate agreement abstraction was introduced by D. Dolev, N.A. Lynch, S. S. Pinter, E. W.

Stark, and W. E. Weihl (1986). It is a weakened version of consensus where the processes propose

real numbers and – instead of an exact agreement – obtain a controlled approximate. More precisely,

given an allowed disagreement defined by a positive constant ε, approximate agreement states that the

decided values must be in the range of the proposed values, and no two decided values can be further

apart than ε.

Approximate agreement vs consensus The computability gap separating consensus and approxi-

mate agreement lies in the fact that, while approximate agreement can be solved in the system model

CAMPn,t[t < n/2], consensus cannot, even in the much stronger model CAMPn,t[t = 1] (this

impossibility is addressed in the next chapter). Considering round-based algorithms, going from ap-

proximate agreement to consensus would require an infinite number of rounds (i.e., any approximate

agreement algorithm may never terminate for ε = 0).

15.2.1 Definition

Each process pi is assumed to propose a value vi, namely a real number belonging to some interval

of integers, e.g., the interval [x..(x + D)], where D is known by the processes, while x is not. The

ε-approximate agreement abstraction provides the processes with an operation denoted propose(),
whose invocations satisfy the following three properties, which share the consensus terminology.

• AA-termination. The invocation of propose() by a correct process terminates.

• AA-validity. Let vmin (resp., vmax) be the smallest (resp., greatest) value proposed by the

processes. The value wi decided by a process pi is such that vmin ≤ wi ≤ vmax.

• AA-agreement. For any pair of processes pi and pj , if pi decides wi and and pj decides wj , we

have |wi − wj | ≤ ε.

Let us notice that, unlike consensus, it is possible that no process decides a proposed value (except

when all processes propose the same value).
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15.2.2 A Read/Write-based Implementation of Approximate Agreement

This section presents a simple approximate agreement algorithm based on snapshot objects. Hence,

the stacking structure, on top of the basic message-passing system CAMPn,t[t < n/2], is the same as

the one depicted in Fig. 15.1, where “M -renaming” is replaced by “approximate agreement”.

The processes execute R = 1 + log2(�Dε �) asynchronous rounds. During each round r, they

communicate through a snapshot object SNAP [r]. Hence, the processes access the array of snapshot

objects SNAP [1..R]. For any r, SNAP [r] is initialized to [⊥, ...,⊥], and is accessed by a process

pi only when it executes round r. The aim of SNAP [r][i], r ≥ 1, is to contain the current estimate

computed by pi during the round (r − 1).

Local variables at process pi Each process pi manages the following local variables.

• ri: the local round number, initialized to 0.

• esti: pi’s current estimate of its decision value. Its initial value is vi (the value proposed by pi).

• memi: a local array used by pi at round r to store the value of the snapshot object SNAP [r].

• vali: a local set, containing the values deposited in SNAP [r], as read by pi.

Algorithm The algorithm implementing approximate agreement on top of snapshot objects (which

are themselves built on top of CAMPn,t[t < n/2]) is described in Fig. 15.3. It is a simplified variant

(where D is known) of a distributed iterative algorithm due to S. Moran (1995).

operation propose(vi) is

(1) esti ← vi; ri ← 0; let R = 1 + log2(�
D
ε
);

(2) repeat until (ri = R) do

(3) ri ← ri + 1;

(4) SNAP [ri].write(i, esti);
(5) memi ← SNAP [ri].snapshot();
(6) vali ← set of estimate values contained in memi ;

(7) esti ←
(
min(vali) +max(vali)

)
/2;

(8) end repeat;

(9) return(esti).

Figure 15.3: A simple snapshot-based approximate algorithm (code for pi)

Each process executes R rounds during which it strives to improve its current estimate (esti) of

the value it will decide at line 9. To this end, at every round r, pi first writes esti in SNAP [r] (line 4).

After this statement SNAP [r][i] = esti. Then pi reads the current content of the snapshot object

SNAP [r] and writes it in memi[1..n] (line 5). Hence, memi[j] �= ⊥means that pi deposited its round

r estimate estj in the snapshot object SNAP [r]. Finally, pi computes the new value of its current

estimate esti, which is the midpoint of the extreme values it obtained from SNAP [r][1..n] (lines 6-7).

15.2.3 Proof of the Algorithm

Notations

• VAL0 is the set of all input values.

• VALr: the set of values written in SNAP [r] for 0 < r ≤ R. We have ∀ r: VALr �= ∅.
• valri : values obtained from SNAP [r] by pi line 4. We have valri ⊆ VALr.

• estri : is the value of esti computed at line 7 of round r. If pi executes round (r + 1), estri is the

value of esti at the beginning of round (r + 1).

• Given a set S containing real numbers:
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– range(S) denotes the real number interval [min(S)..max(S)], and

– span(S) denotes the value max(S)−min(S).

Lemma 62. For any round r, 0 ≤ r < R, there is a value v ∈ range(VALr) such that:

(min(VALr) + v

2
≤ min(VALr+1)

)
∧
(
max(VALr+1) ≤ max(VALr) + v

2

)
.

This lemma is central to the proof. It captures the fact that, at every round, the size of the range

encapsulating the value decided by a processes decreases. Its meaning is depicted in Fig. 15.4.

min(VALr+1)min(VALr) max(VALr)max(VALr+1)

min(VALr)+v
2

max(VALr)+v
2v

Figure 15.4: What is captured by Lemma 62

Proof Given any round r, let v be the the first value written in the snapshot object SNAP [r]. The

proof consists in showing that v satisfies the lemma.

Claim. For any process pi that executes round r: min(VALr) + v ≤ 2 estri ≤ max(VALr).
Proof of the claim. We have:

1. 2 estri = min(valri ) +max(valri ) (from line 5).

2. min(VALr) ≤ min(valri ) ≤ v (from lines 4-6, the definitions of VALr and valri , and the fact

that v is the first value written in SNAP [r]).

3. v ≤ max(valri ) ≤ max(VALr) (argument similar to item 2).

4. 2 estri ≤ v +max(valri ) (from item 1 and item 2).

5. 2 estri ≥ min(valri ) + v (from item 1 and item 3).

6. min(VALr) + v ≤ 2 estri ≤ v +max(VALr) (from items 2-5). End of proof of the claim.

Let us order the estimate values deposited in SNAP [r + 1] by the processes that execute round

(r + 1). Let estrimin
and estrimax

be the smallest and the greatest of these estimate values. We have

min(VALr+1) = estrimin
≤ · · · ≤ estrimax

= max(VALr+1).

Combining min(VALr) + v ≤ 2 estrimin
(claim) with estrimin

= min(VALr+1) we obtain

min(VALr) + v

2
≤ estrimin

= min(VALr+1).

Similarly combining estrimax
= max(VALr+1) with estrimax

≤ max(VALr)+v
2 we obtain

max(VALr+1) = estrimax
≤ max(VALr) + v

2
,

which concludes the proof of the lemma. �Lemma 62

The following corollary is a direct consequence of the previous theorem.

Corollary 6. ∀ r ∈ {0, ..., R− 1} : range(VALr+1) ⊆ range(VALr).
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Lemma 63. ∀ r ∈ {0, ..., R− 1}, we have span(VALr+1) ≤ span(VALr)
2 .

Proof Let v be defined as in the proof of Lemma 62. By definition span(VALr+1) = max(VALr+1)−
min(VALr+1). We have from Lemma 62

max(VALr+1)−min(VALr+1) ≤ max(VALr)+v
2 − min(VALr)+v

2 = max(VALr)−min(VALr)
2 ,

from which we conclude span(VALr+1) ≤ span(VALr)
2 . �Lemma 63

Theorem 69. The algorithm described in Fig. 15.3 implements the approximate agreement abstraction

in the system model CAMPn,t[t < n/2].

Proof Let us first recall that a snapshot object can be built in CAMPn,t[t < n/2] (see Section 8.2.4).

(Moreover, t < n/2 is the weakest assumption on t for which snapshot can be implemented in a

message-passing system despite asynchrony and process crashes.)

Proof of AA-termination. The proof follows from the termination property of the underlying

snapshot abstraction, and the fact that, as ε �= 0, the processes execute a bounded number of rounds.

Proof of AA-validity. This property is an immediate consequence of the repetition (at every round)

of Corollary 6.

Proof of AA-agreement. We have R = 1+log2(�Dε �) (line 1). Hence R ≥ 1+log2(�
span(VAL0)

ε �).
By the repeated application of Lemma 63 at every round (which states that the span of the estimate

values is divided by 2 at every round), we have

span(VALR) ≤ span(VAL0)

2R
≤ ε.

�Theorem 69

15.3 The Safe Agreement Abstraction

15.3.1 Definition

The safe agreement abstraction was introduced by E. Borowski and E. Gafni (1993). This abstraction is

a weakening of the consensus agreement abstraction, in which the operation propose() is decomposed

in two distinct operations, one which proposes a value, and a second one to decide a value.

Safe agreement: definition Safe agreement provides each process pi, with the operations propose()
and decide(), which pi can invoke at most once and in that order. The operation propose() allows

pi to propose a value, while the operation decide() allows it to decide a value. Between these two

invocations pi can execute any code. The safe agreement abstraction is defined by the following

properties.

• SG-validity. A decided value is a proposed value.

• SG-agreement. No two processes decide distinct values.

• SG-propose-termination. An invocation of propose() by a correct process terminates.

• SG-decide-termination. If no process crashes while executing propose(), any invocation of

decide() by a correct process terminates.

Safe agreement wrt consensus It is easy to see that safe agreement is a consensus variant whose

termination condition is failure-dependent (SG-decide-termination). The fundamental difference be-

tween safe agreement and consensus lies in the fact that, when considering (read/write or message-

passing) systems where processes may crash, safe agreement can be implemented while consensus

cannot (see Chap. 16).
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15.3.2 A Direct Implementation of Safe Agreement in CAMPn,t[t < n/2]

An algorithm implementing the safe agreement abstraction in the system model CAMPn,t[t < n/2]
is described in Fig. 15.5. This algorithm is a simplified version of an algorithm, due to D. Imbs, M.

Raynal, and J. Stainer (2016), which constructs the safe agreement object in an asynchronous message-

passing system where up to t < n/3 processes may commit Byzantine failures (namely, the system

model BAMPn,t[t < n/3]).

Local data structures Each process pi manages three local data structures, namely, the arrays

named valuesi[1..n], my viewi[1..n], all viewsi[1..n], all initialized to [⊥, ...,⊥], where ⊥ denotes

a default value that cannot be proposed to safe agreement by the processes.

• The aim of valuesi[x] is to contain, as currently known by pi, the value proposed to safe agree-

ment by process px.

• The aim of my viewi[x] is to contain, as known by pi, the value proposed to safe agreement by

process px, as witnessed by a majority of processes (as t < n/2, my viewi[x] = v �= ⊥ means

that at least a correct process received v from px).

• The aim of all viewsi[x] is to contain pi’s knowledge about what px registered in my viewx.

Hence, if all viewsi[x][y] = v �= ⊥, pi knows that px registered that py proposed v (i.e.,

my viewx[y] = v).

Algorithm: the operation propose() The algorithm implementing the operation propose() invoked

by a process qi is described at lines 1-14 (client side) and lines 20-22 (server side). This algorithm is

made up of three parts. Let us remember that Π = {p1, . . . , pn}.

First part. A process qi first broadcasts the message VALUE (i, vi), where vi is the value it proposes

to safe agreement (line 1). Then, it waits until it knows that a majority of processes know its value

(line 2). On its “server” side, when pi receives the message VALUE (x, v) for the first time, it first

saves v in valuesi[x], and then it forwards the received message to cope with the (possible) crash of

px (this witnesses the fact that qi knows the value proposed by px, line 20).

Second part. In this part, pi builds a local view of the values proposed by the n processes. To this end,

it first broadcasts a message READ (i, x) to learn the value proposed by each process px (line 3). On

its server side, when pi receives a message READ (j, x), it sends pj its current knowledge of the value

proposed by px (line 21).

Then, process pi builds its local view of the values that have been proposed. For each process px,

pi waits until it has received the very same message from a majority of processes, namely, either the

message ACK READ (i, x,⊥) or the message VALUE (x,w) (lines 5-6). In the first case, pi considers

that px has not yet proposed a value, while in the second case it considers that px proposed the value

w (let us observe that, while pi can receive both ACK READ (i, x,⊥) and messages VALUE (x,w), it

stops waiting as soon as it has received strictly more than n
2 of one of them) (lines 7-10).

Third part. Finally, pi informs the other processes on its local view my viewi[1..n]. To this end,

it broadcasts the message VIEW (i,my viewi). When it has received the corresponding “acknowledg-

ments” from a majority of processes (namely, its own message VIEW (i,my viewi)), pi returns from

its invocation of the operation propose() (line 12-14).

The behavior of pi when it receives a message VIEW (x, view) is similar to when it receives

a message VALUE (x, v). The only difference is that valuesi[x] is now replaced by all viewsi[x]
(line 22).
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operation propose (vi) is

(1) broadcast VALUE (i, vi);
(2) wait

(
VALUE (i, vi) received from strictly more than n

2
processes

)
;

(3) for each x ∈ [1..n] do broadcast READ (i, x) end for;

(4) for each x ∈ [1..n] do

(5) wait
(

ACK READ (i, x,⊥) received from strictly more than n
2

processes

(6) ∨ ∃ w : VALUE (x,w) received from strictly more than n
2

processes
)
;

(7) if (predicate of line 6 satisfied)

(8) then my viewi[x] ← w
(9) else my viewi[x] ← ⊥
(10) end if

(11) end for;

(12) broadcast VIEW (i,my viewi);
(13) wait

(
VIEW (i,my viewi) received from strictly more than n

2
different processes

)
;

(14) return().

operation decide () is

(15) wait
(
∃ a non-empty set σ ⊆ Π such that

(16) ∀ y ∈ σ :
[
(all viewsi[y] �= ⊥) ∧

(
∀ z ∈ Π : (all viewsi[y][z] �= ⊥) ⇒ (z ∈ σ)

)])
;

(17) let min σi be the set σ of smallest size;

(18) let res be min({valuesi[y] : y ∈ min σi});
(19) return(res).

%—————————————————————————————————————-

when the message VALUE (x, v) is received for the first time:

% “for the first time” is with respect to each pair of values (x, v) %

(20) valuesi[x] ← v; broadcast VALUE (x, v).

when the message READ (j, x) is received for the first time:

(21) send ACK READ (j, x, valuesi[x]) to pj .

when the message VIEW (x, view) is received for the first time:

(22) all viewsi[x] ← view; broadcast VIEW (x, view).

Figure 15.5: Safe agreement in CAMPn,t[t < n/2] (code for process pi)

Algorithm: the operation decide() The algorithm implementing the operation decide() is described

at lines 15-19. It consists of a “closure” computation. A process pi waits until it knows a non-empty

set of processes σ such that (a) it knows their views, and (b) this set is closed under the relation “has

in its published view the value of” which means that the processes whose values appear in a view of a

process of σ are also in σ (lines 15-16).

It is possible that, locally, several sets σ1, σ2, etc., satisfy this closure property. If this is the case,

pi selects the smallest of them. Let min σi be this set of processes (lines 17). The value returned by

pi is then the smallest value among the the values proposed by the processes in min σi (lines 18-19).

15.3.3 Proof of the Algorithm

This section proves that the previous algorithm presented implements the safe agreement abstraction,

i.e., any of its runs in CAMPn,t[t < n/2] satisfies the SG-validity, SG-agreement, SG-Propose-

Termination, and SG-decide-termination properties.

Lemma 64. The invocation of propose() by a process that does not crash during its invocation termi-

nates.

Proof Let us consider a process pi that does not crash during its invocation of propose(). Hence,

pi broadcast the message VALUE (i, vi) at line 1. This message is received by a majority of correct
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processes, and each of them broadcasts this message when it receives it (line 20). It follows that pi
cannot block forever at line 2.

Let us now consider the wait statement at lines 5-6. There are two cases. Let READ (i, x) be a

message broadcast by pi at line 3.

• Case 1: No correct process ever receives a message VALUE (x,−). In this case, each correct pro-

cess py is such that valuesy[x] always remains equal to ⊥. It follows that, when py receives the

message READ (i, x), it sends the message ACK READ (i, x,⊥) back to pi (line 21). As there are

strictly more than n
2 correct processes, pi eventually receives the message ACK READ (i, x,⊥)

from a majority of processes, and the predicate of line 5 is satisfied.

• Case 2: At least one correct process py receives a message VALUE (x, v). In this case, py
broadcasts the message VALUE (x, v) when it receives it (line 20). It follows from the broadcasts

issued at this line that pi eventually receives VALUE (x, v) from a majority of processes. When

this occurs the predicate of line 6 is satisfied and pi exits the wait statement.

As this is true for each message READ (i, x) broadcast by pi at line 3, it follows that pi cannot remain

block forever at lines 5-6.

Let us finally consider the wait statement at lines 12-13. As the message VIEW (i,my viewi)
broadcast by pi at line 12 is received by at least all correct processes, and each of them broadcast

it when it is received for the first time, it follows that pi receives the message VIEW (i,my viewi)
from a majority of processes and stops waiting at line 13, which concludes the proof of the lemma.

�Lemma 64

Lemma 65. The value returned by an invocation of propose() is a value proposed by a process.

Proof Let us observe that (due to its definition, line 15) the set min σ is non-empty. Moreover, due

to the closure predicate of line 16, the process indexes y it contains are such that valuesi[y] �= ⊥. As,

for any of those y, valuesi[y] is set to a non-⊥ value (only once) at line 20, it follows that pi received a

message VALUE (y, vy). Hence, for each such process py the value in valuesi[y] is the value proposed

by py. It follows that the value computed at line 18 is a value proposed by a process, which concludes

the proof of the lemma. �Lemma 65

Lemma 66. No two invocations of decide() return different values.

Proof Let us first observe that, due to the reliable broadcast of the messages VALUE () (lines 1 and 20)

and VIEW () (lines 12 and 22), and the fact that a process broadcasts a single message VALUE (), we

have:

• (valuesi[x] �= ⊥) ∧ (valuesj [x] �= ⊥) ⇒ (valuesi[x] = valuesj [x]), and

• (all viewsi[x] �= ⊥) ∧ (all viewj [x] �= ⊥) ⇒ (all viewsi[x] = all viewj [x]).

Let us assume, by contradiction, that two processes pi and pj decide different values. This means

that the sets min σi and min σj computed at line 17 by pi and pj , respectively, are different.

Since min σi and min σj are different, let us consider z ∈ min σi \ min σj (if min σi �
min σj , swap i and j). According to the closure predicate used at line 16, as z /∈ min σj , we have

∀y ∈ min σj : all viewsj [y][z] = ⊥. It follows that any process py such that y ∈ min σj does not

fulfill the condition of line 7 for x = z. Therefore, py received a message ACK READ(y, z,⊥) from a

majority set of processes Qy,r(z) at line 5. Consequently when py executed line 3 for x = z, all the

processes pk of Qy,r(z) verified valuesk[z] = ⊥.

When the process pz stopped waiting at line 2, it received VALUE(z,vz) (where vz is the value sent

by pz at line 1) messages from a majority set Qz,w. It follows that Qy,r(z) ∩Qz,w �= ∅. Consequently,

there is a process pk that sent a message ACK READ(y, z,⊥) to py and a message VALUE(z,vz) to pz .
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Since valuek[z] is never reset to ⊥ after being assigned, py necessarily executed line 3 for x = z
strictly before pz stops waiting at line 2. Consequently, py stopped waiting at line 2 before pz executes

line 3 for x = y. It does so after receiving messages VALUE(y,vy) (where vy is the value sent by qy at

line 1) from a majority set of processes Qy,w, and each of these processes pk then verifies valuesk =
vy. These processes do not send ACK READ(z, y,⊥) messages when they receive the READ(z, y)

message sent by qz . Thus, it is impossible for pz to receive these messages from strictly more than
n
2 processes. Hence pz cannot verify the predicate of line 5. It follows that pz executes line 12 with

my viewz[y] = vy �= ⊥ and this entails that ∀k ∈ Π : all viewsk[z] �= ⊥ ⇒ all viewsk[z][y] �= ⊥.

Since z ∈ min σi, all viewsi[z] �= ⊥, all viewsi[z][y] �= ⊥. According to the predicate of

line 16, this entails that y ∈ min σi, and since the previous reasoning holds for any y ∈ min σj , it

shows that min σj ⊆ min σi. It follows that, when the process pi executes line 17, we have ∀y ∈
min σj : all viewsi[y] �= ⊥ and, consequently, ∀y ∈ min σj : all viewsi[y] = all viewsj [y].
This entails that if |min σj | < |min σi|, then min σj would have been chosen by pi at line 17, which

proves that min σi = min σj , contradicting the fact that pi and pj decide differently. �Lemma 66

Lemma 67. If no process crashes while executing propose(), any invocation of decide() by a correct

process terminates.

Proof If no process crashes while executing propose(), it follows from Lemma 64 that every pro-

cess qi that invokes propose() broadcasts a message VALUE (i, vi) at line 1 and a message VIEW

(i,my viewsi) at line 12.

Assuming no process crashes while executing propose(), let P be the set of processes that in-

voke propose(), and suppose that one of them, pi, invokes decide() and never terminates. This can

only happen if pi waits forever for the condition of lines 15-16 to be fulfilled. Since all the mes-

sages broadcast by the processes of P are eventually received by pi, after some finite time ∀y ∈
P : all viewsi[y] �= ⊥. Moreover, since the views broadcast by the processes of P are built at line 8

from the messages VALUE (−,−) they have received, it follows that these views can contain non-⊥
values only for the entries corresponding to the processes of P (the processes that are not in P have

not sent VALUE(−,−) messages). Consequently, pi eventually verifies ∀y ∈ P : (all viewsi[y] �=
⊥) ∧ ({z ∈ Π : all viewsi[y][z] �= ⊥} ⊆ P ). It follows that the property of lines 15-16 eventu-

ally holds for σ = P , which contradicts the fact that pi never terminates its invocation of decide().
�Lemma 67

Theorem 70. The algorithm described in Fig. 15.5 implements the safe agreement abstraction in the

system model CAMPn,t[t < n/2].

Proof The proof follows from Lemma 64 (SG-propose-termination), Lemma 65 (SG-validity), Lemma

66 (SG-agreement), and Lemma 67 (SG-decide-termination). �Theorem 70

15.4 Summary

This chapter considered three agreement abstractions (renaming, approximate agreement, and safe

agreement), and has shown that they all can be implemented in CAMPn,t[t < n/2], which is the

weakest asynchronous message-passing system model, prone to process crash failures, in which an

atomic read/write register can be implemented.

For each of them it described an implementation of the abstraction in CAMPn,t[t < n/2]. The

first two constructions (implementing renaming and approximate agreement) are based on a stacking

approach. Considering the system model CAMPn,t[t < n/2] enriched with an algorithm building

atomic read/write registers, they are read/write-based implementations. The third construction is a
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direct construction: it built an implementation of the safe agreement abstraction directly on top of the

asynchronous message-passing level provided by CAMPn,t[t < n/2].

15.5 Bibliographic Notes

• The renaming problem was first introduced in the context of asynchronous message-passing

systems where processes may crash by H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reis-

chuk in 1990 [37]. It was the first non-trivial problem known to be solvable in the asynchronous

systems despite process failures.

The lower bounds M = 2n− 1, and M = 2n− 2 for an infinite number of exceptional values

of n, are due to M. Herlihy and N. Shavit [217] and A. Castañeda and S. Rajsbaum [94, 95],

respectively.

• An introductory survey of the renaming problem and its connection with distributed computabil-

ity appeared in [96]. Several textbooks (such as [43, 369]) present renaming algorithms.

• The snapshot-based size-adaptive renaming algorithm described in Fig. 15.2 is due to H. Attiya

and J. Welch [43]. It is an adaptation of a message-passing algorithm introduced in [37].

• A generalization of the renaming problem for groups of processes is investigated in [7]. In this

variant, each process belongs to a group and knows the original name of its group. Each process

has to choose a new name for its group in such a way that two processes belonging to distinct

groups choose distinct new names.

• The relations between the renaming abstraction and other abstractions that are central to dis-

tributed computability, such as k-set-agreement, have received a lot of attention (e.g., [27, 93,

178, 179, 229, 232, 327] to cite a few).

• Approximate agreement was introduced by D. Dolev, N.A. Lynch, S.H. Pinter, E.W. Stark,

and W.E. Weihl in the context of synchronous Byzantine message-passing systems [134]. The

snapshot-based algorithm, designed for the asynchronous crash-prone message-passing system

model CAMPn,t[t < n/2] presented in Section 15.2 follows [43, 295]. The proof is from [43].

• The safe agreement abstraction has been introduced by E. Borowski and E. Gafni [75]. It was

then investigated in depth by the same authors together with N.A. Lynch and S. Rajsbaum [77].

It was extended to the context of Byzantine message-passing systems in [236].

• Constructions of safe agreement in asynchronous read/write systems where any number of pro-

cesses may crash can be found in [77, 231].

• Safe agreement is the key abstraction on top of which the Borowsky-Gafni (BG) simulation is

built, which is a fundamental tool in the theory of distributed computing. Initially introduced

for colorless tasks, this simulation was extended to colored tasks in [175, 231].

• The direct construction of safe agreement in the system model CAMPn,t[t < n/2] presented in

Section 15.3 is due to D. Imbs, M. Raynal, and J. Stainer [236].

15.6 Exercises and Problems

1. Design a “direct” (i.e., without relying on an intermediate abstraction such as snapshot) imple-

mentation of renaming in CAMPn,t[t < n/2].

Solution in [37].

2. In long-lived renaming, a process can repeatedly acquire a new name and then release it. (Long-

lived renaming can be useful in systems in which processes acquire and release identical re-

sources.) So, the long-lived renaming abstraction offers two operations: new name(), which

allows a process to acquire a new name, and release name(), which allows it to release the new

. . Exercises and Problems15 6
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name it has previously acquired. Design a read/write-based long-lived renaming algorithm. (A

process that crashes after it has executed new name() and before it executes release name() is

considered as to be a permanent participant.)

Solution in [293].

3. Design a snapshot-based approximate agreement algorithm in which the range D of the pro-

posed values is not known by the processes.

Solution in [43].

4. Design an implementation of safe agreement on top of read/write registers.

Solution in [75, 77].



Chapter 16

Consensus:

Power and Implementability Limit

in Crash-Prone Asynchronous Systems

This chapter first presents the TO-broadcast communication abstraction, the state machine replication

paradigm, and the ledger object, and shows that they all are computationally equivalent. It also shows

that any object (abstraction) defined by a sequential specification (sequential state machine, or ledger)

can be implemented in CAMPn,t[CONS] (CAMPn,t[∅] enriched with consensus). In this sense the

consensus agreement abstraction is universal. It provides the computability power needed to imple-

ment any object – defined by a sequential specification – despite asynchrony and the crash of any

minority of processes.

The chapter then focuses on a fundamental limitation of asynchronous distributed systems prone to

process crash failures, namely, the impossibility to implement the consensus abstraction in the system

model CAMPn,t[∅] (even for t = 1). This is the famous FLP impossibility (named after its authors

M. Fischer, N. Lynch, and M. Paterson). The next chapter will present different types of additional

assumptions which allow us to restrict the asynchrony of the system model CAMPn,t[∅], so that

consensus can be implemented in the corresponding enriched models.

Keywords Consensus abstraction, Consensus number, FLP Impossibility, Non-determinism, Pro-

cess crash, Sequential specification, State machine replication, Total order broadcast, Universal object

(abstraction).

16.1 The Total Order Broadcast Communication Abstraction

16.1.1 Total Order Broadcast: Definition

As defined in Section 2.2.5, the total order uniform reliable broadcast communication abstraction (in

short TO-broadcast) is URB-broadcast enriched with the property that the messages are delivered in

the same order at all processes. It was indicated in Section 2.2.5 that (unlike FIFO-broadcast and

CO-broadcast) TO-broadcast cannot be implemented by adding control information to the application

messages only. As we will see, it requires more computability power than that provided by the models

CAMPn,t[∅] or CAMPn,t[t < n/2].

Definition TO broadcast() and TO deliver() are the two operations associated with TO-broadcast.

As seen in Section 2.2.5, this communication abstraction is defined by the following properties (where

m.sender denotes the sender of the application message m):
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• TO-validity. If a process to-delivers a message m, then m has previously been to-broadcast (by

pm.sender).

• TO-integrity. A process to-delivers a message m at most once.

• TO-delivery. If a process to-delivers a message m and later to-delivers a message m′, then no

process to-delivers m′ before m.

• URB-termination-1. If a non-faulty process to-broadcasts a message m, it to-delivers the mes-

sage m.

• URB-termination-2. If a process to-delivers a message m, then each non-faulty process to-

delivers the message m.

As the validity, integrity, termination-1, and termination-2 properties are the properties that define

URB-broadcast, we have that TO-broadcast is URB-broadcast + TO-delivery. Moreover, as FIFO-

broadcast and CO-broadcast, TO-broadcast is a multi-shot communication abstraction: TO-delivery is

on all the messages.

While URB-broadcast requires that all correct processes urb-deliver the same set of messages, and

each faulty process urb-delivers a subset of this set, TO-broadcast requires that all correct processes

to-deliver the same sequence of messages, and each faulty process to-delivers a prefix of this sequence.

This difference is fundamental one.

16.1.2 A Map of Communication Abstractions

Adding FIFO or CO to the TO message delivery property We have seen in Chap. 2 that URB-

broadcast can be extended to FIFO-broadcast and CO-broadcast (Fig. 2.4). It is also possible to extend

TO-broadcast, so that, in addition to the fact that the messages must be delivered in the same order,

this total delivery order respects the local FIFO order for each sender process, or the global CO order,

whose definitions are recalled below.

• FIFO message delivery. If a process FIFO-broadcasts a message m and then FIFO-broadcasts a

message m′, no process FIFO-delivers m′ unless it has FIFO-delivered m before.

• CO message delivery. (Let us remember that “→M” denotes the causality precedence relation

defined on the messages.) If m →M m′, no process CO-delivers m′ unless it has previously

CO-delivered m.

URB FIFO-URB

TO-URB

CO-URB

TO+FIFO-URB TO+CO-URB

Chap. 2

Chap. 2

Algorithm in Fig. 16.3

Chap. 2

Algorithm in Fig. 16.3 Algorithm in Fig. 16.3

Chap. 2

Chap. 2

Chap. 2

Figure 16.1: Adding total order message delivery to various URB abstractions

We then obtain the TO+FIFO URB-broadcast communication abstraction, or the stronger TO+CO

URB-broadcast communication abstraction. Algorithms similar to the ones described in Chap. 2 can



Chapter 16. Consensus:

Power and Implementability Limit in Crash-Prone Asynchronous Systems 289

be designed to build a TO+FIFO abstraction and a TO+CO abstraction from a TO-broadcast abstrac-

tion. These algorithms correspond to the horizontal dotted arrows at the bottom of Fig. 16.1. It is also

possible to design “direct” constructions for the two dashed vertical arrows.

The fundamental missing link As mentioned previously, the important point here is that, unfortu-

nately, going from any URB-broadcast abstraction of the top line to “associated” TO-URB-broadcast

abstraction of the bottom line cannot be done in CAMPn,t[∅]. The net effect of asynchrony and

crashes makes it impossible. This impossibility will be formally addressed in Section 16.8.

Delivering the messages according to causal order is possible in CAMPn,t[∅] because, (a coding

of) the causal past of each message can be attached to it. This is not sufficient for the delivery of

the messages in the same order at all processes. Intuitively, this is because ordering the delivery

of messages whose broadcasts are unrelated requires synchronization that cannot be implemented in

presence of asynchrony and failures. Additional computability power from the underlying system is

needed, which means that CAMPn,t[∅] has to be enriched for TO-broadcast to be built. As we are

about to see, this power is the one provided by the consensus agreement abstraction.

16.2 From Consensus to TO-broadcast

This section describes a TO-broadcast algorithm, due to T. D. Chandra and S. Toueg (1996), that works

in CAMPn,t[CONS] (CAMPn,t[∅] enriched with the consensus abstraction). This is not counter-

intuitive as TO-broadcast pieces together communication (the URB abstraction) and agreement (the

definition of a common delivery order).

16.2.1 Structure of the Construction

The structure of the construction is described in Fig. 16.2. The middleware layer implementing the

construction is defined by the algorithm described in Fig. 16.3, which assumes an underlying URB-

broadcast abstraction that (as we have seen in Chap. 2) can be built in CAMPn,t[∅], and an unbounded

number of consensus instances CS [1], CS[2], etc., shared by the processes.

TO deliverablei

TO deliver ()Application layer

Underlying layer

URB deliveredi

From a set to a sequence

with CONS objects

URB deliver ()URB broadcast (m)

TO broadcast (m)

Figure 16.2: Adding total order message delivery to the URB abstraction

16.2.2 Description of the Algorithm

Local variables Each process pi manages three local variables.

• urb deliveredi is a set (initially ∅) containing the messages that have been locally urb-delivered

from the lower layer.

• to deliverablei is a FIFO queue (initially empty, denoted ε), which contains the sequence of

messages that, from the beginning, have been ordered the same way at all the processes.
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• sni is a sequence number (initialized to 0) used to address the consensus instances.

To make the presentation easier, the sequence to deliverablei is sometimes considered as a set. As all

the messages that are TO-broadcast are assumed to be different, there is no confusion. The operator ⊕
denotes sequence concatenation.

init: sni ← 0; to deliverablei ← ε; urb deliveredi ← ∅.

operation TO broadcast (m) is URB broadcast MSG(m).

when MSG(m) is urb-delivered do

(1) urb deliveredi ← urb deliveredi ∪ {m}.

when (to deliverablei contains messages not yet to-delivered) do

(2) let m be the first message ∈ to deliverablei not yet to-delivered;

(3) TO deliver (m).

background task T is

(4) repeat forever

(5) wait
(
(urb deliveredi \ to deliverablei) �= ∅

)
;

(6) let seqi = (urb deliveredi \ to deliverablei);
(7) order the messages in seqi;
(8) sni ← sni + 1;

(9) resi ← CS [sni].propose (seqi);
(10) to deliverablei ← to deliverablei ⊕ resi
(11) end repeat.

Figure 16.3: Building the TO-broadcast abstraction in CAMPn,t[CONS] (code for pi)

The operations TO broadcast and TO deliver When it issues TO broadcast (m), a process pi
simply urb-broadcasts the protocol message MSG(m). When it urb-delivers a message MSG(m), it

adds m to its local set urb deliveredi (line 1). To facilitate the presentation, the messages added to

urb deliveredi and to deliverablei are never withdrawn. (In a practical setting, a garbage collection

mechanism should be added.)

Messages are to-delivered in the order in which they have been deposited into to deliverablei
(lines 2-3).

At the core of the algorithm: a background task The core of the algorithm is the way messages

from urb deliveredi are ordered and placed at the tail of the sequence to deliverablei . This is the

work of the background task T .

This task is an endless asynchronous distributed iteration. Each iteration determines a sequence

of messages that each process will append at the tail of its local queue to deliverablei . Hence, ac-

cording to (a) the successive iterations and (b) the fact that each iteration defines the same sequence

of messages to add to the local queue to deliverablei , all the processes will be able to to-deliver the

messages in the same order. A consensus instance is associated with each loop iteration in order for

the processes to add the same sequence of messages to their variables to deliverablei .

From an operational point of view, a process pi first waits for messages that have been urb-

delivered but not yet added to the sequence to deliverablei . Then pi orders these messages (sequence

seqi) that it proposes to the next consensus instance, namely, CS [sni]. The way messages are or-

dered in seqi may be arbitrary, the important point is here that seqi is a sequence. Finally, let resi
be the sequence of messages decided by the current consensus instance, i.e., the value returned by

CS [sni].propose (seqi). The sequence resi (which was proposed by some process) is the sequence of
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messages that the processes have agreed upon during their sn-th iteration, and each process pi appends

it to its variable to deliverablei .

The loop is asynchronous, and some seqi proposed by pi may contain few messages, while others

may contain many messages. Moreover, several consensus instances can be concurrent, but distinct

consensus instances are totally independent. An important point here is that a non-faulty process never

stops executing the task T .

Remark 1: propose messages or propose message identities to a consensus instance? The pre-

vious algorithm considers that a consensus proposal is a sequence of messages. It could instead be

the sequence of their identities (made of a pair 〈proc. id, local seq. number〉), and the size of pro-

posals would consequently be shorter. The algorithm can easily be modified to take into account this

improvement. Then, to deliverablei would be a sequence of message identities, and the full messages

(content plus identity) would be present only in urb deliveredi . If we adopt this improvement, it is

possible that a message identity belongs to to deliverablei while the corresponding message has not

yet been urb-delivered (and consequently is not present in urb deliveredi ). The to-delivery of a mes-

sage is now constrained by an additional wait statement. More precisely, when the delivery condition

is satisfied for m (its identity is the identity of the next message to be to-delivered, line 2), pi has to

wait for the urb-delivery of the message in order to to-deliver it.

Let us observe that, when considering the algorithm in Fig. 16.3, where sequences of messages are

proposed to a consensus instance, it is possible that resi contains a message m not yet urb-delivered

by pi. When this happens, the previous problem cannot occur because resi contains the full message

m and not only its identity.

Remark 2: on the number of consensus instances It is easy to see that, if processes to-broadcast

a finite number (k) of messages, k′ ≤ k consensus instances will be used. This means that this

construction is “quiescent with respect to consensus instances”.

16.2.3 Proof of the Algorithm

Notations For any i and any sn ≥ 1, let seqi[sn], resi[sn], and to deliverablei [sn] denote the val-

ues of seqi, resi, and to deliverablei , respectively, in lines 9-10 of the sn-th iteration of the task T
executed by pi. Let also res[sn] denote the sequence of messages decided by the consensus instance

CS [sn] (due to the consensus agreement property, res[sn] is unique). Finally, let to deliverablei [0]
denote the initial value of to deliverablei (i.e., the empty sequence).

Lemma 68. For any two processes pi and pj such that pj is correct, and any sn ≥ 1: (i) if pi invokes

CS [sn].propose (), then pj invokes CS [sn].propose (), and (ii) if pi terminates its sn-th loop iteration

we have to deliverablei [sn] = to deliverablej [sn] = res[1]⊕ · · · ⊕ res[sn].

Proof The proof is by simultaneous induction on (i) and (ii).
Base case: sn = 1. If pi invokes CS [1].propose (), then urb deliveredi contains at least the

message m. Due to the termination properties of the underlying URB abstraction (URB-termination-1

and URB-termination-2), the fact that pi urb-delivered m, and the fact that pj is non-faulty, even-

tually m ∈ urb deliveredj . Hence, there is a time after which the predicate (urb deliveredj \
to deliverablej [0]) �= ∅ is true. When this occurs, pj invokes CS [1].propose ().

Due to the termination property of the underlying consensus object CS [1], and the fact that pj is

non-faulty, it returns from its invocation. Assuming that pi also returns from its invocation, it follows

from the agreement property of CS [1] that resi[1] = resj [1] = res[1] and, as to deliverablej [0] is

the empty sequence, we have to deliverablei [1] = to deliverablej [1] = res[1].
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Let us assume that the claim holds for all sn such that 1 ≤ sn < k. Let us first show that, if

pi (which is faulty or non-faulty) invokes CS [k].propose (), then the non-faulty process pj invokes

CS [k].propose (). As pi invokes CS [k].propose (), urb deliveredi must contain a message m such

that m ∈ urb deliveredi \to deliverablei [k−1]. As to deliverablei [k−1] = to deliverablej [k−1] =
res[1]⊕· · ·⊕res[k−1] (induction assumption), it follows that m /∈ to deliverablej [k−1]. Moreover,

as the base case, due to the termination properties of the URB abstraction and the fact that pj is non-

faulty, m eventually belongs to urb deliveredj . When this occurs, if not yet done due to another

message m′, pj invokes CS [k].propose (), which proves item (i).

The proof of item (ii) is the same as in the base case (after having replaced the consensus instance

CS [1] by CS [k]), and we then have to deliverablei [k] = to deliverablej [k] = to deliverablej [k −
1]⊕ res[k] = res[1]⊕ · · · ⊕ res[k]. �Lemma 68

Theorem 71. The algorithm described in Fig. 16.3 implements the TO-broadcast communication ab-

straction in the system model CAMPn,t[CONS].

Proof Proof of the TO-validity and TO-integrity properties. TO-validity follows from a simple exami-

nation of the text of the algorithm, that shows that the algorithm does not create messages. TO-integrity

follows trivially from lines 2-3.

Proof of the TO-delivery property. This property follows from Lemma 68. Any two non-faulty

processes pi and pj execute the same sequence of iterations (item (i) of the lemma), and, for each

iteration sn, we have to deliverablei [sn] = to deliverablej [sn] = res[1] ⊕ · · · ⊕ res[sn] (item (ii)
of the lemma).

Let us now consider a faulty process pk, that executes a finite number snk of iterations. During

these iterations it obtains from the consensus objects CS [1], ..., CS [snk], the same outputs res[1],
..., res[snk] as the non-faulty processes. Hence, to deliverablek [snk] = res[1] ⊕ · · · ⊕ res[snk],
and consequently pk to-delivers a prefix of the sequence res[1] ⊕ · · · ⊕ res[snk] ⊕ · · · of messages

to-delivered by the non-faulty processes.

Proof of the termination properties. Let us first consider the case of a non-faulty process pi that

to-broadcasts a message m. Suppose by contradiction that it never to-delivers m. Eventually (due to

the termination properties of the underlying URB-broadcast) all the non-faulty processes URB-deliver

m. Moreover, there is a time after which all the faulty processes have crashed and there are only non-

faulty processes in the system. It follows that there is an iteration k in which each process pi proposes

a sequence seqi[k] such that m ∈ seqi[k]. Whatever the sequence of messages res[k] decided by the

consensus instance CS [k], we necessarily have m ∈ res[k]. Hence, m is added to to deliverablei ,

contradicting the initial assumption.

Let us now consider the case of a process px that to-delivers a message m. In this case there is

an iteration k such that the consensus instance CS [k] returns res[k] to px with m ∈ res[k] (which

entailed the addition of m to to deliverablex [k]). It follows from Item (i) of Lemma 68 that all non-

faulty processes invoke CS [k].propose(). Hence, each non-faulty process pi decides res[k] from that

consensus instance, and consequently adds m to to deliverablei which concludes the proof of the

termination properties. �Theorem 71

16.3 Consensus and TO-broadcast Are Equivalent

Let CAMPn,t[TO-broadcast] denote the system model CAMPn,t[∅] enriched with the TO-broadcast

abstraction. This section shows that the consensus abstraction can be built in CAMPn,t[TO-broadcast].
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Such a construction, which (as the previous one) is independent of the value t, is described in

Fig. 16.4. Let CS be the consensus instance that is built. When a process pi invokes CS .propose (vi),
where vi is the value it proposes, it first to-broadcasts a message containing vi (line 1). Then, it returns

the value carried by the first message it to-delivers (lines 2-3).

operation CS .propose (vi) is

(1) TO broadcast (vi);
(2) wait (the first value v that is TO-delivered);

(3) return (v).

Figure 16.4: Building the consensus abstraction in CAMPn,t[TO-broadcast] (code for pi)

Theorem 72. The algorithm described in Fig. 16.4 constructs the consensus abstraction in any system

that provides processes with the TO-broadcast abstraction.

Proof C-validity and C-termination follow directly from TO-broadcast. C-agreement results from the

following simple observation: there is a single first message (value) received by a process, and, due to

the TO-delivery property, this message is the same for all the processes. �Theorem 72

The next theorem follows directly from the previous Theorems 71 and 72.

Theorem 73. Consensus and TO-broadcast are equivalent in CAMPn,t[∅].

This theorem states that it is possible to implement the consensus abstraction in the system model

CAMPn,t[TO-broadcast], and it is also possible to implement TO-broadcast in the system model

CAMPn,t[CONS], i.e., without enriching CAMPn,t[∅] with other computability power. This estab-

lishes a strong correspondence between a communication abstraction (TO-broadcast) and an agree-

ment abstraction (consensus).

16.4 The State Machine Approach

16.4.1 State Machine Replication

Provide a service to clients Practical systems provide clients with services. A service is usually

defined by a set of commands (or requests) that each client can invoke. It is assumed that a client

invokes one command at a time (hence, a client is a sequential entity). The state of the service is

encoded in internal variables that are hidden from the clients. From the clients point of view, the

service is defined by its commands.

A command (request) may cause a modification of the state of the service. It may also produce

outputs that are sent to the client (process) that invoked the command. It is assumed that the outputs

are completely determined by the initial state of the service and the sequence of commands that have

already been processed.

Replicate to tolerate failures If the service is implemented on a single machine, the failure of that

machine is fatal for the service. So, a natural idea consists in replicating the service on physically dis-

tinct machines. More generally, the state machine replication technique is a methodology for making

a service offered to clients fault-tolerant. The state of the service is replicated on several machines that

can communicate with one another through a network.

Ideally, the replication has to be transparent to the clients. Everything has to appear as if the service

was implemented on a single machine. This is called the one copy equivalence consistency condition.

To attain this goal, the machines have to coordinate themselves. The main issue consists in ensuring

that all the machines execute the commands in the same order. In this way, the copies of the state
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of the service will not diverge despite the crash of some of the machines. It is easy to see that, once

each command issued by a client is encapsulated in a message, ensuring the one copy equivalence

consistency condition amounts to constructing a TO-URB abstraction among the machines.

Of course, according to the type of service, it is possible to partially weaken the total order re-

quirement (for example for the commands that are commutative). Similarly, for some services, the

commands that do not modify the state of the service are not required to always be processed by all

replica.

A service is an abstraction (object) From a client point of view, a service defined by a sequential

state machine is nothing other than a sequential abstraction (sometimes called an object).

16.4.2 Sequentially-Defined Abstractions (Objects)

Let us consider all concurrent objects that have a sequential specification. Let us remember that this

means that the correct behaviors of such objects can be described by a (possibility infinite) set of traces

on their operations. The types of services described in the previous section are examples of objects

with a sequential specification (each command is actually an object operation). As we have already

seen, classic examples of concurrent objects defined by a sequential specification are atomic registers,

concurrent stacks, trees, or queues objects.

Considering an asynchronous distributed message-passing system prone to process crashes, a sim-

ple way to make such an object tolerant to process (machine) crashes consists in replicating the object

on each machine and using the TO-broadcast abstraction to ensure that the machines that have not

crashed apply the same sequence of operations to their copy of the object. This section develops this

approach.

Sequential specification and total operations The object, the implementation of which we want

to make fault-tolerant, is defined by an initial state s0, a finite set of m operations and a sequential

specification. We consider that the operations are total which means that any operation can be invoked

in any state of the object. As an example, let us consider an unbounded stack. It has two operations,

push() and pop(). As the stack is unbounded, the push() operation can always be invoked, and is

consequently total. It is easy to define a pop() operation that is total by defining a meaning for pop()
when the stack is empty (for example, pop() returns a default value – e.g., ε – when the stack is empty).

(For a reason that will become clear, the only constraint on the default value is that it has to be different

from the control value ⊥ used in Figure 16.5.)

An operation has the form opx(paramx, resultx), with 1 ≤ x ≤ m; paramx is the list (possibly

empty) of the input parameters of opx(), while resultx denotes the result it returns to the invoking

process. Instead of defining the set of all traces that describe the correct behavior of the object, its

sequential specification can be defined by associating a pre-assertion and a post-assertion with each

operation opx(). Assuming that opx() is executed in a concurrency-free context, the pre-assertion

describes the state of the object before the execution of opx(), while the post-assertion describes both

its state after opx() has been executed and the corresponding value of resultx returned to the invoking

process.

A sequence of operations applied to the object can be encoded by the values of variables that define

its current state. The semantics of an operation can consequently be described by a transition function

δ(). This means that, s being the current state of the object, δ(s, opx(paramx)) returns a pair 〈s′, res〉
from a non-empty set of pairs {〈s1, res1〉, . . . , 〈sx, resx〉}. Each pair of this set defines a possible

output where s′ is the new state of the object and res is the output parameter value returned to the

invoking process (i.e., the value assigned to resultx).

If, for each operation opx and for any state s of the object, the set {〈s1, res1〉, . . . , 〈sx, resx〉}
contains exactly one pair, the object is deterministic. Otherwise, it is non-deterministic.
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16.5 A Simple Consensus-based Universal Construction

Universal construction In the context of the system model CAMPn,t[∅], a universal construction

is a distributed algorithm that, given the sequential specification of an object, builds a fault-tolerant

implementation of it. Such a construction, described in Fig. 16.5, relies on the TO-broadcast commu-

nication abstraction.

Each process pi plays two roles: a client role for the upper layer application process it is associated

with, and a server role associated with the local implementation of the object. To that end, pi manages

a copy of the object in its local variable statei.

On the client side When the upper layer application process invokes op(param), pi builds a mes-

sage (denoted msg sent) containing this operation and its identity i, and TO-broadcasts it (lines 1-3).

Given such a message m, m.op denotes the operation it contains, while m.proc is the identity of the

process that issued the operation. Then pi waits until the result associated with the invocation has been

computed (line 4). Finally, pi returns this result to the upper layer application process (line 5).

On the server side, deterministic object The server role of pi consists in implementing a local

copy of the object (statei). This is realized by a background task T , which is an infinite loop. Dur-

ing each iteration, pi first TO-delivers a message msg rec (let us observe that this can entail T to

wait if presently there is no message to be TO-delivered, line 7). Then, pi invokes the transition

function δ(statei,msg rec.op) that computes the new local state of the object and the value returned

to the invocation of the operation msg rec.op that has been issued by the process whose identity is

msg rec.proc (line 8). If this process is pi, T deposits the result in resulti (line 9). In all cases the

task starts another iteration.

The wait statement and the invocation of TO deliver() can entail pi to wait. It is assumed that the

application process associated with pi is sequential, i.e., after it has invoked an operation, it waits for

the result of that operation before invoking another one.

when the operation op (param) is locally invoked by the client do

(1) resulti ← ⊥;

(2) let msg sent = 〈op (param), i〉;
(3) TO broadcast (msg sent);
(4) wait (resulti �= ⊥);
(5) return (resulti).

background task T is

(6) repeat forever

(7) msg rec ← TO deliver();
(8) 〈statei, res〉 ← δ(statei,msg rec.op);
(9) if (msg rec.proc = i) then resulti ← res end if

(10) end repeat.

Figure 16.5: A TO-broadcast-based universal construction (code for pi)

Due to the properties of the underlying TO-broadcast abstraction, it is easy to see that (1) the

non-faulty processes apply the same sequence of operations to their local copy of the object, (2) any

faulty process applies a prefix of this sequence to its local copy, and (3) this sequence includes all the

operations issued by the non-faulty processes and the operations issued by each faulty process until

it crashes (the last operation issued by a faulty process may or may not belong to this sequence; it

depends on the run).

The case of a non-deterministic object There are two ways to deal with non-deterministic objects.

The first is to ignore non-determinism. This can easily be done by using a deterministic reduction of the
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object as follows: for each transition such that δ(s, opx(paramx)) = {〈s1, res1〉, . . . , 〈sx, resx〉},
the set is arbitrarily reduced to a single of its its pairs.

Whereas a genuine construction keeps the non-determinism of the object specification. Such a

construction can easily be obtained by replacing line 8 ((statei, res) ← δ(statei,msg rec.op)) by

the following lines:

pairi ← δ(statei,msg rec.op);
sni ← sni + 1; 〈statei, res〉 ← CS .[sni].propose (pairi);

where the unique value of the pair (statei, res) is determined with the help of a consensus instance

CS .[sni]. The local variable sni (initialized to 0) is used to identify the consecutive consensus in-

stances CS .[1], CS .[2], etc. For the sni-th pair it has TO-delivered and deposited in msg rec, each

process pi first computes, with the help of the transition function, a proposal (denoted pairi) for the

pair 〈statei, res〉. Each process pi then proposes pairi to the consensus object C[sni]. The single

value decided from that consensus object is then deposited by pi in 〈statei, res〉. It follows from the

properties of the consensus object that all the processes associate the same pair 〈state, res〉 with the

sni-th TO-delivered operation.

Universality of consensus Fig. 16.5 has described a universal construction that makes an object

fault-tolerant, despite asynchrony and process crashes. The name universal comes from the fact that

the construction works for any object that provides processes with total operations, and is defined by

a sequential specification.

It is because there is a construction based on the TO-broadcast abstraction, and such an abstraction

can be built in CAMPn,t[CONS], that both consensus and the system model CAMPn,t[CONS] are

said to be universal.

16.6 Agreement vs Mutual Exclusion

Mutual exclusion A classic way to create a total order on all the operations of an object defined

by a sequential specification consists in using an underlying mutual exclusion object (also called lock

object). Such an object is defined by two operations, denoted enter cs() and exit cs(), used as follows

to bracket a section of code usually named critical section:

enter cs(); critical section; exit cs().

The properties associated with such an object are:

• Mutual exclusion. Let nb proc(τ) be the number of processes that are in their critical section at

time τ . We have ∀ τ : nb proc(τ) ≤ 1.

• Starvation-freedom. Assuming that any process which enters its critical section exits it, any

invocation of enter cs() by a process terminates.

Mutual exclusion captured the invariant property associated with the object, while starvation-freedom

is a liveness property. (Deadlock-freedom is another possible liveness property, which is weaker than

starvation-freedom. It states that if processes concurrently invoke enter cs(), at least one of them will

enter its critical section.)

As an example of use, let us consider two resources R1 (used by the processes of a set P1)

and R2 (used by an other set of processes P2) such that (due to energy restriction) cannot be used

simultaneously. Here the critical section of the processes of P1 is the use of R1, and critical section

of the processes of P2 is the use of R2.
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Mutual exclusion does not work Mutual exclusion cannot be used to order the operations on an

object in the system model CAMPn,t[∅]. This is due to the fact that, if a process crashes inside its

critical section, it will never exit it, and consequently no other process will be able to enter its critical

section. Hence, the need for an agreement with does not rest on locks. The system model CAMPn,t[∅]
provides no means for a process to know if another process is slow or has crashed.

16.7 Ledger Object

16.7.1 Definition

Definition The advent of crytocurrencies entailed the development of a new object called a ledger

(new from a programming point of view). This object, which is not bound to crytocurrencies, can be

used in many applications, such as stacks and queues.

A ledger provides the processes with two operations, denoted read() and append(). It can be seen

as a list (also called a chain) of records (also called blocks or cells). The invocation of read() returns a

copy of the current state of the list. The invocation of the operation append(v) by a process pi creates

a new record which is appended to the list. This record is made up of several fields, including at least

the identity of the invoking process, and the input parameter v of the append operation. According to

the application, it can also include other attributes such the local invocation time and other control-

oriented data. More generally a ledger is a list of ordered “things” that can be neither modified nor

erased. An atomic ledger (in short ledger) is defined by the following properties.

• If the invoking process does not crash during its execution, an invocation of read() or append()
terminates.

• The operations read() and append() appear as if they have been executed sequentially (let S be

the corresponding sequence), and this order is such that if the operation op1 terminated before

the operation op2 started, then op1 appears before op2 in S.

• The value returned by an invocation of read() is the sequence of records starting from the first

record until until the last record appended to the ledger before the invocation of this read opera-

tion.

Blockchain The term blockchain used in the literature has several meanings. It was initially intro-

duced to refer to the technology that underlies the Bitcoin cryptocurrency ledger. More generally,

it is now used to denote a specific ledger, an agreement algorithm, or a set of tools capturing trust-

based agreement in a peer-to-peer system. Its records are usually named “blocks”. According to the

application, a block can contain bank transactions (cryptocurrencies), smart contracts, medical visits,

notarized deeds, observed facts in an investigation, etc. In some applications, the blocks must “pro-

tected” by cryptographic techniques, and the pointer of a record bx to the previous one bx−1 must

include a hash of bx−1.

Ledger with respect to a read/write register While the previous definition looks like the definition

of an atomic read/write register (where append() is “similar” to a write() operation), a ledger and a

read/write register are very different objects. This is a consequence of the following observation. A

read/write register allows a value v to be overwritten before being read by a process; when this occurs,

it is as if the value v had never been written in the register. This is not possible with objects such as a

ledger, a stack, or a queue, in which no value can be “lost”.

Ledger versus state machine The implementation of a state machine does not need to keep the

whole sequence of operations applied to the object. Only its last state needs to be saved (see line 8 in

the universal construction presented in Fig. 16.5). In a ledger, the “last state” is the whole sequence
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of operations invoked so far. Of course, it would be possible to implement a state machine from a

ledger, but this would be particularly inefficient. It is also possible to implement a ledger from a state

machine. (See exercise 4 in Section 16.12.)

Hence, a main difference between a ledger and a state machine is the possibility for any process

to verify that something occurred or not. This is due to the fact that a ledger saves everything: its past

is immutable and can be entirely read by any process. As an example let us consider a stack to which

the following sequence of operations has been applied:

push(a), push(b), pop()→ a, push(c).

A state machine records only the last state of the stack, i.e., the state captured by the sequence of

operations push(b), push(c). The other operations are forgotten. Instead, a ledger saves the sequence

of all the operations that have been invoked. When looking at Fig. 16.6, the part within the ellipsis

illustrates the memory gain of a state machine with respect to a ledger (only the last state of the object

is saved).
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Figure 16.6: A state machine does not allow us to retrieve the past

The computability power of a ledger Let CAMPn,t[LEDGER] be the system model CAMPn,t[∅]
enriched with a ledger object. The algorithm described in Fig. 16.7 (which is similar to the algorithm

presented in Fig. 16.4) implements a consensus object CS for any number of processes.

operation CS .propose (vi) is

(1) L.append (vi);
(2) while L.read() = ε do skip end while;

(3) let v ← first value of L.read();
(4) return (v).

Figure 16.7: Building the consensus abstraction in CAMPn,t[LEDGER] (code for pi)

Let L denote the underlying ledger, which is initialized to the empty sequence denoted ε. A process

pi first deposits in the ledger the value it proposes to the consensus object (line 1). Then, it loops until

the ledger is no longer empty (line 2). When this occurs, pi returns the first value deposited in the

ledger (lines 3-4). As the algorithm is independent on the number of processes, we have the following

theorem.

Theorem 74. The computability power of a ledger is at least that of consensus in asynchronous sys-

tems prone to process crashes.

The next corollary follows from Theorem 73, Theorem 74, and the fact that a ledger can be built from

the TO-broadcast abstraction (algorithm described below in Fig. 16.8).

Corollary 7. The three distributed computing models CAMPn,t[CONS], CAMPn,tTO-broadcast],
and CAMPn,t[LEDGER] have the same computability power.
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k-Bounded ledger and consensus number of the ledger object Let a k-bounded ledger be a ledger

that contains only the k last values that have been appended to it, i.e., all the previous values are

discarded. Hence, the classic ledger is an ∞-bounded ledger, and a simple read/write register is a

1-bounded ledger (the operation append() then boils down to the operation write()).

The consensus number of an object is defined in Section 16.9.2. It is a positive integer that mea-

sures the synchronization power of this object in the presence of process crashes and asynchrony.

The greater the consensus number of an object, the greater its synchronization power. It is shown in

Section 16.9.3 that the consensus number of the k-bounded ledger object is k. Hence, the consensus

number of the ledger object is +∞.

16.7.2 Implementation of a Ledger in CAMPn,t[TO-broadcast]

A simple construction An algorithm implementing of a ledger on top of an asynchronous message-

passing distributed enriched with the TO-broadcast abstraction is presented in Fig. 16.8. It is similar

to the universal construction described in Fig. 16.5.

when the operation append (v) is locally invoked by the client do

(1) resulti ← ⊥;

(2) let msg sent = 〈append, v, i〉;
(3) TO broadcast OP(msg sent);
(4) wait (resulti �= ⊥);
(5) return ().

when the operation read () is locally invoked by the client do

(6) resulti ← ⊥;

(7) let msg sent = 〈read, i〉;
(8) TO broadcast OP(msg sent);
(9) wait (resulti �= ⊥);
(10) return (resulti).

background task T is

(11) repeat forever

(12) msg rec ← TO deliver();
(13) case msg rec = 〈read, j〉 then if (j = i) then resulti ← ledgeri end if

(14) msg rec = 〈append, v, j〉 then record ← record including 〈v, j〉;
(15) ledgeri ← ledgeri ⊕ record;

(16) if (j = i) then resulti ← � end if

(17) end case

(18) end repeat.

Figure 16.8: A TO-broadcast-based ledger construction (code for pi)

Let L be a ledger. It is locally represented at each process pi by the list ledgeri. The symbol ⊕ is

used to denote concatenation of an element at the end of a list; ! and ⊥ are control values.

When it invokes the operation append (v), a process pi to-broadcasts the associated message

OP(〈append, v, i〉) (line 3), and waits until it has to-delivered it (lines 12 and 14). When this occurs,

it is allowed to terminate its operation (lines 4-5).

When a process pi to-delivers a message OP(〈append, w, j〉) it adds its content w at the end of its

local list ledgeri (line 14).

The behavior of pi when it invokes the operation read (), is similar to the one generated by the

operation append (). When pi to-delivers its own message OP(〈read, i〉), it returns the current value

of it local list ledgeri (line 13 followed by line 10).

As for the TO-broadcast-based universal construction described in 16.5, the TO-broadcast abstrac-

tion ensures that (i) all correct processes to-deliver the the same sequence of operations S, and (b) each
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faulty process to-delivers a prefix of S. Hence, we eventually have ledgeri = S at each correct process

pi; and ledgeri is a prefix of S if pi crashes.

Ledger idiosyncrasies According to the content of the records (which can store private data), secu-

rity and privacy issues become crucial issues. Those may require cryptography techniques, which are

not addressed in this book, which is devoted to crash and Byzantine fault-tolerance.

In some ledger-based applications, the next record added to the ledger must include a hash of the

previous record. When considering the model CAMPn,t[CONS], this issue can be solved by adding

appropriate statements in the implementation of TO-broadcast described in Fig 16.3 (Exercise 3 in

Section 16.12).

In the context of Byzantine failures, it is possible that some records from Byzantine processes are

not valid and must be discarded before being appended to the ledger. To solve this issue, the validity

property of the underlying Byzantine consensus (used by TO-broadcast) must be appropriately adapted

to prevent fake records from being appended to the ledger.

16.8 Consensus Impossibility in the Presence of Crashes and Asynchrony

This section shows that the consensus agreement abstraction cannot be implemented in CAMPn,t[∅]
(this is the famous FLP impossibility result). Solving it requires a distributed system whose com-

putability power is stronger than the one provided by CAMPn,t[∅].

16.8.1 The Intuition That Underlies the Impossibility

To stop waiting or not to stop waiting, that is the question The impossibility of solving some

distributed computing problems comes from the uncertainty created by the net effect of asynchrony

and failures. This uncertainty makes it impossible to distinguish a crashed process from a process that

is slow or a process with which communication is slow.

Let us consider a process p waiting for a message m from another process q. In the system model

CAMPn,t[∅], the main issue the process p has to solve is to stop waiting for message m from q or

continue waiting. Basically, allowing p to stop waiting can entail a violation of the safety property

of the problem if q is currently alive, while forcing p to wait for the message from q can prevent the

liveness property from being satisfied (if q crashed before sending the required message).

Synchrony rules out this type of uncertainty Let us consider a synchronous system involving two

processes pi and pj . From a practical low level point of view, “synchrony” means that

• transfer delays are upper bounded (let Δ be the corresponding bound),

• there is a lower bound and an upper bound on the speed of the processes, and

• processing times are negligible with respect to message transit times and are consequently as-

sumed to be equal to 0.

(Chap. 1 showed that, at a higher abstraction level, these behaviors are captured in the system model

CSMPn,t[∅].)
In such a synchronous context, let us consider a problem P where each process has an initial value

(vi and vj , respectively), and both have to compute a result that depends on these values as follows. If

no process crashes, the result is f(vi, vj). If pj (resp., pi) crashes, the result is f(vi, vj) or f(vi,⊥)
(resp., f(⊥, vj)). Moreover, f(vi, vj) �= f(vi,−), and f(vi, vj) �= f(−, vj).

Each process sends its value and waits for the value of the other process. When it receives the

other value, a process sends its value if not yet done. In order not to wait forever for the value of the

other process (say pj), the process pi uses a timer as follows. It sets the timer to 2Δ when it sends its
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value. If it has not received the value of pj when the timer expires, it concludes that pj crashed before

sending its value and returns f(vi,⊥). In the other case, it received vj and returns f(vi, vj).

pi

pj

vi vj

2Δ2Δ

pi

pj

vi

return
(
f (vi,⊥)

)
return

(
f (vi, vj)

)

Figure 16.9: Synchrony rules out uncertainty

These two cases are described in Fig. 16.9. The execution on the left is failure-free, and pj sends

its value by return when it receives the value vi from pi. In this case, pi returns f(vi, vj). Whereas in

the execution on the right pj crashed before receiving the message from pi and sending its message (as

shown by the cross on its axis); consequently pi returns f(vi,⊥) when the timer expires. (If pj sent

its value before crashing, pi would have received it and would have returned f(vi, vj) when receiving

vj). The uncertainty on the state of pj is controlled by the timeout value. The timer is conservatively

set in both cases, as pi does not know in advance if pj has crashed or not.

Asynchrony cannot rule out uncertainty Let us now consider that, while processing times remain

equal to 0, message transfer delays are finite but arbitrary. So, the system is asynchronous as far as

messages are concerned.

A process can use a local clock and an “estimate” of the round-trip delay, but unfortunately there

is no guarantee that (whatever its value) this estimate is an upper bound on the round trip delay in the

current execution (otherwise, the system would be synchronous).

Using such an “estimate”, several cases can occur. It is possible that, in the current execution, the

estimate is actually a correct estimate. In this case, the synchrony assumption used by the processes is

correct, and we are in the case of the previous synchronous system described in Fig. 16.9.

pi

pj

vi vj

2Δ

pi

pj

vi

Keep on waiting forever

return
(
f (vi,⊥)

)

Figure 16.10: To wait or not to wait in presence of asynchrony and failures?

Unfortunately, as already mentioned, there is no guarantee that (whatever its value) the estimate

value used is a correct estimate. This is described on the left side of Fig. 16.10, where pi returns

f(vi,⊥) when the timer expires, while it should return f(vi, vj). In this case, the incorrectness of the

estimate value entails the violation of the safety property (the result is incorrect). So timers cannot be

used safely. But if pi does not use a timer, where pj crashed before sending its value (right side of

Fig. 16.10), it will wait forever, violating the liveness property (no result is ever returned).

This simple example captures the intuition that it is impossible to always guarantee both the safety

property and the liveness property in an asynchronous system.

16.8.2 Refining the Definition of CAMPn,t[∅]

Before proving the impossibility result in the next sections, this section refines the definition of the

underlying asynchronous model ASn,t[∅].
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Communication model The system consists of a set of n processes that communicate by sending

and receiving messages with the operations “send m to proc” and “receive ()”. Each message m is

assumed to contain the identity of its sender (m.sender) and the identity of its destination process

(m.dest). Moreover, without loss of generality, all messages are assumed to be different (this can

easily be done by adding sequence numbers).

When a process sends a message m to a process pi, m is deposited in a set denoted buffer . When a

process pi invokes the receive operation, it obtains either a message m such that m.dest = i deposited

into buffer , or the default value ⊥ that indicates “no message”. If the message value that is returned

is not ⊥, the corresponding message is withdrawn from buffer . It is possible that buffer contains

messages m such that m.dest = i, while pi obtains⊥. The fact that a message can remain an arbitrary

time in buffer is used to model communication asynchrony (but, while arbitrary, this time duration is

finite).

The network is reliable in the sense that there is neither message creation nor message duplication.

Moreover, the “no loss” property of the communication system is modeled by the following fairness

assumption: given any process pi and any message m that has been deposited into buffer and is such

that m.dest = i, if pi executes receive() infinitely often, it eventually obtains m.

Process model The behavior of a process is defined by an automaton that proceeds by executing

steps. A step is represented by a pair 〈i,m〉 where i is a process identity and m a message or the

default value ⊥. When it executes the step 〈i,m〉, a process pi performs atomically the following:

• Either it receives a message m previously sent to it (in that case m ∈ buffer , m.dest = i and

m is then withdrawn from buffer ) or it “receives” the value m = ⊥ (meaning that there is no

message to be received yet).

• Then according to the value received (a message value or⊥) it sends a finite number of messages

to the processes (which are deposited in buffer ), and changes its local state.

Let us notice that this step model is particularly strong as an atomic step can include both the reception

of a message and the sending of several messages. This makes the impossibility stronger as it is valid

even for this very strong “step model”.

Hence, (until it possibly crashes) each process executes a sequence of steps (as defined by its

automaton). Let σi be the current local state of pi. The execution of its next step by pi entails its

progress from σi to a new local state σ′
i. The behavior of a process is assumed to be deterministic,

namely, the next state of pi and the message it sends (if any) when it executes a step are entirely

determined by its initial state and the sequence of messages and ⊥ values it has received so far. Let

us again notice that the determinism assumption on the process behavior makes the impossibility very

strong. The only non-determinism that can occur is due to process crashes and asynchrony (usually

called the environment).

Input vector Given a consensus instance, let vi be the value proposed by process pi. This value is

part of its initial local state. The corresponding input vector, denoted I[1..n], is the vector such that

I[i] = vi, 1 ≤ i ≤ n. When considering binary consensus, the set of all possible input vectors is the

set {0, 1}n.

System global state A global state Σ (also called configuration) is a vector of n local states, namely

[σ1, . . . , σn] (one per process pi), plus a set of messages that represents the current value of buffer

(the messages that are in transit with respect to the corresponding global state). A non-faulty global

state is a global state in which no process has crashed.

An initial global state Σ0 is such that each σi, 1 ≤ i ≤ n, is an initial local state of pi, and buffer

is the empty set.
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A step s = 〈i,⊥〉 can be applied to any global state Σ. A step s = 〈i,m〉 where m �= ⊥ can be

applied to a global state Σ only if buffer contains m. If an applicable step s is applied to global state

Σ, the resulting global state is denoted Σ′ = s(Σ).

Schedule, reachability and accessibility A schedule is a (finite or infinite) sequence of steps s1, s2,

etc., issued by the processes. A schedule σ is applicable to a global state Σ, if for all i ≥ 1 (and

i ≤ |σ| if σ is finite), si is applicable to Σi−1 where Σ0 = Σ and Σi = σi(Σi−1).

A global state Σ′ is reachable from Σ if there is a finite schedule σ such that Σ′ = σ(Σ).

Given an initial global state Σ0, a global state Σ is accessible from Σ0 if if there is a finite schedule

σ such that Σ = σ(Σ0).

Runs of an algorithm The impossibility result will be based on a reasoning by contradiction and

considers that at most one process can crash, namely, it assumes there is an algorithm A that solves

binary consensus despite asynchrony and the crash of at most one process. This algorithm is encoded in

a set of n automata, one per process (as defined previously). The local state of each process pi contains

a local variable decidedi. This variable, initialized to ⊥, is a one-write variable that is assigned by pi
to the value it decides upon.

It is assumed that the algorithm executed by a process is such that, after it has decided (if it ever

decides) a non-faulty process keeps on executing steps forever. Hence, a correct process executes an

infinite number of steps. Given an initial global state, a run (or execution) is an infinite schedule that

starts from this global state.

A tree of admissible runs In the context of the impossibility proof, a run is admissible if at most

one process crashes and all messages that have been sent to the non-faulty processes are eventually

received.

Given an initial state Σ0 and a consensus algorithm A, all its possible runs define a tree, denoted

T (A,Σ0), where each node represents a global state of A, and each edge represents a step by a process

(see Fig. 16.11).

16.8.3 Notion of Valence of a Global State

The impossibility proof considers binary consensus, i.e., the case where only two values (0 and 1) can

be proposed. As already mentioned, it is a proof by contradiction: it assumes that there is an algorithm

A that solves binary consensus in CAMPn,1[∅] (note t = 1) and exhibits a contradiction. Trivially,

as binary consensus cannot be solved when one process may crash, it cannot be solved when t ≥ 1
processes can crash, and multivalued consensus cannot be solved either.

Valence of a global state: definition This notion is due to M. Fischer, N.A. Lynch, and M.S. Pater-

son (1985). It is a simple and very powerful notion that, introduced to prove consensus impossibility,

impacted other domains of distributed computing (e.g., the proof of the (t + 1) lower bound on the

number of rounds for synchronous consensus, presented in Section 10.3).

Given an initial global state Σ0, let us consider the tree T (A,Σ0). It is possible to associate a

valence notion with each state Σ of this tree, defined as follows. The valence of a node (global state)

Σ ∈ T (A,Σ0) is the set of values that can be decided upon in a global state reachable from Σ. Let us

observe that, due to the termination property of the consensus algorithm A, the set valence(Σ) is not

empty. As the consensus is binary, it is equal to one of the following sets: {0}, {1} or {0, 1}. More

explicitly:
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• Σ is bivalent if the eventual decision value of the consensus is not yet fixed in Σ. This means

that the global state Σ is the root of a subtree of T (A,Σ0) including both global states where

the processes decide 1 and global states where the processes decide 0. To put it differently, an

external observer (who would have an instantaneous view of the process states and the channel

states) cannot determine the value that will be decided from Σ.

• Σ is univalent if the eventual decision value is fixed in Σ: all runs starting from Σ decide the

same value. If that value is 0, Σ is 0-valent, otherwise it is 1-valent. Hence, if Σ is x-valent

(x ∈ {0, 1}), all nodes of the subtree of T (A,Σ0) rooted at Σ are x-valent. This means that,

given Σ, an external observer could determine the value decided from this global state. Let us

observe that it is possible that no local state σi of Σ allows the corresponding process pi to know

that Σ is univalent.

{0, 1}

{1}{1}

{0, 1}

{1} {0}

{1}{1}

{0}

{0, 1}

{0, 1}

{0}{0, 1}

{0}

{0}

{1}

{0, 1}

Figure 16.11: Bivalent vs univalent global states

A part of a tree T (A,Σ0) for a system of two processes is described in Fig. 16.11. Each node

(global state) is labeled with the set of values that can be decided from it. If this set contains a single

value, the corresponding global state is univalent (and then all its successors have the same valence).

Otherwise, it is bivalent.

Let us notice that several transitions (one per process) may be possible from a given global state,

according to the algorithm A and the state of buffer . The choice of a path from the root to a leaf is

partly under the control of the algorithm A, and partly under the control of the environment (process

crash and asynchrony).

Valence and non-determinism The notion of valence captures a notion of non-determinism. To put

it differently, if state Σ is univalent “the dice are cast”: the decision value (perhaps not yet explicitly

known by processes) is determined. If Σ is bivalent,“the dice are not yet cast”: the decision value

is not yet determined (it still depends on the run that will occur from Σ, which in turn depends on

asynchrony and the failure pattern).

16.8.4 Consensus Is Impossible in CAMPn,1[∅]

As already mentioned, the proof is by contradiction: assuming that there is an algorithm A that solves

binary consensus inASn,1[∅], it exhibits a contradiction. More precisely, the proof shows that there is
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at least one initial global state Σ0 such that T (A,Σ0) has an infinite path whose global states are all

bivalent. Assuming that A always preserves the safety properties (C-validity and C-agreement) this

means that A has executions that never decide.

Bivalent initial state The next lemma shows that, whatever the consensus algorithm A, there is at

least one input vector I[1.n] ∈ {0, 1}n such that the corresponding initial global state is bivalent.

Lemma 69. Let us assume that there is an algorithm A that implements the binary consensus agree-

ment abstraction in CAMPn,t[t = 1]. There is a bivalent initial configuration.

Proof Let Σ0 be the initial global state in which all processes propose 0 (so its input vector is

[0, . . . , 0]), and Σi, 1 ≤ i ≤ n, be the initial global state in which the processes from p1 to pi
propose the value 1, while all the other processes propose 0. So, the input vector of Σn is [1, . . . , 1]
(all processes propose 1).

These initial global states constitute a sequence in which any two adjacent global states Σi−1 and

Σi, 1 ≤ i ≤ n, differ only in the value proposed by the process pi: it proposes the value 0 in Σi−1 and

the value 1 in Σi. Moreover, it follows from the consensus validity property (by assumption satisfied

by A) that Σ0 is 0-valent, while Σn is 1-valent.

Let us assume that all the previous configurations are univalent. It follows that, in the previous

sequence, there is (at least) one pair of consecutive configurations, say Σi−1 and Σi, such that Σi−1

is 0-valent and Σi is 1-valent. Assuming that there is a consensus algorithm A in ASn,t[t = 1], we

exhibit a contradiction.

Assuming that no process crashes, let us consider a run of A that starts from the global state Σi−1,

in which process pi executes no step for an arbitrarily long period. Let us observe that, as the algorithm

A can cope with one process crash, no process executing A (but pi) is able to distinguish between the

case where pi is slow and the case where it has crashed.

As (by assumption) the algorithm satisfies the consensus termination property despite one crash,

all the processes (except pi) decide after a finite number of steps. The sequence of steps that starts

at the very beginning of the run and ends when all the processes have decided (except pi, which has

not yet executed a step), defines a schedule σ. (See the top of Fig. 16.12 where, within the input

vector Σi−1, the value proposed by pi is inside a box.) As Σi−1 is 0-valent, the global state σ(Σi−1) is

also 0-valent (let us recall that σ(Σi−1) is the global state attained by executing the sequence σ from

Σi−1). Finally, after all the steps of σ have been executed, pi starts executing and decides. As σ(Σi−1)
is 0-valent, pi decides 0.

[1, . . . , 1, 0 , 0, . . . , 0]

[1, . . . , 1, 1 , 0, . . . , 0]

Schedule σ (no operation by pi)

Schedule σ (no operation by pi)

Σi−1 is 0-valent

Σi is 1-valent

σ(Σi−1): 0-valent

σ(Σi): 0-valent

Figure 16.12: There is a bivalent initial configuration

Let us observe (bottom of Fig. 16.12) that the same schedule σ can be produced by the algorithm

A from the global state Σi. This is because (1) as the global states Σi−1 and Σi differ only in the

value proposed by pi, and, (2) pi executes no step in σ, the decided value cannot depend on the value

proposed by pi. It follows that, as σ(Σi−1) is 0-valent, the global state σ(Σi) is also 0-valent. But as
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the global state Σi is 1-valent, we conclude that σ(Σi) is necessarily 1-valent, which contradicts the

initial assumption and concludes the proof of the lemma. �Lemma 69

A remark on the validity property: strengthening the lemma In addition to the fact that at most

one process can crash, the previous lemma is based on the validity property satisfied by the algorithm

A, which states that the decided value is one of the proposed values (from which we have concluded

that Σ0 and Σn are 0-valent and 1-valent, respectively).

The reader can check that the lemma remains valid if the validity property is weakened as follows:

“there are runs in which the value 0 is decided, and there are runs in which the value 1 is decided”.

This point is addressed in Exercise 8 in Section 16.12.

Remark: crash vs asynchrony The previous proof is based on the assumption that, despite asyn-

chrony and the possibility of one process crash, the algorithm A drives all correct processes to correctly

terminate. This allows the proof to play with process speed and consider a schedule σ during which

a process pi executes no step. We could have instead considered that pi was initially crashed (i.e., pi
crashes before executing any step). During the schedule σ, the consensus algorithm A has no way of

knowing whether pi has really crashed or is very slow. This shows that, in some cases, asynchrony

and process crashes are two facets of the same “uncertainty” algorithms have to cope with.

Lemma 70. Let Σ be a non-faulty bivalent global state and s = 〈i,m〉 be a step applicable to Σ.

There is a finite schedule σ (not including s) such that s(σ(Σ)) is a non-faulty bivalent global state.

s

s(Σ) Σ21 = s(Σ11) Σ22 = s(Σ12) Σ2x = s(Σ1x)

Σ

S2

S1

Σ12 Σ1x

s
s s

σx

Σ11

σ2σ1

Figure 16.13: Illustrating the sets S1 and S2 used in Lemma 70

Proof Let us first remember that a non-faulty global state is a global state in which no process is

crashed. Let S1 be the set of global states reachable from Σ with a finite schedule not including s,

and S2 = s(S1) = {s(Σ1) | Σ1 ∈ S1} (Fig. 16.13.) We have to show that S2 contains a non-faulty

bivalent global state.

Let us first notice that, as s is applicable to Σ, it follows from the definition of S1, and the fact that

messages can be delayed for arbitrarily long periods, that s is applicable to every global state Σ′ ∈ S1.

The proof is by contradiction. Let us assume that every global state Σ2 ∈ S2 is univalent.

Claim C1. S2 contains both 0-valent and 1-valent global states.

Proof of the claim. Since Σ is bivalent, for each v ∈ {0, 1} there is a finite schedule σv that is

applicable to Σ and such that the global state Cv = σv(Σ) is v-valent. We consider two cases according

to whether σv contains or not s.

• Case 1: σv does not contain s (top of Fig. 16.14). In this case, taking Σ2 = s(Cv), we trivially

have Σ2 ∈ S2. As Cv is v-valent, it follows that Σ2 is also v-valent.
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Σ2

Cv = σv(Σ) Σ2 = s(Cv)Σ
s

Σ
σ1v s

Cv = σ2v(Σ2)

σv

σ2v

Figure 16.14: Σ2 contains 0-valent and 1-valent global states

• Case 2: σv contains s (bottom of Fig. 16.14). Then, there are two schedules σ1v and σ2v such

that σv = σ1v s σ2v. In that case, taking Σ2 = s(σ1v(Σ)), we trivially have Σ2 ∈ S2. As

all global states in S2 are univalent, Σ2 is univalent. Finally, as Cv = σ2v(Σ2) is v-valent, it

follows that Σ2 is also v-valent. End of the proof of claim C1.

Claim C2. Let two global states be neighbors if one is reachable from the other in a single step. There

are two neighbors Σ1′,Σ1′′ ∈ S1 such that Σ2′ = s(Σ1′) is 0-valent and Σ2′′ = s(Σ1′′) is 1-valent.

Proof of the claim. Considering the global states in S1 as the nodes of a graph G in which any two

adjacent nodes are connected by an edge, let us label a node X in G with v ∈ {0, 1} if, and only if,

s(X) ∈ S2 is v-valent. As by assumption any global state in S2 is univalent, every node of G has a

well-defined label. It follows from claim C1 that there are nodes labeled 0 and nodes labeled 1. More-

over, as Σ belongs to S1 (this is because the empty schedule is a finite schedule), it also belongs to G
and has consequently a label. Finally, as (a) there is a path between any two nodes of G (through the

node associated with Σ), and (b) all nodes of G are labeled 0 or 1, there are necessarily two adjacent

nodes that have distinct labels. End of the proof of claim C2.

Let two neighbors be Σ1′,Σ1′′ ∈ S1 such that Σ2′ = s(Σ1′) is 0-valent and Σ2′′ = s(Σ1′′) is

1-valent (due to claim C2, they exist). Moreover, let s′ = 〈i′,m′〉 be the step such that Σ1′′ = s′(Σ1′).
We consider two cases.

• Case i �= i′ (Fig. 16.15). In this case, the steps s and s′ are necessarily independent (s cannot

Σ1′ s′ = 〈i′,m′〉

s = 〈i,m〉

s′ = 〈i′,m′〉

Σ2′ = s(Σ1′)
0-valent

s = 〈i,m〉

1-valent

Σ1′′

Σ2′′ = s〈Σ1′′〉

Figure 16.15: Valence contradiction when i �= i′

be the reception of a message sent by s′ and s′ cannot be the reception of a message sent by s),

it follows that Σ2′′ = s′(s(Σ1′)) = s(s′(Σ1′)), which means that Σ2′′ has to be bivalent. This

contradicts the fact that Σ2′′is 1-valent, and proves the lemma for that case.

• Case i = i′. (In this case, as pi is deterministic, the two steps 〈i,m〉 and 〈i,m′〉 are defined by

the environment. As an example, in an execution pi receives and process m before σ executes,

and in another execution it receives and process first m′, and then m before σ executes.) Let us

consider Fig. 16.16 where, according to the previous notations, the global state Σ2′ is 0-valent,

while Σ2′′ is 1-valent. Let us consider a schedule σ that starts from Σ1′ in which pi takes no
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Σ1”

Σ1′

Σa

σ

σ

σ

Σ2” = s(s′(Σ1′)) (1-valent)Σ2′ = s(Σ1′) (0-valent)

Σc (1-valent)Σb (0-valent)

s = 〈i,m〉
s = 〈i,m〉

s = 〈i,m〉

s = 〈i,m〉

s′ = 〈i,m′〉

s′ = 〈i,m′〉

Figure 16.16: Valence contradiction when i = i′

step and all other processes decide. Such a schedule exists because algorithm A is correct, and

copes with the crash of one process. In this schedule, everything appears as if pi crashed in Σ1′.
It follows that Σa = σ(Σ1′) is univalent.

As σ includes no step by pi, the very same schedule σ can be applied to both Σ2′ and Σ2′′ and

we obtain the following.

– Σb = σ(s(Σ1′)) = s(σ(Σ1′)) = s(Σa). This is because, as σ and s are independent,

when the schedule s σ and the schedule σ s are applied to the same global state (Σ1′), they

necessarily produce the same global state (Σb).
– Σc = σ(s(s′(Σ1′))) = s(s′(σ(Σ1′))) = s(s′(Σa)). As before, this is because, as the

schedules σ and s′ s are independent, when the schedule s′ s σ and the schedule σ s′ s
are applied to the same global state (Σ1′), they necessarily produce the same global state (

Σc).

It follows that we have Σb = s(Σa) and Σc = s(s′(Σa)).

As Σ2′ is 0-valent, so is Σb. Similarly, as Σ2′′ is 1-valent, so is Σc. It then follows from

Σb = s(Σa) and Σc = s(s′(Σa)) that Σa is bivalent, contradicting the fact that is is univalent,

which concludes the proof of the lemma.
�Lemma 70

Theorem 75. There is no algorithm implementing the consensus agreement abstraction in the system

model CAMPn,t[t = 1].

Proof The proof consists in building an infinite run in which no process decides. To this end, algorithm

A is started in a bivalent global state (that exists due to Lemma 69), and then the steps executed by

the processes are selected in such a way that the processes proceed from a bivalent global state to a

new bivalent state (that exists due to Lemma 70). This run has to be admissible (there is at most one

process crash, and any message sent by a correct process is eventually received).
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The admissible run that is built is actually a failure-free run (each process takes an infinite number

of steps). The processes are initially placed in a queue (in arbitrary order).

1. The initial global state Σ is any bivalent global state. The run E (sequence of steps) is initialized

to the empty sequence. Then, repeatedly, the following sequence is executed.

2. Let pi be the process at the head of the queue. If the input buffer of pi contains messages m such

that 〈i,m〉 is applicable to Σ, then let s = 〈i,m〉 be the oldest these steps (in the case 〈i,m1〉,
〈i,m2〉, etc. are applicable to Σ), otherwise let s = 〈i,⊥〉.

3. Let then σ be a schedule such that s(σ(Σ)) is bivalent (this global state exists due to Lemma 70).

4. Assign s(σ(Σ)) to Σ, update E to the sequence Eσs, move pi to the end of the queue, and go

to item 2.

It is easy to see that the run E is admissible (no processes crash, and any message is delivered and

processed). Moreover, the run is infinite and no process ever decides, which concludes the proof of

the theorem. �Theorem 75

Strengthening the impossibility In order to obtain a stronger impossibility result, it is possible

to consider a weaker version of the problem. The reader can check that the consensus impossibility

result is still valid when the consensus termination property is weakened into “some process eventually

decides” (instead of “all non-faulty processes decide”).

16.9 The Frontier Between Read/Write Registers and Consensus

16.9.1 The Main Question

On the respective power registers and consensus As shown by Theorem 18, read/write registers

need to enrich the system model CAMPn,t[∅] with the additional assumption t < n/2 in order to be

implemented in a message-passing system prone to asynchrony and process failures. Other distributed

abstractions can also be implemented in CAMPn,t[t < n/2]. Examples of such abstractions appear in

Chap. 8, where implementations of the snapshot, counter, and lattice agreement abstractions have been

presented, and in Chap. 15 where implementations of the renaming, approximate agreement, and safe

agreement abstractions have been presented. Hence, all these abstractions are equivalent in the sense

they need the same assumption (t < n/2) – and no more – to be implemented in message-passing

systems prone to asynchrony and process crash failures.

Section 16.5 of the present chapter has shown that any abstraction defined by a sequential spec-

ification can be implemented in CAMPn,t[CONS]. Moreover, as a read/write register is defined by

a sequential specification, it can be implemented in CAMPn,t[CONS]. We can conclude that – in

one way or another – t < n/2 is a necessary requirement when one has to implement consensus in

CAMPn,t[∅], but this assumption alone is not sufficient.

The question In sequential computing, read/write registers are universal. Atomic read/write reg-

isters are also universal in concurrent failure-free systems (as an example, one can implement the

most basic concurrency-related abstraction – mutual exclusion – from atomic read/write registers). As

shown by Theorem 75, this is no longer the case in the system model CAMPn,t[t < n/2].
Hence, the previous observation leads naturally to the following question: As read/write registers

are not universal in CAMPn,t[t < n/2] (they cannot implement consensus even in CAMPn,t[t =
1]), where is the border separating CAMPn,t[t < n/2] and CAMPn,t[CONS]? More explicitly,

given an abstraction (object), how can we know if it can be implemented in CAMPn,t[t < n/2],
or does it require more computability assumptions, namely the ones offered by the stronger model

CAMPn,t[CONS]?
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From a more practical point of view, an instance of the question is the following: Can a stack or

a queue be implemented in the (weak) system model CAMPn,t[t < n/2], or do these objects require

the stronger system model CAMPn,t[t < n/2, CONS]?

16.9.2 The Notion of Consensus Number in Read/Write Systems

The consensus number notion was introduced by M. Herlihy (1991).

Consensus number The consensus number of a concurrent object type T (abstraction) is the positive

integer x such that consensus can be implemented from any number of read/write registers, and any

number of objects of type T , in an asynchronous system of x processes, but not (x + 1) processes.

If there is no largest x, the consensus number is said to be infinite. The consensus number associated

with an object type T is denoted CN (T ).

The consensus number of read/write registers is 1. (The proof is given in Section 16.9.3, taking

k = 1.) It has been shown that the consensus number of objects such as a stack and a queue is 2. This

means that a queue or a stack cannot be implemented in CAMPn,t[t < n/2]. If it was possible, we

would be able to solve consensus for two processes from read/write registers only, which is impossible

as the consensus number of read/write registers 1.

Answer to the question It follows from the consensus number definition that any abstraction (ob-

ject) whose consensus number is greater than 1 cannot be implemented in CAMPn,t[t < n/2]. Hence,

as an example, as the consensus number of both a stack and a queue is greater than 1, these objects

cannot be implemented in CAMPn,t[t < n/2].

16.9.3 An Illustration of Herlihy’s Hierarchy

To be more explicit on the notion of a consensus number, this section presents a simple object family

such that each positive integer k is the consensus number of a member of the family. This object is

due to A. Mostéfaoui, M. Perrin, and M. Raynal (2017).

The atomic k-sliding window register Such a read/write register is a natural extension of an atomic

register. Let RWk be such an object. It can be seen as a sequence of values, accessed by two atomic

operations, RWk.write() and RWk.read(). The safety and termination properties of a k-sliding win-

dow register are the same as those of an atomic register, except (on the safety side) for the value

returned by the read operation (Fig. 16.17).

• An invocation of RWk.write(v) by a process adds the value v at the end of the sequence RWk.

• An invocation of RWk.read() returns the ordered sequence of the last k written values (if only

	, 0 ≤ 	 ≤ k − 1, values have been written, a sequence of size 	 is returned).

It is shown in the rest of this section that the consensus number of the k-sliding window register

is k. It follows that, if an object (abstraction) B can implement an RWk object such that k > 1, its

consensus number is at least k, and due to Theorem 75, B cannot be implemented in CAMPn,t[t <
n/2].

The consensus number of a k-sliding window is k The proof that the consensus number of a k-

sliding window is k is composed of two parts. First there is a theorem showing it is at least k, then one

showing it is smaller than (k + 1).

Theorem 76. For any positive integer k we have CN(RWk) ≥ k.
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⊥⊥vk

Size k current window
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Sequence returned by the next read

Next write location (will move the window)

Figure 16.17: k-sliding window register

operation propose(vi) is

(1) RWk.write(vi)
(2) seqi ← RWk.read();
(3) let d be the last k non-⊥ values written in seqi;
(4) return(d)
end operation.

Figure 16.18: Solving consensus for k processes from a k-sliding window (code for pi)

Proof Let us consider a system of k processes, and the algorithm described in Fig. 16.18 in which all

elements of RWK are initialized to ⊥ (a default value that cannot be written by the processes). This

algorithm is self-explanatory. We prove that it builds a consensus object for k processes from an RWk

object.

The consensus termination property follows from the termination properties of the read and write

operations of the underlying atomic object RWk (lines 1 and 2), and the fact that the algorithm contains

neither loops nor wait statements.

As at most k processes invoke the consensus operation propose(), the underlying object RWk

contains at most k values. Moreover, the oldest of them is the value v written by the first process that

executed RWk.write() (line 1). It follows that the value extracted (line 3) from its local sequence seqi
by any process pi is v, which proves the consensus agreement property. The proof of the consensus

validity property follows from a similar reasoning. �Theorem 76

Theorem 77. For any positive integer k we have CN(RWk) ≤ k.

Proof The proof is by contradiction. Let us assume an algorithm A that implements binary consensus,

and an initial bivalent configuration (which exists due to Lemma 69). The proof consists in building

an execution of A, which is an infinite schedule of bivalent global states, from which it follows that A
does not satisfy the consensus termination property.

Hence, let us consider a system of (k + 1) processes with any number of RWk registers. As

A is assumed to terminate, each of its executions generates a maximal schedule, i.e., produces a

bivalent global state Σ after which there are no more bivalent global states. The proof is a classic case

analysis depending on whether the next operation issued by each process is a read or a write operation,

and whether they are on the same or different RWk registers (as each process is deterministic, its

next operation is well-defined). Let pi and pj be two processes whose next operations to execute in

Σ are opi and opj , producing the 0-valent global state Σi = opi(Σ), and the 1-valent global state

Σj = opj(Σ), respectively.

• Case 1 (illustrated in Fig. 16.19). The operations opi and opj are on different RWk registers.

We have then opj(opi(Σ)) = opi(opj(Σ)) (being on different registers, the operations commute
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opiopj

Σi = opi(Σ)

opi

Σj = opj(Σ)

opj

0-valent global state

Bivalent global state Σ

1-valent global state

Global state opj(Σi) = opi(Σj)

Figure 16.19: Schedule illustration: case 1

without side effects), from which we conclude that this global state is bivalent, which contradicts

the fact that Σ is a maximal bivalent global state.

• Case 2 (illustrated in Fig. 16.20). The next operations opi and opj issued by pi and pj are on

the same RWk register and one of them (e.g., opi) is a read. In this case, there is a schedule

σj , starting from the 1-valent global state Σj = opj(Σ), in which all the processes except pi
(which stops for an arbitrarily long period or crashes) issue operations and eventually decide.

As Σj = opj(Σ) is 1-valent, they decide 1.

opi
opj

Σi = opi(Σ) Σj = opj(Σ)

opj

Configuration opj(Σi)

with decision 1

Schedule σj
No operation by pi

Schedule σj
No operation by pi

Bivalent global state Σ

0-valent global state 1-valent global state

1-valent global state

0-valent global state

Figure 16.20: Schedule illustration: case 2

Let us now consider opj(Σi) = opj(opi(Σ)). This global state differs from Σj = opj(Σ) only

in the local state of pi (which read the RWk object in the global state opj(Σi) = opj(opi(Σ))
but not in Σj = opj(Σ), see Fig. 16.20). Let us apply the schedule σj to global state opj(Σi) =
opj(opi(Σ)). This is possible because no process (except pi) can distinguish opj(opi(Σ)) from

opj(Σ). From the schedule σj , it follows that pj decides 1, contradicting the fact that the global

state Σi = opi(Σ) is 0-valent.
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• Case 3 (illustrated in Fig. 16.20). In Σ, the next operation by each process is a write, and these

write operations are on the same RWk register. (The intuition that underlies this case is the

following. While a process pi is the first process that writes a value (say 0) in RWk – thereby

producing a 0-valent global state – and then pauses for an arbitrarily long period, it is possible

that the next process writes 1, and the (k − 1) other processes also write a value, whose net

effect is the elimination of the value written by pi from the current window.)

The reasoning is similar to Case 2. Let Σi = opi(Σ) be 0-valent, and Σj = opj(Σ) be 1-valent.

Let σj be a schedule, starting from Σj in which:

(a) the first (k−1) operations are the write of RWk invoked by the (k−1) processes different

from pi and pj ,

(b) all processes, except pi, execute steps until each of them decides, and

(c) pi executes no operation.

Let us notice that such a schedule is possible because, in Σ, the next operation of each process

is a write into RWk. (Case assumption, which implies item (a), and the algorithm A terminates;

hence, each correct process invokes the consensus operation and decides, which implies item

(b). The important point is here the following: in σj no process other than pi can know the value

written in RWk by pi.)

Let opjσj denote the schedule composed of opj followed by σj . As Σj = opj(Σ) is 1-valent,

all processes involved in opjσj (i.e., all processes except pi) decide 1.

Let us now consider the monovalent state Σi, in which pj applies opj . Let us observe that no

process, except pi, can distinguish Σj from opj(Σi) (they have the same local states in both).

It follows that the schedule opjσj (executed previously from Σ) can also be executed from Σi.

The first k operations of this schedule are a write on RWk issued by each process other than

pi. Moreover, at the end of this schedule, all the processes (except pi, which is not involved in

opjσj) decide 1. This contradicts the fact that Σi is 0-valent, which concludes the proof.

�Theorem 77

16.9.4 The Consensus Number of a Ledger

The ledger object was defined in Section 16.7.1. The reader can easily check that its weakened version

of a k-bounded ledger is nothing else than a k-sliding window. The next theorem follows from this

simple observation and the fact that the consensus number of the∞-sliding window is +∞.

Theorem 78. The consensus number of the ledger object is +∞.

16.10 Summary

After having presented the TO-broadcast abstraction, the state machine replication paradigm, and

the ledger object, this chapter focused on two fundamental issues of asynchronous fault-tolerant dis-

tributed computing, namely:

• The universality of the consensus agreement abstraction to build any object (service) defined by

a sequential specification on total operations.

• The impossibility of implementing consensus in the presence of asynchrony and process crashes

(even a single process crash).

This impossibility result shows that the nature of computability in distributed computing is differ-

ent from that encountered in sequential computing. In both cases there are many problems which are
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not computable, but, in asynchronous crash-prone distributed computing, the limits to computability

reflect the difficulty of making decisions in the face of the uncertainty created by the environment

(mainly asynchrony and failures). It is not related to the “Turing machine” computability power of its

individual participants.

This chapter also presented Herlihy’s hierarchy, which characterizes the agreement power (con-

sensus number) of concurrent objects (abstractions).

Table 16.1 summarizes fundamental results of distributed computability in read/write and message-

passing asynchronous crash-prone systems.

Communication type Read/write register Consensus

Read/write system given for free impossible even for t = 1
Message-passing system requires t < n/2 impossible even for t = 1

Table 16.1: Read/write register vs consensus

16.11 Bibliographic Notes

• The first explicit formulation of the consensus abstraction appeared in the context of syn-

chronous systems under the name Byzantine generals problem. It is due to L. Lamport, R.

Shostack, and M. Pease [263].

• A strong connection relating the consensus agreement abstraction (in both crash-prone and

Byzantine systems) and error-correcting codes is established in [167]. An informal introduc-

tion to agreement problems is presented in [375].

• The state machine approach was first proposed and developed by Lamport [255, 256]. An

introductory survey appears in [388]. The TO-broadcast abstraction was formalized in [207].
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When k = 1 (consensus) it naturally boils down to TO-broadcast.

• Consensus-based TO-multicast has been studied in [166]. Consensus-based TO-broadcast algo-

rithms can save consensus executions in some execution patterns. Such an approach is presented

in [321].
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tion, in asynchronous systems prone to process crashes is due to M. Herlihy [212].
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and N. Nicolaou) is presented in [155]. This paper also shows that the consistency condition

associated with a distributed ledger is not restricted to be atomicity; it can also be sequential

consistency or eventual consistency. (The current chapter considered only the stronger of them,

namely, atomicity.) A ledger application devoted to healthcare is presented in [253].

• The impossibility of solving consensus in asynchronous message-passing systems prone to even

a single process crash failure is due to M. J. Fischer, N. A. Lynch and M. S. Paterson [162]. This

fundamental result is known in the literature under the acronym FLP. It is one of the most

celebrated results of fault-tolerant distributed computing.
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• A simple and elegant proof of the FLP impossibility is presented in [403].

• The first proof of the impossibility of consensus in asynchronous read/write shared memory

systems prone to even a single process crash appeared in [270]. Another proof is given in [212].

See also [213].

• Mutual exclusion addressed in a lot of books. It seems that the very first book entirely devoted

to mutual exclusion is [360]. The interested reader can consult the more recent books [369, 404]

for the case where the processes communicate through a shared memory, and [368] for the case

where communication is by message-passing.

• The notion of consensus number and the associated hierarchy are due to M. Herlihy [212].

Textbooks, such as [369, 404], present the consensus number notion with examples. (More

generally, these textbooks are devoted to synchronization issues in the presence of asynchrony

and process failures.) The k-sliding window, and the proof its consensus number is k, are due to

A. Mostéfaoui, M. Perrin, and M. Raynal [309, 346]. A similar object – proposed concurrently
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multiprocessor synchronization.

16.12 Exercises and Problems

1. Remark 1 in Section 16.2 considers the case where messages in the sequence to deliverablei
are represented only by their identity 〈proc. id, seq. number〉.
Construct an execution where the scenario described in the remark occurs (namely, the identity

of a message m appears in resi, while m has not yet been urb-delivered).

2. Let us consider the algorithm described in Fig. 16.3, in which, for each consensus instance, the

agreement property is weakened as follows: no two correct processes decide different values.

(As it is only on correct processes, this property is not a “uniform” property). Describe a counter-

example showing that the total order algorithm is then incorrect.

3. Modify the algorithm described in Fig. 16.3 in order each message (except the first one) contains

a hash of the previous message.

4. Give an algorithm implementing a state machine from a ledger, and an algorithm implementing

a ledger from a state machine.

5. The algorithm described in Fig. 16.21 is assumed to build the TO-broadcast communication

abstraction in the system model CAMPn,t[- FC, CONS], which is CAMPn,t[CONS] weakened

by fair channels (as defined in Section 3.1.2).

This algorithm is obtained by modifications of the algorithm described in Fig. 16.3. The lines

with the same number in both algorithms are the same. The modified lines are prefixed by M in

Fig. 16.21. The code of the operation TO broadcast() is different in both algorithms, and there

is a new task T1 whose aim is to cope with message losses.

Is this algorithm correct? In this case prove it. If it is not, describe a counter-example.

6. Design and prove correct an algorithm implementing the URB-broadcast abstraction in the

system model CAMPn,t[- FC, BinCONS] (CAMPn,t[∅] enriched with binary consensus and

weakened by fair channels).

Solution in [418].

7. Using a partitioning argument, prove that consensus cannot be implemented in CAMPn,t[t ≥
n/2]. (Such an argument was used in the proof of Theorem 18, which shows atomic read/write

registers cannot be implemented the system model CAMPn,t[t ≥ n/2].)

8. Show that the consensus impossibility remains true when the CC-validity property (a decided

value is a proposed value), is weakened as follows.
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init: sni ← 0; TO deliverablei ← ε; receivedi ← ∅.

operation TO broadcast (v) is receivedi ← receivedi ∪ {v}.

when MSG (v) is received do

(M1) receivedi ← receivedi ∪ {v}.

when (TO deliverablei contains messages not yet to-delivered do

(2) Let m be the first message ∈ to deliverablei not yet to-delivered;

(3) TO deliver (m).

background task T1 is

repeat forever

for each v ∈ (receivedi \ TO deliveredi) do

for each j �= i do send MSG (v) to pj end for

end for

end repeat.

background task T2 is

(4) repeat forever

(M6) let seqi = (receivedi \ TO deliverablei);
(7) order the messages in seqi;
(8) sni ← sni + 1;

(9) resi ← CS [sni].propose (seqi);
(10) TO deliverablei ← TO deliverablei ⊕ resi
(11) end repeat.

Figure 16.21: Building the TO-broadcast abstraction in CAMPn,t[- FC, CONS] (code for pi)

• Weak CC-validity. There are executions in which 0 is decided and there are executions in

which 1 is decided.

Let us observe that this validity property does relate the output to the input. It does not prevent

the processes from deciding 0 when they all propose 1. It is a non-trivial property stating that

the same value cannot always be decided (which captures the non-deterministic dimension of

consensus).

Solution in [162].

9. Design a consensus algorithm for two processes in a crash-prone asynchronous system providing

read/write registers and a queue. Same as before but replace the queue with a stack.

Solutions in [212].

10. Another approach to prove the FLP Theorem.

Let a critical global state Σ be a bivalent global state such that any step 〈i,m〉 (where m is either

a message or ⊥) produces a new global state that is univalent. Hence, the successors of Σ in the

tree T (A,Σ0) (see Fig. 16.11) contain at least one 0-valent global state and one 1-valent global

state (otherwise, due its definition, Σ would not be critical). Let si = 〈i,mi〉 and sj = 〈j,mj〉
be two steps applicable to Σ such that Σ0 = si(Σ) is 0-valent, and Σ1 = sj(Σ) is 1-valent.

• Show first that it is not possible to have i �= j. (The reasoning is similar to the one used

in Fig. 16.15. Notice that, as both si and sj are applicable to Σ, if one of these steps is a

message reception, the sending of this message cannot be the other step.)

• It follows from the previous item that i = j, i.e., all steps applicable to Σ are due to some

process pi. Crash pi and prove that the execution stops in Σ. (Then, as Σ is bivalent,

agreement cannot be obtained.)

Solution in [413].



Chapter 17

Implementing Consensus in Enriched

Crash-Prone Asynchronous Systems

The previous chapter focused on the consensus agreement abstraction. It showed its universality power

for implementing objects whose consensus number is greater than 1, and its implementability limit

(namely, the impossibility to implement consensus in the basic system model CAMPn,t[t < n/2]).

This chapter looks at the positive side. It presents several computability assumptions, such that the

computability power provided by each them, taken individually, is strong enough to allow consensus

to be implemented in the corresponding enriched system model. The assumptions concern mainly

message scheduling, failure detection, randomization, and the combination of failure detection and

randomization.

Keywords Asynchronous algorithm, Binary consensus, Common coin, Consensus abstraction, Even-

tual leader (Ω), Fair message scheduling, Failure detector, Hybrid algorithm, Indulgent algorithm,

Local coin, Process crash, Random number, Unreliable broadcast, Zero degradation.

17.1 Enriching an Asynchronous System to Implement Consensus

The nature of the consensus impossibility Consensus can be implemented in CSMPn,t[∅] but

cannot in CAMPn,t[∅]. Expressed differently, while the power of an adversary that controls process

crashes is not strong enough to prevent consensus from being implemented in a synchronous system,

the power of an adversary that controls both process crashes and asynchrony is too strong for consensus

to be implemented. Hence, consensus impossibility comes from the net effect of process crashes and

asynchrony.

How to enrich an asynchronous system model This chapter presents three basic ways to enrich

a crash-prone asynchronous system, so that consensus can be solved in the corresponding enriched

system. As we will see, in all the algorithms presented in this chapter, the processes proceed in

asynchronous rounds. As up to t processes may crash, at every round r, a process can wait for round

r messages from at most (n − t) processes without being blocked forever. Hence, some assumptions

are expressed in terms of rounds.

• A first approach consists in adding an assumption on message deliveries, i.e., a message schedul-

ing assumption. This is addressed in Section 17.2. The assumption considered is particularly

weak, as it only considers that there is a round in which processes receive messages from the

same set of correct processes. At any other round, any asynchrony pattern on message reception

can occur.

© Springer Nature Switzerland AG 2018
M. Raynal, Fault-Tolerant Message-Passing Distributed Systems, 
https://doi.org/10.1007/978-3-319-94141-7_17

317

https://doi.org/10.1007/978-3-319-94141-7_17
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94141-7_17&domain=pdf


318 17.2. A Message Scheduling Assumption

• A second approach consists in providing the processes with information on failures. This

is the failure detector-based approach introduced in Section 3.3, and used in Section 3.4 to

circumvent the impossibility of building URB-broadcast despite fair channels (system model

CAMPn,t[- FC]), and in Section 7.1 to circumvent the impossibility of building URB-broadcast

in the system model CAMPn,t[t ≥ n/2]. Of course, if the failure detector never makes mis-

takes, it is easy to solve consensus. This motivates the notion of the weakest failure detector

(hence the most general) able to to implement consensus. This failure detector is the eventual

leader failure detector, denoted Ω. This is the topic of Section 17.4.

• As we have seen in Chap. 16, the impossibility of solving consensus comes from the impossibil-

ity of solving non-determinism. Such an adversary can be mastered by using random numbers.

Hence, a third approach consists in enriching CAMPn,t[t < n/2] with randomization: each

process is allowed to draw random numbers. This is addressed in Section 17.5.

It appears that consensus algorithms can be based on several additional assumptions, e.g., failure

detection and randomization. These algorithms, called hybrid algorithms, can benefit from the best

of both worlds to allow processes to decide “as soon as possible”. Some of them are presented in

Section 17.6.

The family of Paxos algorithms can be seen as close relatives to the family of failure detector-based

consensus algorithms. In this spirit, a simplified Paxos-like algorithm is presented in Section 17.7.

The existence of an underlying binary consensus algorithm can also be seen as an additional as-

sumption enriching CAMPn,t[∅], on top of which multivalued consensus is implemented. This ap-

proach is presented in Section 17.8 (the same approach was already investigated in Section 14.6 in

the context of synchronous systems with Byzantine processes, namely, in the system model denoted

BSMPn,t[t < n/3]). Finally, a condition on the input vector which allows processes to decide in a

single communication step in presented in Section 17.9.

17.2 A Message Scheduling Assumption

17.2.1 Message Scheduling (MS) Assumption

The MS assumption This assumption states the following: there is a round r during which all the

processes that execute round r receive their first (n− t) round r messages from the same set of correct

processes. Let CAMP t,n[t < n/2, MS] denote the model CAMP t,n[t < n/2] enriched with the MS

behavioral assumption.

Let us notice that if t processes crash initially, the (n − t) remaining processes define a reliable

system, and the previous MS assumption is satisfied at any round. If eventually t processes crash, it is

eventually satisfied.

A probabilistic assumption To obtain a probability-based assumption, the MS assumption can be

weakened as follows: at any round r, there is a constant probability ρ > 0 that all non-crashed

processes receive their first (n− t) round r messages from the same set of (n− t) correct processes (in

this case the MS assumption guarantees that any message scheduling occurs with probability ρ; hence

it becomes a fair MS assumption).

17.2.2 A Binary Consensus Algorithm

A binary consensus algorithm for the system model CAMP t,n[t < n/2; MS] is described in Fig. 17.1.

This algorithm is due to G. Bracha and S. Toueg (1985).
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Local variables at a process pi :Each process pi manages the following local variables:

• ri: the local round number currently executed by pi.

• esti: the current estimate of the decision value.

• weighti: the weight of the current value esti. This variable counts the number of processes that

“voted” for esti during the current round.

• nbi[0] (resp. nbi[1]): the number of processes that voted for 0 (resp. 1) during the current round.

operation propose(vi) is

(1) esti ← vi; weighti ← 1; ri ← 0;

(2) while true do

(3) ri ← ri + 1;

(4) broadcast EST(ri, esti, weighti);
(5) wait (first (n− t) messages EST(ri,−,−) received);

(6) if (∃ EST(ri, b, w) such that w > n/2 received at line 4)

(7) then esti ← b
(8) else nbi[0] ← number of messages EST(ri, 0,−) received at line 4;

(9) nbi[1] ← number of messages EST(ri, 1,−) received at line 4;

(10) if (nbi[0] > nbi[1]) then esti ← 0 else esti ← 1 end if

(11) end if;

(12) weighti ← number of messages EST(ri, esti,−) received at line 4;

(13) if (∃v such that (t+ 1) messages EST(ri, v,−) received at line 4 each with a weight > n/2)

(14) then esti ← v;

(15) broadcast EST(ri + 1, esti, n− t); broadcast EST(ri + 2, esti, n− t);
(16) return(esti)
(17) end if

(18) end while.

Figure 17.1: Binary consensus in CAMPn,t[t < n/2, MS] (code for pi)

Algorithm The operation broadcast() used at line 4 and line 15 is a “best effort” broadcast, i.e., it

is not a reliable broadcast as defined in Chap. 2. It is a simple macro-operation standing for “for all

j ∈ {1, · · · , n} do send() to pj end for”.

After it has initialized esti, weighti, and ri (line 1), a process pi executes an asynchronous se-

quence of rounds, synchronized by the reception of (n− t) messages at every round. During a round,

pi first broadcast the message EST(ri, esti, weighti), which carries its current local state (line 4), and

waits until it has received a message EST(ri,−,−) from(n− t) processes (line 5). Then, according to

the values it has received during the current round, pi updates its local state (lines 6-14).

• If there is a value b whose weight is a majority, pi adopts it as its new estimate (lines 6-7).

• Otherwise, pi adopts the value it has received most often as its new estimate (lines 8-10).

Then, pi computes the weight of esti, namely the number of processes that voted esti (line 12). Finally,

if there is an estimate value v that has been selected by at least (x+1) processes, each with a (possibly

different) majority weight, pi adopts and decides it (line 14 and line 16). Moreover, as it will stop

executing after having decided, before deciding pi broadcasts the messages EST(ri + 1, esti, n − t)
and EST(ri + 2, esti, n − t) in order to prevent a possible deadlock (a process waiting for a message

from a correct process that has already decided, when up to t processes crash).

17.2.3 Proof of the Algorithm

Theorem 79. The algorithm described in Fig. 17.1 implements the binary consensus agreement ab-

straction in the system model CAMPn,t[t < n/2, MS].
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Proof Proof of the CC-validity property. There are two cases.

• If both 0 and 1 are proposed, the CC-Validity property follows directly from the fact that (i)

initially the estimate values are in the set {0, 1} (line 1), and then (ii), as the messages EST()
carry only estimate values, any estimate assignment (lines 7, 10, and 14) cannot assign a value

/∈ {0, 1}.
• If a single value b ∈ {0, 1} is proposed by the processes, we have to show that only b can be

decided. In this case, each process broadcasts the message EST(1, b, 1) during the first round

(line 4). It follows that each process pi executes lines 8-10, and, at each non-crashed process pi,
we have then nbi[b] = n− t, nbi[1− b] = 0, esti = b, and weighti = n− t. It follows that the

estimate values esti do not change from the first to the second round. As n > 2t⇒ n−t > n/2,

during the second round, a process assigns b to esti at line 7, and as the predicate of line 13 is

satisfied, again assigns b to esti at line 14, before deciding at line 16. It follows that no value

other than b can be returned by a process.

Proof of the CC-agreement property. Let r be the first round during which a process decides. Let

pi be a process that decides during round r, and b the value it decides. It follows that pi executed

line 16, from which we conclude that its local predicate of line 13 was satisfied. Hence, during round

r, pi received a message EST(r, b,−) with a weight greater than n/2 from a set Q of (t+1) processes.

Let us observe that, due to the computation of esti at every round (line 12), at most one value

can be a majority value (i.e., have a weight greater than n/2). If follows that, if a process decides

b during round r, the value (1 − b) cannot be a majority value during round (r − 1). let pj �= pi.
During round r, pj received messages EST(r,−,−) from a set R of (n − t) processes (line 5). As

|Q|+ |R| = (t+1)+(n−t) > n, there is process pk that sent the same message EST(r, b, w) to pi and

pj , with a weight w greater than n/2. Hence, when pj executed line 6 during round r, the predicate

was satisfied, and pj consequently assigned b to estj at line 7.

• If, during round r, the predicate of line 13 is satisfied, we necessarily have v = b, and pj decides

b at line 16.

• If, during round r, the predicate of line 13 is not satisfied, pj proceeds to round (r+1), and due

to assignment at line 7 we have estj = b.

It follows that, from round (r + 1), the only value in the system is b (either in the estimates estj of

the processes pj that do not decide during r, or in the messages EST(r+ 1, b,−) and EST(r+ 2, b,−)
broadcast by the processes that decide during r. Consequently, no other value can be decided.

Proof of the CC-termination property. We consider two cases.

• We first prove that, if a process decides, all correct processes decide. Let r be the first round

during which a process pi decides, where b is the decided value.

We have shown previously (CC-Agreement) that any non-crashed process pj that does not de-

cide at round r proceeds to round (r+1) with estj = b, and all the processes that decide during

round r have previously broadcast the messages EST(r + 1, b,−) and EST(r + 2, b,−).
Let pj be any process that proceeds to round (r + 1). Such a process receives a message

EST(r + 1, b,−) from (n − t) different processes, and consequently estj remains equal to b.
Moreover, we have now weighti = n − t > n/2. It follows that, for all the processes pj
that do not decide during round (r + 1), we have estj = b and weighti = n − t > n/2
when they start the round (r + 2). When each of these processes pj executes round (r + 2),
due to the messages EST(r + 2, b,−) sent by the processes that decided at round r or (r + 1),
and by the correct processes that execute round (r + 2), we have estj = b, and due to the

weights weightk = n− t > n/2 carried by these messages, the predicate of line 13 is satisfied.

Consequently, pj decides. It follows that if r is the first round at which a process decides, no

process decides after round (r + 2).
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• Let us now assume that no process decides. We show this is not possible. As no process

decides (case assumption), and there are at least (n − t) correct processes, no correct process

can block forever at line 5. Consequently, each correct process executes an infinite number of

asynchronous rounds.

Due to the MS assumption, there is a round r during which all the (non-crashed) processes

receive messages (line 5) from the same set of (n− t) correct processes. It follows that, at round

r, the processes receive the same set of messages, and consequently behave exactly the same

way, namely they compute the same estimate value at line 7 or line 10 (as by assumption they

do not terminate, they do not execute line 14). Hence, during round (r + 1) all (non-crashed)

processes have the same estimate value and compute the same weight, i.e., esti = · · · = estj ,
and weighti = · · · = weightj = n − t > n/2. It follows that during the round (r + 2), all

the non-crashed processes have the same estimate value, with the same weight greater than n/2.

The predicate of line 13 is then satisfied, and all the non-crashed processes decide at line 16. A

contradiction, which concludes the proof of the CC-termination property.

�Theorem 79

17.2.4 Additional Properties

The reader can easily verify the following properties.

• If all processes propose the same value, decision is obtained in two rounds (second item of the

proof of the CC-validity property).

• If t processes crash initially (i.e., before starting their execution) the (n−t) remaining processes

are correct and define a reliable system in which they decide in two rounds.

• If more than n+t
2 processes propose the same value b, the value b is decided in three rounds

(Exercise 2 in Section 17.12).

17.3 Enriching CAMPn,t[∅] with a Perpetual Failure Detector

17.3.1 Enriching CAMPn,t[∅] with a Perfect Failure Detector

Perfect failure detector The notion of a perfect failure detector P was defined in section 3.5.2. Such

a failure detector provides each process pi with a read-only local set variable suspectedi, initialized

to ∅, which satisfies the two following properties. Let pi and pj be any two processes.

• Completeness. If pi is correct (never crashes) and pj is faulty (crashes), there is a time after

which the set suspectedi forever contains j.

• Strong accuracy. No process is added to suspectedi before crashing.

While the strong accuracy property states that there is no erroneous suspicion, completeness states

that crashed processes are eventually suspected.

Perpetual failure detectors The class P of failure detectors belongs to the family of perpetual

failure detectors. This come from its accuracy property, which states a property that is true from from

the very beginning of the execution.

As an example, let us weaken the accuracy property defining P “no process pj is added to

suspectedi before crashing” in “there is a time after which suspectedi contains only crashed pro-

cesses” (eventual strong accuracy). Completeness and eventual strong accuracy define the class of

eventually perfect failure detectors, (denoted �P , see Section 3.5.2). �P is an eventual failure de-

tector in the sense it allows a finite anarchy period to occur, during which any process can be falsely

suspected.
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A simple algorithm for the asynchronous model CAMPn,t[P ] A simple algorithm that imple-

ments consensus in CAMPn,t[P ] is described in Fig. 17.2, This algorithm is coordinator-based: the

processes proceed in consecutive asynchronous rounds, each round being coordinated by a predeter-

mined process.

Each process pi executes a sequence of (t+1) asynchronous rounds at the end of which it decides

(if it has not crashed). As rounds are asynchronous (they are not given for free by the model), each

process pi has to manage a local variable ri that contains its current round number. Let us observe that,

due to asynchrony, nothing prevents two processes from being at different rounds at the same time.

Each process pi manages a local variable esti that contains its current estimate of the decision

value (so, esti is initialized to the value it proposes, namely vi). Each round is statically assigned

a coordinator: round r is coordinated by process pr. This means that, during this round, pr tries to

impose its current estimate as the decision value. To this end, pr broadcasts the message EST(estr).
If a process receives EST (est) from pr during round r, it updates its estimate of the decision value

esti to the value est it has received proceeds to the next round. If it suspects pr, it proceeds directly to

the next round. Let us notice that a message does not carry its sending round number.

operation propose (vi) is

(1) esti ← vi; ri ← 1;

(2) while ri ≤ t+ 1 do

(3) begin asynchronous round

(4) if (ri = i) then broadcast EST (esti) end if;

(5) wait
(
(EST (est) received from pri ) ∨ (ri ∈ suspectedi)

)
;

(6) if (EST (est) received from pri ) then esti ← est end if;

(7) ri ← ri + 1
(8) end asynchronous round

(9) end while;

(10) return (esti).

Figure 17.2: A coordinator-based consensus algorithm for CAMPn,t[P ] (code for pi)

Theorem 80. The algorithm described in Fig. 17.2 implements the consensus agreement abstraction

in the system model CAMPn,t[P ].

Proof Proof of the CC-termination property. The proof consists in showing that no correct process

blocks forever in the wait() statement executed during a round. Let us consider the first round. If p1 is

non-faulty it invokes propose (v) and consequently sends the message EST (v1) to all processes, which

(as the channels are reliable) eventually receives it. If p1 crashes, we eventually have 1 ∈ suspectedi
(let us remember 1 is p1’s identity). It follows that no process pi can block forever during the first

round and consequently each non-faulty process enters the second round. Applying inductively the

same reasoning to the following rounds 2, 3, etc., until (t + 1), it follows that each correct process

returns (decides) a value.

Proof of the CC-agreement property. As t is an upper bound on the number of faulty processes,

it follows that at least one among the (t + 1) processes p1, . . . , pt+1, is correct. Let px be the first of

these non-faulty processes. Due to the CC-termination property, px executes the round r = x. As px
is the coordinator of round r = x, it sends its current estimate estx = v to every process. As it is

non-faulty, no process pi suspects it, which implies that the predicate x ∈ suspectedi remains forever

false. Consequently, each process pi receives EST (v) and executes esti ← v. It follows that all

processes that terminate round x have the same estimate value v. The CC-agreement property follows

from the observation that no value different from v can thereafter be sent in a later round.

Proof of the CC-validity property. Initially, every local estimate esti is assigned the value vi
proposed by process pi. It follows that, if esti is assigned during the first round it takes the value of

est1 = v1 (line 6). Similarly, if esti is assigned during the second round it takes the current value of

est2, which is v1 or v2. CC-validity follows by induction on the round number. �Theorem 80
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Cost It is easy to see that the algorithm requires (t + 1) (asynchronous) rounds. Moreover, in each

round, at most one process broadcasts a message whose size is independent of the algorithm. So, in

the worst case (no crash), n(t+1) messages are sent (considering that a process also sends message to

itself). Let |v| be the bit size of a proposed value. The bit communication complexity of the P -based

consensus algorithm is consequently n(t+ 1)|v|.

P is not the weakest failure detector class to solve consensus Let us consider the failure detector

class denoted S defined by the same completeness property as P , plus the following weak accuracy

property: some correct process is never suspected. Hence, while a failure detector of the class P never

suspects a process before it crashes, a failure detector of the class S can erroneously suspect not only a

process before it crashes, but also (intermittently or forever) all – except one – correct processes. (The

class P is strictly stronger than the class S: it it is not possible to build a failure detector of the class

P in CAMPn,t[S].) As it is possible to design an algorithm solving consensus in in CAMPn,t[S], it

follows that P cannot be the weakest class of failure detectors that allows consensus to be implemented

in an asynchronous system prone to process crashes.

The reader can check that the algorithm described in Fig. 17.2, where each process is required to

execute n rounds (instead of t+ 1), implements consensus in CAMPn,t[S]. The proof is the same as

for the previous algorithm. The important point is that, due to the weak accuracy property of S and

the fact that t = n− 1, one of the t+ 1 = n coordinators is necessarily a correct process that is never

suspected.

17.4 Enriching CAMPn,t[t < n/2] with an Eventual Leader

17.4.1 The Weakest Failure Detector to Implement Consensus

The weakest failure detector class to solve consensus As we have seen, the class P of perfect

failure detectors is not the weakest class of failure detectors that permit us to implement consensus.

Nor is the class S previously described. This means that these failure detector classes provide the

processes with more information on failures than needed to solve consensus in the system model

CAMPn,t[∅].
The weakest failure detector class to solve consensus in CAMPn,t[∅] is the combination of the

two failure detector classes Σ and Ω, which is consequently denoted Σ× Ω.

• The class Σ is the class of quorum failure detectors, denoted Σ, introduced in Section 7.1,

due to C. Delporte, H. Fauconnier, and R. Guerraoui (2004 and 2010). As we have seen, Σ
provides each process pi with a local read-only set variable σi that eventually contains only

correct processes (liveness property). Moreover, for any pair 〈i, j〉, and any time instants τ and

τ ′, we have στ
i ∩στ ′

j �= ∅, where στ
i is the value of σi at time τ and στ ′

j is the value of σj at time

τ ′. This quorum intersection property is a perpetual property (it states an always true property).

• The class Ω, formally defined in the following section, is the class of eventual leader failure

detectors. It provides each process with a read-only local variable such that eventually all these

local variables contain forever the identity of the same non-faulty process.

The failure detector Ω, and the proof it is the weakest failure detector for implementing consen-

sus in CAMPn,t[Σ] are due to T. Chandra, V. Hadzilacos, and S. Toueg (1996).

The class Ω of eventual leader failure detectors This class of failure detectors provides each pro-

cess pi with a read-only local variable leaderi such that the set of local variables {leaderi}1≤i≤n

collectively satisfy the following properties, where leaderτi denotes the value of leaderi at time τ .

As defined in Section 3.3.2, let F denote a crash pattern (F (τ) is the set of processes crashed at time
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τ ), Faulty(F ) the set of processes that crash in the failure pattern F , and Correct(F ) the set of

processes that are non-faulty in the failure pattern F .

• Validity. ∀i: ∀τ : leaderτi contains a process identity.

• Eventual leadership. ∃	 ∈ Correct(F ), ∃τ : ∀τ ′ ≥ τ : ∀i ∈ Correct(F ): leaderτ
′

i = 	.

These properties state that a unique leader is eventually elected, this leader is not a faulty process, but

there is no knowledge of when it is elected. Several leaders can co-exist during an arbitrarily long

(but finite) period of time, and there is no way for a process to know when this anarchy period is over.

During this anarchy period, it is possible that crashed processes are considered as leaders by non-faulty

processes, and different processes may have different leaders.

A failure detector of the class Ω is an eventual failure detector. This is because the leadership

property states that the property “there is a common correct leader” is not required to be satisfied from

the very beginning, but only after some finite time.

The system model CAMPn,t[t < n/2,Ω] As we have seen in Chapter 6, the assumption of a

majority of non-faulty processes allows the implementation of a failure detector of the class Σ. Hence,

in the following, we consider only systems that satisfy the assumption t < n/2. The asynchronous

model considered is consequently CAMPn,t[t < n/2,Ω] (CAMPn,t[t < n/2] enriched with any

failure detector of the class Ω).

Let pi and pj be any pair of processes. An algorithm can easily benefit from the assumption

n > 2t to force both pi and pj to receive at least one message broadcast by the same process. To

this end, let us direct pi and pj to wait for messages broadcast by (n − t) distinct processes, and

let Qi (resp., Qj) be the set of processes from which pi (resp., pj) receives a message. We have

|Qi| = |Qj | = n − t > n/2 > t (each set Qi and Qj is a majority set). Hence, Qi ∩ Qj �= ∅, and

there is at least one process pk that belongs to both Qi and Qj .

As a quorum failure detector provides the processes with the same intersection property (without

assuming the requirement of a majority of correct processes), the algorithms described in this section

remain correct when the non-empty intersection property provided by t < n/2 is obtained from a

quorum failure detector. As it is very simple, the replacement, in these algorithms, of the assumption

t < n/2 by a failure detector Σ is left to the reader.

Ω is a computability lower bound As seen in Chap. 10 consensus can be implemented in syn-

chronous message-passing systems prone to process crash failures, and, as seen in Chap. 16, it cannot

be implemented in asynchronous message-passing systems prone to even a single process crash fail-

ure. When considering the failure-based approach, Ω provides the weakest information on failures

that allows consensus to be implemented despite asynchrony and process crashes. When looking at

the synchrony/asynchrony spectrum, Fig. 17.3 shows the limit beyond which consensus cannot be

solved when enriching the underlying system with a failure detector: any failure detector weaker than

Ω does not allow us to solve consensus in the presence of asynchrony and process crashes. In this

sense, Ω can be seen as a device that restricts the asynchrony of the underlying system.

Let us recall that the eventual leader Ω belongs to the family of failure detector objects, which

(due to its very definition) is based on failure patterns and failure detector histories.

17.4.2 Implementing Consensus in CAMPn,t[t < n/2, Ω]

The algorithm presented in this section is due to A. Mostéfaoui and M. Raynal (1999 and 2001).

Structure of the algorithm Each process pi proceeds through consecutive asynchronous rounds.

Each round is made up of two phases. During the first phase, the processes strive to select the same

estimate value. This is done with the help of the failure detector. Then, they try to decide during the
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CAMPn,t[t < n/2]CSMPn,t[∅]

CAMPn,t[t < n/2, Ω]

Figure 17.3: Ω is a consensus computability lower bound

second phase. This occurs when they obtain the same value at the end of the first phase. Let us observe

that, as the rounds are asynchronous, it is possible that not all the processes are at the same round at

the same time.

Moreover, when a process is about to decide a value v, it first broadcasts a message DECIDE(v),
and then decides (statement return(v)). When a process receives a message DECIDE(v), if forwards

(i.e., broadcasts) it before deciding. Let us remember that when a processes executes return(v), it

stops participating in the algorithm. The reception of a message DECIDE () can occur at any time. As

we will see, this is to prevent permanent blocking that could otherwise occur.

Local variables Each process pi manages the following local variables:

• ri: the current round number.

• est1i: the local estimate of the decision value at the beginning of the first phase of a round.

• est2i: the local estimate of the decision value at the beginning of the second phase of a round.

• my leaderi and reci: the auxiliary variables used by pi in the first phase and the second phase

of a round, respectively.

Let us remember that ⊥ denotes a default value which cannot be proposed by a process.

The behavior of a process during the first phase of a round The algorithm executed by every

process pi is described in Fig. 17.4. The aim of the first phase of a round r is to provide the processes

with the same value v in their local estimate est2i. When this occurs, a decision will be obtained

during the second phase of round r. As we are about to see, this always happens when the eventual

leader is elected.

So, the main issue of the first phase is to prevent the violation of the safety property (no two

different values are decided) when Ω is in its anarchy period during which a single correct leader has

not yet been elected. To preserve the safety property, the first phase guarantees a property (called

quasi-agreement) which is satisfied just before the processes enter the second phase of the round r
(i.e., before line 11). Let est2rx be the value of est2x when px starts the second phase of round r. The

quasi-agreement property is defined as follows:

(
(est2ri �= ⊥) ∧ (est2rj �= ⊥)

)
⇒ (est2ri = est2rj = v).

The predicate est2ri = v means that, from px’s point of view, v can be decided, est2ri = ⊥ means

that, from px’s point of view, no value can be decided. Quasi-agreement states that the processes that

enter the second phase of a round propose to decide on the same value v (case est2ri = est2rj = v), or

propose to proceed to the next round (case est2ri = ⊥).

In order for quasi-agreement to be satisfied at the end of the first phase of each round r, a process

does the following:
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operation propose (vi) is

(1) est1i ← vi; ri ← 0;

(2) while (true) do

(3) begin asynchronous round

(4) ri ← ri + 1;

% Phase 1 : select a value with the help of Ω %

(5) my leaderi ← leaderi; % read the local output of Ω %

(6) broadcast PHASE1 (ri, est1i,my leaderi);
(7) wait

(
(PHASE1 (ri,−,−) received from (n− t) processes)

(8) ∧ (PHASE1 (ri,−,−) received from pmy leaderi ∨ my leaderi �= leaderi)
)
;

(9) if
(
(∃�: PHASE1 (ri,−, �) received from > n/2 processes) ∧ ((ri, v,−) received from p�)

)

(10) then est2i ← v else est2i ← ⊥ end if;

% Here, we have
(
(est2i �= ⊥) ∧ (est2j �= ⊥)

)
⇒ (est2i = est2j = v) %

% Phase 2 : try to decide a value from the est2 values %

(11) broadcast PHASE2 (ri, est2i);
(12) wait (PHASE2 (ri,−) received from (n− t) processes);

(13) let reci = {est2 | PHASE2 (ri, est2) has been received};

(14) case (reci = {v}) then broadcast DECIDE(v); return(v)
(15) (reci = {v,⊥}) then est1i ← v
(16) (reci = {⊥}) then skip

(17) end case

(18) end asynchronous round

(19) end while.

(20) when DECIDE(v) is received do broadcast DECIDE(v); return(v).

Figure 17.4: An algorithm implementing consensus in CAMPn,t[t < n/2, Ω] (code for pi)

• First pi reads its local read-only variable leaderi provided by the failure detector Ω, and keeps its

value in my leaderi (line 5). Then, pi broadcasts the message PHASE1 (r, est1i,my leaderi),
which carries the relevant part of its local state. Let us remember that broadcast() is a macro-

operation, which is not reliable (line 6).

• Then pi waits for (n − t) messages PHASE1 (r,−,−) (line 7). Let us notice that, as up to

t processes may crash, this is the maximum number of messages that a process can wait for

without risking being blocked forever. Let us also notice that, as t < n/2, any set of (n − t)
processes defines a majority and any majority includes at least one non-faulty process.

Process pi also waits until either it has received a message PHASE1 (r,−,−) from the process

it considers as its current leader (pmy leaderi), or its current leader has changed (my leaderi �=
leaderi, line 8).

• When the previous broadcast/receive exchange pattern has been executed, pi assigns a value

to est2i. In order for the quasi-agreement predicate to be satisfied, this value is computed as

follows. If there is a process p� such that

1. a majority of processes consider p� as their leader (this is witnessed by the messages

PHASE1 (r,−, 	) they sent), and

2. a message PHASE1 (r, v,−) has been received from this process p�,

then pi sets est2i to v (that is the value of est1� when p� started round r). Otherwise, pi sets

est2i to ⊥. As any two majorities of processes intersect, it is not possible for two majorities

to consider different processes as their unique leader, from which we conclude that it is not

possible to have est2ri = v �= ⊥ and est2rj = v′ �= ⊥ with v �= v′.

Let us remark that it is possible that, at a round r, a process p� is considered as leader by a majority

of processes, while it does not consider itself as leader (we have then my leader� �= 	).
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The behavior of a process during the second phase of a round The second phase of round r obeys

the same communication pattern as the first phase. A process pi first broadcasts the relevant part of its

state (message PHASE2 (r, est2i), line 11), and then waits for a message PHASE2 (r,−) from (n− t)
processes (line 12). It follows from the first phase of round r that any message PHASE2 (ri, est2)
broadcast by a process is such that est2 = ⊥, or est2 = v �= ⊥ (due to the quasi-agreement property,

no two messages can carry different non-⊥ values). It follows that the set reci of values received by

pi (line 13) can be equal to either {v}, or {v,⊥}, or {⊥}.
• If reci = {v}, pi informs the other processes that it decides v (broadcast of the message DECIDE

(v)), and then decides v by executing return(v) (line 14).

• If reci = {v,⊥}, pi considers v as its new estimate value est1i (this is because some other

process might have decided v), and proceeds to the round r + 1.

• If reci = {⊥}, pi proceeds to the next round (without modifying est1i).

It is important to notice that, at any round r, the local predicates reci = {v} and recj = {⊥} are

mutually exclusive (if one is true, the other is necessarily false). This is an immediate consequence

of the fact that any two majorities intersect: if pi broadcasts DECIDE (v), it has received the message

PHASE2 (ri, v) from a majority of processes. Hence, each other process pj receives at least one

message PHASE2 (ri, v) and cannot have recj = {⊥} (and vice versa by exchanging v and ⊥).

Why inform the other processes before deciding? A process that decides stops participating in

the consensus algorithm. According to the failure pattern, the behavior of the failure detector, and

asynchrony, it is possible that not all the processes that decide do so during the same round. Hence,

while some processes decide during round r, it is possible that other processes proceed to round(r+1)
and, during this round, wait forever for messages from non-faulty processes that have terminated

during round r. The broadcast of the decided value, before actually deciding it, ensures that, as soon

as a process pi decides, all the non-faulty processes eventually decide.

17.4.3 Proof of the Algorithm

Theorem 81. The algorithm described in Fig. 17.4 implements the consensus agreement abstraction

abstraction in ASn,t[t < n/2,Ω].

Proof Proof of the CC-validity property. Let us observe that any message DECIDE (v) carries a value

v �= ⊥. Hence, ⊥ cannot be decided. A value that is decided is a non-⊥ value that comes from a

local variable est2i, which in turn comes from a local variable est1j . As initially the local variables

est1j contain only proposed values, and then the algorithm copies values from est1x to est2y and vice

versa, the validity property follows.

Proof of the CC-termination property. Claim C1. No correct process blocks forever in a round.

Given C1, the proof is by contradiction. Let us assume that no process decides. It follows from the

eventual leadership property of Ω, the claim C1, and the fact that faulty processes eventually crash

(otherwise they would not be faulty), that there is a finite round r from which (1) only the non-faulty

processes are alive, and (2) these processes have forever the same non-faulty leader (say p�) in their lo-

cal variables my leaderi. So, let us consider, the non-faulty processes (that are more than n/2) when

they execute the round r. Each of them (including p�) broadcasts PHASE1 (r,−, 	) and receives only

messages PHASE1 (r,−, 	). Moreover, each process receives at least (n − t) such messages. It fol-

lows that the predicate “(∃	: PHASE1 (ri,−, 	) received from more than n/2 processes) ∧ ((ri, v,−)
received from p�)” is satisfied at each process pi. Consequently, each process sets est2ri to v, and

during the second phase of round r only value v is sent. It follows that the set reci of each process

is equal to {v}. Hence, each non-faulty process decides, which concludes the proof of CC-termination.
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Proof of the claim C1. If a process decides, it has previously broadcast a message DECIDE (). As

the channels are reliable, each correct process receives this message and decides. It follows that, if a

process decides, no non-faulty process remains blocked forever in a round.

Let us now consider the case where no process decides. The proof is by contradiction. Assuming

that no process decides, let r be the smallest round in which a non-faulty process pi blocks forever. So,

pi blocks in the wait() statement in the first phase or the second phase of round r. As no correct process

blocks forever in a round r′ < r (definition of r), it follows that pi receives (n− t) PHASE1 (r,−,−)
messages. Moreover, if its current leader pmy leaderi is non-faulty it receives a message PHASE1

(r,−,−) from this process. If pmy leaderi is faulty, we eventually have my leaderi �= leaderi (due

to the eventual leadership of Ω). It follows that no non-faulty process pi can block forever in the first

phase of round r. A similar reasoning applies to the second phase of round r: pi receives at least

(n− t) PHASE2 (r,−) messages from the non-faulty processes, and cannot be blocked forever in this

phase either. It follows that r is not the smallest round in which a non-faulty process blocks forever,

which contradicts the definition of r and proves the claim. End of the proof of the claim C1.

Proof of the CC-agreement property. Let r be the smallest round during which a process broadcasts

a message DECIDE (v). We claim that, if any process broadcasts DECIDE (v′) at round r, we have

v′ = v (claim C2), and the local estimates est1i of all the processes that proceed to r + 1 are such

that est1i = v (claim C3). It follows from these claims that no value different from v can be ever be

decided, which proves CC-agreement.

Proof of the claim C2. Let pi (resp., pj) be a process that sends a message DECIDE (v) (resp. DECIDE

(v′)) at round r. It follows from the text of the algorithm that pi received (n − t) messages PHASE2

(r, v) and pj received (n − t) messages PHASE2 (r, v′). As n − t > n/2, and a process broadcasts

at most one message PHASE2 (r,−), pi and pj have received the same message PHASE2 (r, v′′) from

some process px (that belongs to the intersection of the two majorities of (n− t) processes). It follows

that v′′ = v = v′, which proves the claim. End of the proof of the claim C2.

Proof of the claim C3. We have to prove that, if a process pi broadcasts a message DECIDE (v) during

a round r and pj proceeds to round r + 1, we have est1j = v when pj starts round r + 1.

As pi broadcasts a message DECIDE (v) during a round r, there are at least (n− t) processes that

have sent a message PHASE2 (r, v). As any two majorities intersect and n − t > n/2, it follows that

pj has received at least one message PHASE2 (r, v) among the (n− t) PHASE2 (r,−) messages it has

received during the second phase of round r. Moreover, it follows from the quasi-agreement property

(which has been implicitly proved in the description of the algorithm), that pj receives both v and ⊥
(and no other value) in the second phase of round r, i.e., we have recj = {v,⊥} (recj cannot be equal

to {v}, otherwise it would have broadcast DECIDE (v) during r). It follows that pj updates est1j to v
before proceeding to round r + 1. End of the proof of the claim C3. �Theorem 81

Remark The reader can check that the proof of the CC-agreement property (safety) relies only on

the majority of correct processes assumption (or on the intersection property of the quorum failure

detector of the class Σ if such a failure detector is used instead of the “majority of correct processes”

assumption). Whereas the proof of the termination property relies only on the use of the eventual leader

oracle of the class Ω. This is in agreement with the FLP impossibility result: without the additional

power provided by Ω, it is not possible to design a consensus algorithm that always terminates in

ASn,t[t < n/2].
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17.4.4 Consensus Versus Eventual Leader Failure Detector

When a failure detector of the class Ω is used, no process ever knows the time instant from which the

failure detector forever provides the processes with the identity of the same correct process. A failure

detector is a service that never terminates. Its behavior depends on the failure pattern, and Ω has no

sequential specification.

However, when processes execute a consensus algorithm, there is time instant at which each pro-

cess knows that a value has been decided (this occurs when it invokes the return() statement). There

is a single decided value, but that value can be the value proposed by a faulty process. To, summarize,

consensus is a distributed function (see Fig. 1.5), while a failure detector is not.

17.4.5 Notions of Indulgence and Zero-degradation

Indulgence The notion of an indulgent algorithm was introduced by R. Guerraoui (2000).

Let A be an algorithm based on a failure detector of a class C. A is indulgent with respect to the

failure detector class C if its safety property is never violated, whatever the behavior of the failure de-

tector (of the class C) it uses. This means that, if the failure detector never meets its specification, it is

possible that A never terminates, but, if it terminates, it returns correct results. Expressed differently, if

the underlying failure detector behaves arbitrarily, the termination property of A can be compromised,

but its safety property is never violated.

As shown by the remark as the end of the previous section, the algorithm described in Fig. 17.4

is indulgent with respect to Ω. On the one hand, in the executions in which the eventual leadership

property is not satisfied, it is possible that the algorithm does not terminate. On the other hand, all the

executions that terminate do satisfy the consensus safety property. These executions include all the

executions where the failure detector satisfies the eventual leadership property plus some executions

where it does not (as an exercise, the reader is invited to check that such executions do exist.)

Zero-degradation This notion was introduced by P. Dutta and R. Guerraoui (2002).

A failure detector of the class Ω has a perfect behavior if its eventual leadership property is satisfied

from the very beginning of the execution. This notion allows us to to evaluate the efficiency of an Ω-

based algorithm without being bothered by the erratic behavior of Ω during a finite but a arbitrarily

long period. More precisely, the erratic behavior of Ω during an arbitrarily long period does not depend

on the algorithm that uses it, it depends only on the environment (asynchrony and process failures).

Let us consider a failure-free execution with a failure detector of the class Ω that has a perfect

behavior. It is easy to check that processes decide at the end of the first round, i.e., after two consecutive

communication steps, which is optimal. In this sense, the algorithm is failure detector-efficient. (We

do not consider the cost due to DECIDE () messages as, in the previous scenario, they are not needed

for a process to decide).

The consensus abstraction is typically used in a repeated form, and a process failure during a

consensus instance appears as an initial failure in the following consensus instances. Assuming its

underlying failure detector behaves perfectly, a consensus algorithm is zero-degrading if a crash in

one consensus instance does not impact the performance of the future consensus instances. It is easy

to check that the algorithm described in Fig. 17.4 satisfies the zero-degradation property: if the failure

detector behaves perfectly, processes decide in two communication steps whatever the number of

processes that have crashed before (or during) this consensus instance.

17.4.6 Saving Broadcast Instances

Although crash failures do occur, they are rare. So, the following question naturally arises: Is it

possible to make the previous consensus algorithm more efficient when few processes may crash?

This section positively answers this question by showing that the broadcast of DECIDE () messages
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can be saved when t < n/3. Hence, the improvement presented in this section is for the system model

CAMPn,t[t < n/3,Ω].

Modified algorithm The improvement appears in the local processing done by a process during the

second phase of a round. Let #(v) denote the number of PHASE2 (r,−) messages received by pi that

carry value v. Let us remember that, due to the quasi-agreement property, at the end of round r, (1) a

set reci contains at most two values (namely the default value ⊥ and a non-⊥ value v), and (2) if two

sets reci and recj contain non-⊥ values a and b, we have a = b.
The improvement is described in Fig. 17.5, where line 14 of Fig. 17.4 is split into two lines, namely

line 14-1 and line 14-2. If a process pi receives more than 2t messages PHASE2 (r, v), it unilaterally

decides v without informing the other processes, thereby saving the broadcast of the message DECIDE

(). The other cases are the same as in Fig. 17.4. It follows that, when during a round no est2i variable

is equal to ⊥, each process decides without broadcasting the decide value.

(11) broadcast PHASE2 (ri, est2i);
(12) wait() (PHASE2 (ri,−) received from n− t processes);

(13) let reci = {est2 | PHASE2 (ri, est2) has been received};

(14-1) case (∃v �= ⊥ : v ∈ reci ∧ 2t+ 1 ≤ #(v)) then return(v)
(14-2) (∃v �= ⊥ : v ∈ reci ∧ t < #(v) < 2t+ 1) then broadcast DECIDE(v); return(v)
(15) (∃v �= ⊥ : v ∈ reci ∧ #(v) ≤ t) then est1i ← v
(15) (reci = {⊥}) then skip

(17) end case.

Figure 17.5: The second phase for ASn,t[t < n/3,Ω] (code for pi)

Theorem 82. The algorithm obtained by replacing the second phase of Fig. 17.4 by the statements of

Fig. 17.5 implements the consensus agreement abstraction in CAMPn,t[t < n/3,Ω].

Proof If no process executes the first line of the case statement of Fig. 17.5, the proof is the same as

the one of the algorithm in Fig. 17.4.

So, let pi be a process that executes the first line of the case statement in Fig. 17.5: it decides v
without informing the other processes. This means that pi received at least (2t+1) messages PHASE2

(r, v), from which we conclude that any process pj that executes this round receives at least (t+1) of

these messages PHASE2 (r, v). Hence, pj is such that (∃v �= ⊥ : v ∈ reci ∧ t < #(v)). Consequently,

pj executes either the first or the second line of the case statement, and necessarily decides v, which

proves that the new second phase neither violates the CC-agreement, nor prevents CC-termination.

�Theorem 82

17.5 Enriching CAMPn,t[t < n/2] with Randomization

17.5.1 Asynchronous Randomized Models

In a randomized computation model, in addition to deterministic statements, the processes can make

random choices, based on some probability distribution. In our context, this means that the system

model CAMPn,t[∅] (asynchronous system with up to t process crashes) is enriched with an appropriate

random oracle. We consider two types of such oracles.

The random asynchronous model CAMPn,t[LC] This model is characterized by the fact that each

process has access to a random number generator. Such an oracle, denoted local coins (LC), is defined

by an operation denoted random() that returns to the invoking process the value 0 or 1, each with

probability 0.5.
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It is important to remark that the random number generators associated with the processes are

purely local, i.e., each one is independent from the others.

The random asynchronous model CAMPn,t[CC] In this model, the processes have access to an

oracle called common coin (CC). This oracle can be seen as a global entity that delivers the same

sequence of random bits b1, b2, . . . , br, etc. to the processes, each bit br having the value 0 or 1 with

probability 0.5.

More explicitly, this oracle provides processes with a primitive denoted random() that returns a

random bit each time it is called by a process. The sequence of random bits output by the common coin

satisfies the following global property: the r-th invocation of random() by any process pi returns it the

bit br. This means the same random bit is returned to any process as the result of its r-th invocation of

random() whatever the time of this invocation (hence the name common coin).

In the context of crash failures, assuming message scheduling is not controlled by an adversary,

a common coin can be realized by providing the processes with the same pseudo-random number

generator algorithm and the same initial seed.

17.5.2 Randomized Consensus

The termination property of the consensus problem states that there is a finite time after which every

non-faulty process has decided. In a randomized system, this property can be ensured only with some

probability. More precisely, randomized consensus is defined by the same validity and agreement

properties as consensus plus the following termination property, denoted RbC-termination (random-

ized binary consensus).

• RbC-termination. With probability 1, every non-faulty process decides.

When using a round-based algorithm, the RbC-termination property can be restated as follows

∀i : pi ∈ Correct(F ) : lim
r→+∞

(
Proba [pi decides by round r]

)
= 1.

As we have seen, implementing consensus amounts to solving the non-determinism created by

asynchrony and failures. Failure detectors are a type of oracle that allow this non-determinism to

eventually be solved. Random numbers may be seen as another type of “oracle” that makes it possible

to address problems caused by non-determinism.

The uncertainty is caused by asynchrony, failures, and the existence of many different input vec-

tors. In the following, assuming a worst case adversary (controlling asynchrony and failures) and a

worst case input, we analyze the probabilities coming only from random numbers.

17.5.3 Randomized Binary Consensus in CAMPn,t[t < n/2,LC]

The section presents a randomized binary consensus algorithm due to M. Ben Or (1983). This algo-

rithm is designed for asynchronous systems where each process has a local random bit generator, and

where a majority of processes are correct (system model CAMPn,t[t < n/2,LC]).

A binary randomized consensus algorithm The structure of the algorithm (which is described in

Fig. 17.6) is the same as the one of the Ω-based algorithm described in Fig. 17.4. The processes

proceed by executing asynchronous rounds, and each round is made up of two phases. The local

variables have the same meaning in both algorithms.

During the first phase, each process pi broadcasts its current estimate value (which is in its local

variable est1i). If process pi receives the same estimate value from more than n/2 processes, it adopts

it as the value of est2i. Otherwise, it sets est2i to⊥. It is easy to see that the quasi-agreement property(
(est2ri �= ⊥) ∧ (est2rj �= ⊥)

)
⇒ (est2ri = est2rj = v) is satisfied at the end of the first phase of
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round r, and consequently a set reci used in the second phase can only be equal to {v}, {v,⊥}, or

{⊥}.
The second phase is the same as in Fig. 17.4 except the last line of the “case” statement (line 15).

Now, when, reci = {⊥}, process pi assigns a random bit to est1i. This is the place where randomness

is used to solve non-determinism.

operation propose (vi) is % vi ∈ {0, 1} %

(1) est1i ← vi; ri ← 0;

(2) while (true) do

(3) begin asynchronous round

(4) ri ← ri + 1;

% Phase 1 : from all to all %

(5) broadcast PHASE1 (ri, est1i);
(6) wait()

(
PHASE1 (ri,−) received from (n− t) processes

)
;

(7) if (the same estimate v has been received from > n/2 processes)

(8) then est2i ← v else est2i ← ⊥ end if;

(9) % Here, we have
(
(est2i �= ⊥) ∧ (est2j �= ⊥)

)
⇒ (est2i = est2j = v) %

% Phase 2 : try to decide a value from the est2 values %

(10) broadcast PHASE2 (ri, est2i);
(11) wait() (PHASE2 (ri,−) received from (n− t) processes);

(12) let reci = {est2 | PHASE2 (ri, est2) has been received};

(13) case (reci = {v}) then broadcast DECIDE(v); return(v)
(14) (reci = {v,⊥}) then est1i ← v
(15) (reci = {⊥}) then est1i ← random()
(16) end case

(17) end asynchronous round

(18) end while.

(19) when DECIDE(v) is received do broadcast DECIDE(v); return(v).

Figure 17.6: A randomized binary consensus algorithm for CAMPn,t[t < n/2,LC] (code for pi)

When the proposed values are equal Let us consider the particular case where a single value v is

proposed (hence, the input vector is [v, ·, v]). It is easy to see that at the end of the first phase of the

first round the variables est2i of the non-crashed processes are equal to v. It follows that a process

that does not crash decides when it terminates the second phase of its first round, and the decision is

obtained in two communication steps. In this case, the decision is deterministic and the random oracle

R is not used.

The random oracle is used only when both the values 0 and 1 are proposed. In such cases, the

random oracle is used during round r to help processes by giving them a chance to start the round

(r + 1) with the same value in their local variables est1i. When this occurs, the processes decide in

the round (r + 1).

What does a random oracle break? As consensus is impossible in CAMPn,t[t < n/2], an addi-

tional power is necessary. Here this power is given by the random oracle.

The example given in Fig. 17.7 explains how the random oracle is used to break symmetry and

consequently solve non-determinism. There are three processes p1, p2 and p3 and t = 1. The estimates

at the beginning of round r are est11 = est12 = 1 and est13 = 0. During the first phase of round

r, each process broadcasts its current estimate value. As t = 1, each process waits for two messages

PHASE1 (r,−). The messages that are received by a process are denoted with solid arrows, while the

ones that arrive too late are denoted with dashed arrows. It follows that, at the end of the first phase,

we have est11 = 1, est12 = est13 = ⊥. Then, according to the message exchange pattern that occurs

during the second phase of round r, we obtain rec1 = rec2 = {1,⊥} and rec3 = {⊥}. If, instead of
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est11 = 1

est13 = 0

est23 = ⊥
v3 = 0

est13 = 0

est11 = 1

v1 = 1

Second phase of rFirst phase of r

est21 = 1

est22 = ⊥v2 = 1

est12 = 1

est12 = 1

rec3 = {⊥}

rec2 = {1,⊥}

rec1 = {1,⊥}

Figure 17.7: What is broken by a random oracle

executing the statement “est13 ← random()”, the process p3 does not modify its local estimate est13
(as shown in Fig. 17.7), these estimates would keep the same values as at the beginning of round r,

and this could repeat forever, preventing termination. If, in accordance with the algorithm in Fig. 17.6,

p3 executes “est13 ← random()”, it selects the value 1 with probability 0.5, and consequently the

processes decide during the next round with probability 0.5.

Theorem 83. The algorithm described in Fig. 17.6 implements the randomized binary consensus

abstraction in the system model CAMPn,t[t < n/2,LC].

Proof The proof of the CC-validity and CC-agreement properties is the same as given in the proof

of Theorem 81. (This is not at all counter-intuitive as the Ω-based algorithm of Fig. 17.4 and the LC-

based algorithm of Fig. 17.6 have the same structure, and its added underlying computability power

are used only to ensure their termination property.)

Proof of the RbC-termination property. As we have seen, if, when they start a round r, the local

estimates est1i of the processes are equal to the same value v, then the processes decide the value v
during r. The proof shows that, with probability 1, there is a round at which the processes start with

the same estimate value est1i.

The proof uses the following claim C: no process blocks forever in a round. The proof of this

claim is nearly the same as the proof of claim C1 in Theorem 81 (after suppressing the part that refers

to the local variable my leaderi). Hence, this proof is not repeated here, and left to the reader. (Let

us remark that this claim depends neither on Ω, nor on LC.)

Let us observe that, while the probability that the estimates est1i of the non-faulty processes are

equal at the end of a round depends on the execution, it is always greater than or equal to p = (1/2n) >
0 (i.e., never equal to 0). Moreover, let us also remark that, when all the correct processes start a round

r with their local variables est1i equal to the same value v, these local variables remain equal to v at

the end of round r. So, let P (r) be the probability that the processes have the same est1i values at the

end of a round r. We have

P (r) ≥ p+ (1− p)p+ (1− p)2p+ · · ·+ (1− p)r−1p = 1− (1− p)r.

Finally, if no process decided by some round, due to claim C, the non-faulty processes enter the

next round. From this observation, combined with the fact that limr→+∞

(
1−(1−p)r

)
= 1, it follows

that, with probability 1, there is a round at the end of which the est1i of the non-faulty processes are

equal. When this occurs the non-crashed processes decide during the next round. The RbC-termination

property follows (namely, every non-faulty process decides with probability 1). �Theorem 83
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Favor early termination Given a round r, three scenarios are possible according to (1) the initial

estimate values est1i of the processes that execute round r, and (2) the asynchrony pattern. Such a

pattern defines, for each process, which are the (n− t) messages it receives and processes.

• Scenario 1. All the processes that terminate round r, decide at the end of round r. This always

occurs always when the processes start round r with the same estimate value. In this case,

the scenario is independent of the asynchrony pattern. But this scenario can also happen in

“favorable” asynchrony patterns which occur when “enough” (but not all) processes start round

r with the same estimate value.

• Scenario 2. Some processes decide during round r while the other processes proceed to round

(r + 1).

• Scenario 3. No process decides during round r and the processes proceed to round (r + 1).

It is actually possible to force the processes to always decide by the end a round r in some scenarios

that do not require them to start this round with the very same estimate value. These scenarios, which

are independent of the failure pattern, are characterized by the following predicate (where v and v
denote the values of the binary consensus):

Pred(r, v) ≡
(

less than (n− t)/2 processes start round r with est1i = v
)
.

As we are about to see, when Pred(r, v) is true, the value v can be safely decided during round r.

From an operational point of view, exploiting this predicate requires an additional phase (numbered

0) that is inserted just after the statement ri ← ri + 1 (line 4). This additional phase is as follows:

broadcast PHASE0 (ri, est1i);
wait

(
PHASE0 (ri,−) received from (n− t) processes

)
;

est1i ← most frequent estimate received in the (n− t) PHASE0 (ri,−) messages,

If v and v are equally received, any of them is selected.

If both Pred(r, v) and Pred(r, v) are false, phase 0 consists in a simple exchange of estimate

values. So, let us assume that one of them is true (say Pred(r, v)) and let pi be any process that

terminates round r. As pi receives (n− t) PHASE0 (ri,−) messages, and less than (n− t)/2 of them

carry v, it follows that pi has received the value v more than (n− t)/2 times, and consequently it sets

est1i to v. As pi is any process that executes round r, it follows that the local estimate est1i of the

processes that terminate phase 0 of this round are equal to v. As we have seen, when this occurs, they

decide the value v during round r.

Let us observe that the additional phase 0 is not required to be executed at each round. It can be

executed only during predetermined rounds, e.g., only during the first round.

17.5.4 Randomized Binary Consensus in CAMPn,t[t < n/2,CC]

The advantage of a common coin In the system model CAMPn,t[t < n/2,CC], the processes can

use a common coin which is an object that provides them with a strong agreement, namely, whatever

the processes pi and pj , the r-th invocation of the operation random() by pi, and the r-th invocation

of the operation random() by pj , returns them the same random bit br. As we are about to see, this

property can be used to help the processes ensure the RC-termination property of the randomized

consensus abstraction.
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Implementing a common coin when the adversary does not control message scheduling In

the context of crash failures, a common coin can easily be implemented in systems where message

scheduling is fair, i.e., when a process waits for messages from (n − t) processes, the messages it

will receive can be from any subset of (n− t) processes. This means that the adversary cannot control

which messages are received by processes. As already indicated, this context allows a common coin to

be implemented by providing each process with the same random bit generator algorithm, initialized

with the same seed.

A consensus algorithm based on a common coin A common coin-based binary consensus algo-

rithm is described in Fig. 17.8. This algorithm is due to R. Friedman, A. Mostéfaoui, and M. Raynal

(2005). Each process manages three local variables: ri that contains its current round number, esti
that contains its current estimate of the decision value, and si that contains the random bit associated

with the current round.

At every round r, the behavior of a process pi is as follows:

• A process pi first obtains the value of the r-th random bit and stores it in si (line 4), and then

broadcasts its current state (message EST (r, esti), line 6).

• Then pi waits for messages from (n − t) processes (line 7). These messages are EST (r,−)
messages or DECIDE (−) messages. While a message EST (r,−) carries an estimate value, a

message DECIDE (−) carries a decided value.

• Let #(v) denote the occurrence number of the value v carried in the EST (r,−) messages and

DECIDE (−) messages received by pi during the current round (lines 7-8). There are two cases.

– If there is a value v received that is a majority value (#(v) > n/2), pi sets its estimate

esti to v (line 9). Moreover, if this value v is the value of the r-th random bit (v = si), pi
decides it (line 10).

– If there is no majority value, pi sets its estimate esti to the value of r-th random bit saved

in si (line 11).

When it is about to decide a value v, a process pi first broadcasts a message DECIDE (v) (line 10).

The messages DECIDE () have the same goal as in the previous (deterministic and random)

algorithms, namely to prevent possible permanent blocking of processes. But, they attain their

goal in a different way. Once a process pi received, in round r, a message DECIDE (v) sent by a

process pj , it considers it receives the very same message in all rounds r′ ≥ r until it decides.

The message DECIDE (v) sent by pj and received by pi during round r is a digest that replaces

the messages EST (r, v), EST (r + 1, v), etc., until pi decides.

(Using a task to process the reception of a message DECIDE () – as in the previous algorithms

– remains of course possible. This new way to process DECIDE () messages has been presented

to show a different technique that saves the use of a second task.)

Theorem 84. The algorithm described in Fig. 17.8 implements the randomized binary consensus

abstraction in the system model CAMPn,t[t < n/2,CC].

Proof The proof of the CC-validity property (a decided value is a proposed value) is the same as in

the previous consensus algorithms and is left to the reader. The proof of CC-agreement and RbC-

termination properties have the same structure as in the proof of Theorem 83.

Proof of the CC-agreement property. The proof is based on the following claims.

Claim C1. If all the processes that start a round r have the same estimate value v, they keep forever

that value in their estimates.

Claim C2. Let r be the first round during which a process decides (if any), and v the value it decides.
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operation propose (vi) is % vi ∈ {0, 1} %

(1) esti ← vi; ri ← 0;

(2) while (true) do

(3) begin asynchronous round

(4) ri ← ri + 1;

(5) si ← random();
(6) broadcast EST (ri, esti);
(7) wait

(
EST (ri,−) or DECIDE (−) received from (n− t) processes

)
;

(8) if (∃v in the messages EST (ri,−) or DECIDE (−) such that #(v) > n/2)
(9) then esti ← v;

(10) if (si = v) then broadcast DECIDE (v); return (v) end if

(11) else esti ← si
(12) end if

(13) end asynchronous round

(14) end while.

Figure 17.8: A randomized binary consensus algorithm for CAMPn,t[t < n/2,CC] (code for pi)

(i) Any process that decides during r, decides the same value v, and (ii) the estimate value of any

process that proceeds to round r + 1 is equal to v.

Let r be the first round during which a process decides the value v. Due to item (i) of claim C2, no

other value is decided during round r. Due to item (ii) of claim C2, all processes that proceed to the

round (r+1) have their estimate values equal to v. Due to claim C1, from round (r+1), the estimate

values remain forever equal to v from which it follows that no value other than v can be decided in a

round r′ > r, which concludes the proof of the CC-agreement property.

Proof of claim C1. As all the processes that start round r have the same estimate value v (assumption),

it follows that a process receives (wait() statement, line 7) only messages carrying that value v. More-

over, as t < n/2, a process receives this value from more that n/2 processes. Hence, the predicate

(∃v : #(v) > n/2) is satisfied and consequently each process pi that executes round r sets esti to v.

End of proof of Claim c1.

Proof of claim C2. Let pi be a process that decides v during round r. It follows from lines 8 and 10

that (a) pi received v from a majority of processes, and (b) the random bit br provided by the common

coin is such that br = v. If another process decides a value v′, it has received v′ from a majority of

processes, and as two majorities intersect we have v = v′ which proves item (i) of the claim.

Moreover, any process such that the predicate (∃v : #(v) > n/2) is satisfied during r, de-

cides v during that round. Consequently, if a process pj proceeds to (r + 1), its local predicate

(∃v : #(v) > n/2) is false. Hence it sets its estimate to the value br (lines 8 and 11), which, due to

item (b), is equal to v. End of proof of claim C2.

Proof of the RbC-termination property. Let us first observe that no process can block forever in a

round. This follows from these observations: (a) at most t processes may crash, (b) during a round a

process waits for (n− t) messages, and (c) a non-faulty process that has decided during a round r sent

a message DECIDE (v) that is a digest for the messages EST (r′, v) for any r′ ≥ r.

Claim C3. With probability 1, there is a round r at the end of which all the processes that start round

(r + 1) have the same estimate value.

Assuming claim C3, it follows from claim C1 that (with probability 1) the predicate (∃v : #(v) >
n/2) is satisfied at each process during each round r′ > r. By the assumption that the common coin
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is random, it follows that (with probability 1) there is a round r′ during which the value br′ output by

the random oracle is such that br′ = v. It then follows from the algorithm that, when this occurs, the

processes that execute round r′ decide v during r′, which proves the RbC-termination property.

Proof of claim C3. Let us consider a run of the algorithm. There are three cases.

• Case 1. There is a round r such that all the processes that execute round r, execute the “else”

part of the “if” statement (line 11). Hence, they all set their estimates esti to the same random

bit value br. Consequently their estimates are equal at the end of r, which proves the claim.

• Case 2. There is a round r such that all the processes that execute round r, execute the “then”

part of the “if” statement. Hence, they all set their estimates esti to the same value v (which is

a majority value), which proves the claim.

• Case 3. The third case is when, in each round, some processes execute the “then” part of the

“if” statement, while others execute the “else” part.

Let us remember that the value of each random bit is 0 or 1, each with probability p = 1/2.

Let vx be the value v that the processes executing the “then” part of the “if” statement assign

to their estimates during round x, and bx be the value of the common coin output at round x.

This means that Proba[vx = bx] = p = 0.5. Let us compute the probability P (r) that there is a

round x, 1 ≤ x ≤ r, during which we have vx = bx. We have

P (r) = p+ (1− p)p+ (1− p)2p+ · · ·+ (1− p)r−1p = 1− (1− p)r.

It follows that limr→+∞ P (r) = 1 which proves claim C3.
�Theorem 84

Expected number of rounds As we have seen, RbC-termination is obtained in two stages. In the

first stage the non-crashed processes adopt the same estimate value v, and in the second stage the

random bit has to be the same as the value v.

• As seen in the proof of the RbC-termination property, the situation in which the processes do

not adopt the same value at the end of a round r is when some processes execute line 9 and

obtain the same value v, others execute line 11 and obtain the same random bit br, and v �= br.

However, with probability 0.5, we have v = br. Thus, the expected number of rounds for this to

occur is bounded by 2.

• For the second stage, here again, the probability that the random bit will be equal to the single

estimate value of the processes is equal to 1/2. Thus, the expected number of rounds for this to

happen is also bounded by 2.

It follows that the expected number of rounds for the processes to decide is upper bounded by 2+2 = 4
rounds.

17.6 Enriching CAMPn,t[t < n/2] with a Hybrid Approach

17.6.1 The Hybrid Approach: Failure Detector and Randomization

Combining algorithms Interestingly it is possible to combine deterministic binary consensus algo-

rithms with randomized binary consensus algorithms in order to obtain hybrid algorithms.

The combination of a deterministic binary consensus algorithm designed for the CAMPn,t[t <
n/2,Ω] model, with a randomized binary consensus algorithm designed for the CAMPn,t[t < n/2,LC]
model provides an algorithm that works in the hybrid model CAMPn,t[t < n/2,Ω,LC]. Such an

algorithm satisfies the validity, integrity and agreement consensus properties, plus the following ter-

mination property.
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• If the modules that are assumed to implement a failure detector of the class Ω satisfy the spec-

ification of Ω (namely, after a finite time, they forever provide the processes with the same

non-faulty leader), then each non-faulty process eventually decides.

It is important to notice that the termination is then independent of the random oracle. This

means that the misbehavior of the random oracle (for example, the output of the operation

random() is always 1) cannot prevent the correct processes from deciding.

• If the value of each variable leaderi (local output of the failure detector of the class Ω) even-

tually contains the identity of a non-faulty process (different local variables possibly containing

different process identities), and the behavior of the random oracle agrees with its specification

(any invocation of random() returns 0 or 1, each with probability 0.5), then each correct process

decides with probability 1.

Let us observe that, in this case, the oracle Ω misbehaves as it does not ensure that eventually

there is a single correct leader for all processes. Several non-faulty leaders can co-exist (this

property is required to prevent permanent blocking of a process).

Such an hybrid approach is particularly interesting because it allows processes (a) to always decide

as soon as Ω behaves correctly, and (b) to possibly decide earlier if also the random oracle LC behaves

correctly.

17.6.2 A Hybrid Binary Consensus Algorithm

operation propose (vi) is

(1) est1i ← vi; ri ← 0;

(2) while true do

(3) begin asynchronous round

(4) ri ← ri + 1;

% Phase 0 : select a value with the help of the oracle Ω %

(5) broadcast PHASE0 (ri, est1i);
(6) wait()

(
(∃ � : leaderi = �) ∧ (PHASE0 (ri, v) received from p�)

)
;

(7) est1i ← v;

% Phase 1 : from all to all %

(8) broadcast PHASE1 (ri, est1i);
(9) wait() (PHASE1 (ri,−) received from (n− t) processes);

(10) if (the same estimate v has been received from > n/2 processes)

(11) then est2i ← v else est2i ← ⊥ end if;

% Here, we have
(
(est2i �= ⊥) ∧ (est2j �= ⊥)

)
⇒ (est2i = est2j = v) %

% Phase 2 : try to decide a value from the est2 values %

(12) broadcast PHASE2 (ri, est2i);
(13) wait() (PHASE2 (ri,−) received from (n− t) processes);

(14) let reci = {est2 | PHASE2 (ri, est2) has been received};

(15) case (reci = {v}) then broadcast DECIDE(v); return(v)
(16) (reci = {v,⊥}) then est1i ← v
(17) (reci = {⊥}) then est1i ← random()
(18) end case

(19) end asynchronous round

(20) end while.

(21) when DECIDE(v) is received do broadcast DECIDE(v); return(v).

Figure 17.9: A hybrid binary consensus algorithm for CAMPn,t[t < n/2,Ω,LC] (code for pi)
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A hybrid algorithm A consensus algorithm for the hybrid model CAMPn,t[t < n/2,Ω,LC] is

presented in Fig. 17.9. Each round r is made up of three phases. It is easy to see that, if phase 0 is

suppressed, the algorithm boils down to the randomized algorithm described in Fig. 17.6.

The reader may check that, if we replace the invocation of the operation random() at line 17 by the

statement “skip”, we obtain a deterministic consensus algorithm for the system model CAMPn,t[t <
n/2,Ω]. (The proof of this algorithm is similar to the proof given in Theorem 81.) It follows that the

hybrid algorithm described in Fig. 17.9 actually results from a simple combination of this Ω-based

algorithm with the randomized algorithm of Fig. 17.6.

Theorem 85. The algorithm described in Fig. 17.9 implements the binary consensus abstraction in

the hybrid system model ASn,t[t < n/2,Ω,LC].

Proof The proof of the CC-validity property is as for previous consensus algorithms. It is not re-

peated here. The proof of the CC-agreement property follows from the quasi-agreement property, and

the “majority of non-faulty processes” assumption used in the second and third phases of each round.

Proof of the CC-termination property. The proof of this property is similar to those for previous

algorithms. If a process decides, due to the DECIDE() messages, every non-faulty process decides. So,

let us assume that no process ever decides.

Let us first show that no non-faulty process blocks forever in a round. As no process decides, the claim

follows from the fact that, at every round, (a) due to the fact that Ω eventually provides each process

with a non-faulty leader, no process can block forever during phase 0, and (b) due to the “majority of

correct processes” assumption, a process can block forever neither during phase 1 nor phase 2.

Let us now assume (by contradiction) that no process decides, let us consider the two following

cases.

• Case 1: Ω eventually provides the processes with the same non-faulty leader. In this case, due

to the case assumption, there is a round r after which a single non-faulty leader p� is forever

elected. Hence, all the processes that execute phase 0 of round r (and this includes all the

non-faulty processes, which are a majority, wait for and receive the message PHASE0 (r, est1�).
They all consequently update their estimate est1i to est1�. From then on, there is a single

estimate value in the system, and as seen in previous proofs, the processes decide by the end of

round r.

• Case 2: Each variable leaderi eventually contains the identity of a non-faulty process, but

different leaderi variables contain different process identities. In this case, there is no guarantee

that the processes execute a round with the same non-faulty leader process. The proof that

each non-faulty process decides with probability 1 is then exactly the same as that done for

Theorem 83 and is not repeated here. (Let us remember that this proof is based on the fact that,

due to the random choice of the next estimate value at the end of the third phase, there is a

probability p > 0 that the processes start a round with the same estimate value.)

�Theorem 85

17.7 A Paxos-inspired Consensus Algorithm

The Paxos consensus algorithm was introduced by L. Lamport (1998). It considers a weak model

in which a minority of processes can crash and recover, and channels that can intermittently lose

messages. The algorithm presented here is due to R. Guerraoui and M. Raynal (2006). It can be

considered as a variant of Lamport’s Paxos algorithm suited to system model CAMPn,t[t < n/2,Ω].
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17.7.1 The Alpha Communication Abstraction

This communication abstraction, due to L. Lamport (1998), captures the essence of Paxos as far as

consensus safety is concerned. It provides the processes with a single operation, denoted alpha(),
which takes a round number r and a value v as input parameters, and returns a value. Alpha assumes

that (a) distinct processes use distinct round numbers, and (b) each process uses strictly increasing

round numbers. It is defined by the following set of properties, where ⊥ is a default value that cannot

be proposed by a process:

• Alpha-validity. The value returned by an invocation alpha(r, v) is either ⊥, or a value v′ such

that there is a round r′ ≤ r and alpha(r′, v′) has been invoked by some process.

• Alpha-agreement. Let alpha(r,−) and alpha(r′,−) be two invocations that return v and v′,
respectively. We have,

(
(v �= ⊥) ∧ (v′ �= ⊥)

)
⇒ (v = v′).

• Alpha-convergence. If the invocation I = alpha(r,−) is such that any invocation I ′ = alpha(r′,−),

which started before I terminates, where r′ < r, I returns a non-⊥ value.

• Alpha-termination. Any invocation alpha() by a correct process terminates.

One can view an Alpha object as a shared one-shot storage object that, if accessed concurrently, might

store anything (it then stores⊥), and, if accessed sequentially, stores the first deposited value and holds

it forever. An implementation of Alpha in CAMPn,t[t < n/2,Ω] is described in Section 17.7.3.

17.7.2 Consensus Algorithm

A consensus algorithm based on the abstractions Alpha and Ω is described in Fig. 17.10. The sim-

plicity provided by the use of the Alpha and Ω clearly separates the safety issue solved by the Alpha

abstraction, from the liveness issue solved by the eventual leader abstraction, thereby providing an

indulgent algorithm.

The local variable ri is the current round number of pi, and resi (initialized to ⊥) is used to save

the decided value. ALPHA denotes the Alpha object shared by the processes.

operation propose (vi) is

(1) ri ← 0;

(2) while (resi = ⊥) do

(3) if (leaderi = i)
(4) then resi ← ALPHA.alpha(r + i, vi);
(5) if (res �= ⊥) then broadcast DECIDE(v); resi ← v;

(6) else ri ← ri + n
(7) end if

(8) end if

(9) end while;

(10) return(resi).

(11) when DECIDE(v) is received do broadcast DECIDE(v); resi ← v.

Figure 17.10: An Alpha-based consensus algorithm in CAMPn,t[t < n/2,Ω] (code for pi)

Behavior of a process A process pi invokes propose(vi) where vi is the value it proposes to the

consensus instance. It terminates its participation to this instance when it executes return(resi) at

line 10. Moreover, pi uses the sequence of increasing round numbers i, i+ n, i+ 2n, etc., (so no two

processes use the same round numbers). The local variable ri is used to register pi’s current round

number.

When it invokes propose(vi), a process pi enters a loop it will exit after a value has been decided

(predicate resi �= ⊥, line 2). Then, its behavior depends on whether Ω considers it is leader or not.
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• If pi considers it is a leader (line 3), it invokes ALPHA.alpha(r+i, vi). If this invocation returns

a non-⊥ value v, pi helps the other processes decide (broadcast of the message DECIDE(v),
line 5), and decides (line 10). If ALPHA.alpha(r + i, vi) returns ⊥, pi assigns its next round

number to ri, and re-enters the loop.

• If pi is not considered as a leader by Ω, it systematically re-enters the loop.

If a single correct leader p� is elected from the very beginning, decision is obtained after the first

invocation of ALPHA.alpha(r�, v�) by r p�. Moreover, in this case, the (message and time) cost

of the algorithm does not depend on the number of faulty processes (consequently the algorithm is

zero-degrading).

Remark It is interesting to notice that the algorithm considers that the rounds are a kind of “re-

source” that eventually has to be used by a single process. The eventual leader abstraction Ω can be

seen as the associated “resource allocator” providing the required “symmetry breaking”.

Theorem 86. The algorithm described in Fig. 17.10 implements the multivalued consensus abstrac-

tion in the system modelCAMPn,t[t < n/2,Ω].

Proof Proof of the CC-validity property. let us first observe that, due to the predicate of line 2, ⊥
cannot be decided. The consensus validity property is then a direct consequence of this observation,

the Alpha-validity property of the object ALPHA, and the fact that – at line 4 – a process always

invokes ALPHA.alpha() with the value vi it proposes.

Proof of the CC-agreement property. This property is a direct consequence of the fact that ⊥ can-

not be decided and the Alpha-agreement property of the Alpha abstraction.

Proof of the CC-termination property. As in previous proofs, if a process decides, it previously

broadcast the message DECIDE(), which allows any other process pj to be such that resj �= ⊥ and con-

sequently decide (let us recall that Alpha-termination ensures that no correct process remains blocked

in an invocation of ALPHA.alpha() at line 4).

Hence, let us assume, by contradiction, that no process decides. Due to the eventual leadership

property of the failure detector Ω, there is a round r from which a single correct process is forever

elected as a leader. let p� be this correct process. There is consequently a round from which the

predicate leaderi = i is satisfied only at p�. Due to the Alpha-convergence property, there is a round

r′ ≥ r at which the invocation of ALPHA.alpha(v�) by p� returns a non-⊥ value v (line 4). It

follows that p� broadcasts the message message DECIDE(v), which is received by all the non-crashed

processes. Due to line 11 and the predicate of line 2, any non-crashed process decides. A contradiction

which proves CC-termination. �Theorem 86

17.7.3 An Implementation of Alpha in CAMPn,t[t < n/2]

An algorithm implementing the Alpha communication abstraction in CAMPn,t[t < n/2] is described

in Fig. 17.11.

Local variables at a process pi Each process pi manages three local variables. Let us observe that

the round numbers can be considered as logical dates; they increase locally inside each process, and

globally when looking at the processes that execute line 4.

• valuei: a local variable (initialized to ⊥), which can contain a proposed value, and eventually

the value decided by the Alpha object. Its initial value is ⊥.

• lrei: the number of the last round entered by a process, as known by pi. Its initial value is 0.
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• lrwwi: the number of the last round with write. More precisely, if lrwwi = d, the value v
currently saved in valuei was written in ALPHA by a process executing round d. Its initial

value is 0.

operation alpha (r, v) is

% Stage 1 ———————————————————————————-

% 1.1. pi first makes public the date of its last attempt %

(1) broadcast ROUND&READ(r);
% 1.2. pi reads the variables of the other processes to know their progress %

(2) wait (ACK ROUND&READ(r, valuej , lrej , lrwwj) rec. from a majority of proc. pj);

(3) let triplets = set of triplets 〈value, lre, lrww〉 received;

% 1.3: pi aborts its attempt if another process has started a higher round %

(4) if (∃ 〈−, lrej ,−〉 ∈ triplets such that lrej > r) then return (⊥) end if;

% Stage 2 ———————————————————————————-

% Then pi adopts the last value deposited; if there is no value, it adopts its own value v %

(5) let 〈val,−, lrww〉 ∈ triplets: ∀ 〈−,−, lrww′〉 ∈ triplets : lrww ≥ lrww′;

(6) if (val = ⊥) then val ← v end if;

% Stage 3 ———————————————————————————-

% 3.1. pi writes the value it adopted (together with its current date r) %

(7) 〈valuei, lrei, lrwwi〉 ← 〈val, r, r〉;
(8) broadcast CWRITE&READ(r, valuei, lrei, lrwwi);

% 3.2. pi waits to learn the progress of a majority of processes %

(9) wait (ACK CWRITE&READ(r, lrej) received from a majority of processes pj);

(10) let lre set = the set of round numbers lrej received;

% 3.3: pi aborts its attempt if another process has started a higher round %

(11) if (∃ lrej ∈ lre set such that lrej > r) then return (⊥) end if;

% Otherwise, value is the result the Alpha abstraction: pi returns it %

(12) return (valuei).

(13) when ROUND&READ(r) is received from pj do

(14) lrei ← max(lrei, r);
(15) send ACK ROUND&READ(r, valuei, lrei, lrwwi) to pj

(16) when CWRITE&READ(v, r, r) is received from pj do

(17) if
(
(r ≥ lrei) ∧ (r > lrwwi)

)
then 〈valuei, lrei, lrwwi〉 ← 〈v, r, r〉 end if;

(18) send ACK CWRITE&READ(r, lrei) to pj .

Figure 17.11: An algorithm implementing Alpha in CAMPn,t[t < n/2]

Behavior of a process When it executes ALPHA.alpha(), the behavior of a process pi can be de-

composed into three stages. The lines 1-12 are associated with its client behavior, while the lines 13-18

are associated with its server behavior. More precisely, we have the following:

• Stage 1: lines 1-4 and lines 13-15.

A process pi first informs the other processes that it has entered a new round r, by broadcasting

the message ROUND&READ(r) (line 1).

This message, which allows each process pj to update its local variable lrej (line 14), is also

an inquiry message, to which each process answers by sending its current state in the message

ACK ROUND&READ(r, valuej , lrei, lrwwi) to pi (line 15). The parameter r in this message

allows its receiver pi to associate this answer with the corresponding inquiry, which is unam-

biguously identified by its sending date r.

When it has received an answer from a majority of processes, pi returns ⊥ if a process of this

majority has started a round greater than r (lines 2-4).
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• Stage 2: lines 5-6.

If none of the messages ACK ROUND&READ(r, valuej , lrej , lrwwj) are such that lrej > r,

pi determines the value received in these messages which has the greatest writing date lrww
(line 5). if no value has yet been written, it considers its own value v, as the last value val.

• Stage 3: lines 7-11 and lines 16-18.

Then, pi saves the triplet 〈val, r, r〉 (line 7), and informs the other processes with the broadcast

of the message CWRITE&READ(r, valuei, lrei, lrwwi) (line 8, “CWRITE” stands for “condi-

tional write”). As previously, this message is also an inquiry message (identified by the date r).

When a process pj receives it, it updates its triplet if the one received is more recent (line 17).

In all cases, pj sends its last value lrej ack to pi (line 18. (Let us notice that, if the predicate of

line 17 is false, lrej was not modified.)

When pi has received a message ACK CWRITE&READ(r, lrej) from a majority of processes, it

returns⊥ if one of them carries a date greater than r (lines 9-11). Otherwise, it returns the value

val it computed at lines 5-6 and saved in valuei at line 7.

Theorem 87. The algorithm described in Fig. 17.11 implements the Alpha communication abstraction

in the system model CAMPn,t[t < n/2].

Proof Proof of the Alpha-validity property. Let us first observe that if an invocation of alpha() returns

at line 4 or line 11, it trivially satisfies the property. Hence, let us consider an invocation by a process

pi that returns a non-⊥ value val (line 12). In this case, either val = v, where v is the value proposed

by pi (line 6), or a value obtained by pi from a process pj (line 5). In the first case, Alpha-validity fol-

lows. In the second case, the only lines where pj wrote val were the lines 7-8. The value val was then

the value proposed by pj (line 6), or a value it obtained from another process pk. It follows that val is

such that there is process that invoked alpha(−, val), which concludes the proof of the Alpha-validity

property.

Proof of the Alpha-agreement property. Let I = alpha(r,−) and I ′ = alpha(r′,−) be two invocations

that return v and v′, respectively. We have to show that
(
(v �= ⊥) ∧ (v′ �= ⊥)

)
⇒ (v = v′).

Let I = alpha(r, v) and I ′ = alpha(r′, v′) be the two first invocations (with respect to round

numbers) that return non-⊥ values. According to the way round numbers are defined we have r �= r′.
Without loss of generality, let r < r′.

As I returns v at line 12, it was not aborted at line 11, and consequently, due to the inquiry and

answer messages exchanged at lines 8-9, we conclude that a majority of processes Q are such that

〈valuej , lrej , lrwwj〉 = 〈v, r, r〉 at each pi ∈ Q.

Similarly, as I ′ was aborted neither at line 4 nor at line 11, we conclude from (a) the inquiry and

answer messages exchanged at lines 1-2, (b) the fact that these messages involve a majority of pro-

cesses Q′, and (c) the fact that Q ∩ Q′ �= ∅, that at line 5 I ′ obtained the triplet 〈v, r, r〉 as the triplet

with the greatest lrww write date. Hence, we obtain 〈valuej , lrej , lrwwj〉 = 〈v, r, r〉, where pj is the

process that issued I ′. As pj returns valuej = v′ at line 12, it follows that v′ = v.

Proof of the Alpha-termination property. Let us consider any correct process pi. As there is a majority

of correct processes, and a process sends by return an answer to every message it receives (line 15 and

line 18), it follows that pi cannot block forever at line 2 or line 9. The Alpha-termination property

follows.

Proof of the Alpha-convergence property. Let us consider an invocation I = alpha(r,−) such that

any invocation I ′ = alpha(r′,−), which started before I terminates, is such that r′ < r. It follows

from the previous assumption on the invocations I ′, and the predicates of lines 4 or line 11, that I
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cannot return ⊥ at these lines. Moreover, due to lines 5-7, we have valuei = val �= ⊥. Due to the

Alpha-termination property, if I does not crash, it returns a non-⊥ value at line 11. �Theorem 87

Remark The reader can observe that line 4 is not used in the proof. This means that this line is not

necessary for the algorithm correctness. Its aim is only to abort the current invocation of alpha(r,−)
as soon as it is known that it will return ⊥.

17.8 From Binary to Multivalued Consensus

This section presents a construction of the multivalued consensus agreement abstraction on top of

binary consensus. The corresponding algorithm is a reduction of multivalued consensus to binary

consensus. As it is independent of the model parameter t, this construction is very general.

Notation The following notations are used:

• CAMPn,t[BC] is the underlying system which provides binary consensus.

• propose() is the multivalued consensus operation, and bin propose() is the binary consensus

operation provided by CAMPn,t[BC].

17.8.1 A Reduction Algorithm

To facilitate the presentation of the algorithm, the processes are denoted p0, ..., pn−1, instead of p1, ...,

pn. (If one wants to use the notation p1, ..., pn, ki must be initialized to 0, and (ki mod n) must be

replaced by ((ki − 1) mod n) + 1).

The algorithm, due to A. Mostéfaoui, M. Raynal, and F. Tronel (2000), is described in Fig. 17.12.

It uses the following objects:

• Each process manages a local array proposali with one entry per process, such that proposali[j]
is initialized to ⊥. The aim of proposali[j] is to contain the value proposed by pj .

• The processes cooperate through a global array BIN CONS [1], BIN CONS [2], etc., each

being a binary consensus object provided by the underlying system model CAMPn,t[BC].

operation propose (vi) is

(1) proposalsi ← [⊥, . . . ,⊥]; ki ← −1;

(2) URB broadcast PROPOSAL (vi);
(3) while (true) do

(4) ki ← ki + 1;

(5) let bin propi = (proposalsi[ki mod n] �= ⊥);
(6) resi ← BIN CONS [ki].bin propose(bin propi);
(7) if (resi) then wait

(
proposalsi[ki mod n] �= ⊥

)
;

(8) return(proposalsi[ki mod n])
(9) end if

(10) end while.

(11) when PROPOSAL(v) is URB delivered from pj do proposalsi[j] ← v.

Figure 17.12: A reduction of multivalued to binary consensus in CAMPn,t[BC] (code for pi)

A process pi first urb-broadcasts the value vi it proposes (line 11). The URB-broadcast communi-

cation abstraction was defined in Section 2.1.2 (it ensures that all correct processes receive the same

set of messages, and this set contains at least the messages they have URB-broadcast). When a process
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receives a message PROPOSAL(v) from a process pj it learns the value v proposed by pj , and saves it

in proposalsi[j].

Then, a process pi enters a loop made up of asynchronous rounds, identified by the successive

values of ki. A process eventually exits this loop when it decides a value (execution of the statement

return() at line 8).

The principle of the algorithm is as follows. Let x = (ki mod n). Hence, x ∈ {0, · · · , n − 1}
is the process identity. If pi received the value proposed by px (we have then proposalsi[x] �= ⊥) it

proposes the value true to the underlying binary consensus BIN CONS [ki]. Otherwise, pi proposes

the value false to BIN CONS [ki].

• If BIN CONS [ki] returns true, pi decides the value proposed by px. In this case, pi waits until

it URB-delivers this value and returns it. Let us notice that, due to asynchrony, it is possible

that the value proposed by px is decided, while pi has not yet urb-delivered it. If this value

is decided, it has necessarily been urb-delivered by the processes that have proposed true to

BIN CONS [ki].

• If BIN CONS [ki] returns false, pi proceeds to the next iteration.

17.8.2 Proof of the Reduction Algorithm

Theorem 88. The reduction algorithm described in Fig. 17.12 implements the multivalued consensus

abstraction in the system model CAMPn,t[BC].

Proof In the following, in order to prevent confusion, we use the term “bin-decide” when we consider

a base binary consensus object, and the term “decide” when we consider multivalued consensus.

The proof of the CC-validity property of the multivalued consensus follows directly from the validity

property of the underlying URB-broadcast.

Proof of the CC-agreement property. Let k be the first round during which a process pi decides, and

vx the value it decides. Hence, we have x = (k mod n).

As pi bin-decides during round k, it follows that all the invocations BIN CONS [k].bin propose()
that terminate return the value true. If follows from the observation that each process executes the

same sequence of rounds, and the fact that no process bin-decided during a previous round (< k), that

all the processes that execute round k bin-decide during this round. Due to the CC-agreement property

of the binary consensus object BIN CONS [k], they all bin-decide the value true. Hence, no process

progresses to round (k + 1). Finally, due to the wait() statement, no process pj that executes round k
can decide a value different from vk mod n (i.e., vx), which concludes the proof of the CC-agreement

property of multivalued consensus.

Proof of the CC-termination property. Let us assume by contradiction that no process decides.

Claim C. No correct process remains forever blocked in a round. This claim follows directly from the

termination property of each underlying binary consensus object.

Let px be a non-faulty process. Due to the termination property of the underlying URB-broadcast,

there is a finite time after which the value proposed by px is urb-delivered to every non-faulty process.

It follows from claim C that there is a round k after which (1) the faulty processes have crashed, and

(2) the non-faulty processes have urb-delivered the value proposed by px. It also follows from claim C,

and the use of the mod() function, that the non-faulty processes enter a round k′ such that k′ ≥ k and

x = k′ mod n. During round k′, each non-faulty process proposes true to the underlying binary

consensus object BIN CONS [k′]. As all the processes that invoke BIN CONS [k′].bin propose()
propose true, it follows from the CC-validity property of this object that the value bin-decided is
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true. Hence, every non-faulty process returns the value proposed by px, with contradicts the initial

assumption, and concludes the proof of the CC-termination property. �Theorem 88

17.9 Consensus in One Communication Step

17.9.1 Aim and Model Assumption on t

Decision in one communication step Both the algorithm presented in Fig. 17.4 for the CAMPn,t[t <
n/2,Ω] model, and the algorithm presented in Fig. 17.6 for the CAMPn,t[t < n/2,R] model, are

based on the same design principle. They use asynchronous consecutive rounds made up of two

phases where each phase involves one communication step.

• During the first phase, the processes try to agree on the same estimate value v, and a process

that cannot agree on such a value considers instead the default value ⊥. This was captured by

the quasi-agreement property.

• Then, during the second phase, according to their new estimate values (which contain v or ⊥)

the processes strive to decide. If a process cannot decide, it proceeds to the next round.

It follows that, in the best case (e.g., all processes propose the same value), the processes decide in

one round, i.e., two communication steps.

On another side, while failures do occur, they are rare in practice, which means that considering

a model where the maximum number t of processes that may crash is much smaller than n/2 can be

a realistic assumption for some applications. Hence, the following question: Is it possible to design

a consensus algorithm that allows the processes to decide in one communication step in “favorable”

circumstances in a system model where t is greater than 0, but much smaller than n/2? Of course, this

requires us to precisely define which are the “favorable” circumstances in order to obtain a provably

correct algorithm.

Model This section presents such an algorithm, where “favorable” circumstances are when all the

processes propose the same value. To ensure “one communication step” in favorable circumstances,

the algorithm requires that less than one third of the processes are faulty. Moreover, it uses an under-

lying consensus algorithm as a subroutine to address the case where several values are proposed.

Hence, the algorithm is for the crash-prone asynchronous message-passing model CAMPn,t[t <
n/3,CONS], where CONS means that CAMPn,t[t < n/3] is enriched with any algorithm solving

consensus.

On non-determinism As seen in Section 16.8.3, the essence of consensus is non-determinism,

namely, the value that is decided cannot be computed from a deterministic function.

As we are about to see, decision in one communication step is possible when the same value is pro-

posed by the processes. This is because these input vectors capture particular cases where consensus

can be solved deterministically. More explicitly, there is no non-determinism when all the processes

propose the same value.

17.9.2 A One Communication Step Algorithm

The algorithm, which is due to F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal (2001), is very

simple. The corresponding operation is denoted one step propose () in order to differentiate it from

the operation propose () of the underlying consensus object, denoted MV CONS , that is used as a

subroutine.
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The algorithm is made up of two stages. The first stage consists of a single communication step,

during which the processes exchange their proposals (messages PROPOSAL (), line 1). If a process

pi receives “enough” copies of the same value (where “enough” means at least n − t, lines 2-3), it

decides this value, say v. As in previous algorithms, in order to prevent the permanent blocking of

other processes, pi broadcasts a message EARLY DEC(v) (line 4), just before deciding (invocation of

return(v) at line 5).

operation one step propose (vi) is

(1) broadcast PROPOSAL (vi);
(2) wait

(
PROPOSAL (−) received from (n− t) processes

)
;

(3) if
(
all these messages carry the same value, say v

)

(4) then broadcast EARLY DEC (v);
(5) return(v)
(6) else if

(
(n− 2t) messages carry the same value v

)
then propi ← v else propi ← vi end if;

(7) deci ← MV CONS .propose(propi);
(8) return(deci)
(9) end if.

(10) when EARLY DEC(v) is received do: broadcast EARLY DEC(v); return(v).

Figure 17.13: Consensus in one communication step in CAMPn,t[t < n/3,CONS] (code for pi)

If a process pi does not receive enough copies of the same value, it uses the underlying consensus

subroutine to decide (invocation MV CONS .propose()). According to the asynchrony pattern and

the values that are proposed, it is possible that some processes decide a value v during the first stage

(i.e., at line 5 during the first communication step), while other processes do not see (n− t) copies of

the same value, and consequently invoke the underlying consensus at line 7. To ensure these processes

do not decide a different value from the value v possibly decided at line 5 by other processes, they

have to propose v to the underlying consensus. This is done as follows: if, during the first stage, pi
has received (n − 2t) times the same value v′, it proposes v′ to the underlying consensus (lines 6-7).

As we are about to see in the proof, if processes decide v during the first stage, we have then v′ = v.

17.9.3 Proof of the Early Deciding Algorithm

Theorem 89. The algorithm described in Fig. 17.13 implements the multivalued consensus abstrac-

tion in the system model CAMPn,t[t < n/3,CONS]. Moreover, if all processes propose the same

value, no correct process executes more than one communication step.

Proof The proof of the CC-validity property follows from the observation that only proposed values

are exchanged, and from the CC-validity of the underlying consensus (when it is used).

Proof of the CC-termination property. If a process decides a value v at line 5, it has previously

broadcast a message EARLY DEC (v) at line 4. Consequently, every non-faulty process receives this

message and decides (if it has not yet done so).

Therefore, let us consider that no process decides at line 5. This means that (at least) every non-

faulty process invokes the operation propose() on the underlying binary consensus object (line 7). Due

to its CC-termination property, no correct process remains blocked inside this binary consensus object.

It follows that every correct process decides a value.

Proof of the CC-agreement property. If a process decides when it receives a message EARLY DEC (v),
it decides a value that another process is about to decide. Hence, we consider only the processes that

decide when they execute return () at line 5 or line 8. There are three cases.
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• Two processes pi and pj decide at line 5. If follows that pi received (n− t) copies of the same

value v, and pj received (n− t) copies of the same value v′. As t < n/3, we have n− t > n/2,

which means that the message PROPOSAL (v) has been sent by a majority of processes, and

likewise for the message PROPOSAL (v′). As two majorities intersect, it follows that there is a

process that broadcast both PROPOSAL (v) and PROPOSAL (v′). As a process broadcasts one

PROPOSAL () message only, we have v = v′. If follows that, if no process decides at line 8, a

single value can be decided.

• No process decides at line 5. In this case, the processes that execute lines 6-8 invoke the same

underlying consensus object. If follows from its CC-agreement property that this object returns

the same value. Hence, the deci values of the processes are equal, and no two processes decide

different values.

• Some processes pi decide at line 5, while other processes pj decide at line 8. We then have the

following:

1. As process pi decides at line 5, it received (n − t) messages PROPOSAL (v). This means

that at most t messages PROPOSAL () carry a value different from v.

2. As process pj decides at line 8, it received (n − t) messages PROPOSAL (). Due to the

previous item, at most t of these messages carry a value different from v (Observation O1).

Moreover, in the worst case, these t values are equal (Observation O2). We conclude from

O1 that pj received at least (n − 2t) messages PROPOSAL (v). As n − 2t > t, it follows

from O2 that v is the only value that pj receives (n−2t) times. Consequently, pj proposes

v to the underlying consensus object.

3. It follows from the previous items that the processes that invoke MV CONS .propose()
(line 7), propose value v. Due to the CC-validity property of MV CONS , only v can then

be decided from this object.

The proof of CC-agreement follows from the fact that the processes that execute line 5 decide

the same value v, and the processes that execute line 8 can only decide a value decided at line 5.

Proof of the one step communication property. This proof is trivial. At least m ≥ (n − t) processes

execute the algorithm. If they all propose the same value v, each receives at least (n − t) copies of

v and, due to the predicate at line 3, no process can execute line 6-8 (in this case, the underlying

consensus object is useless). �Theorem 89

17.10 Summary

This chapter was on the implementation of the consensus agreement abstraction in asynchronous

message-passing systems prone to process crash failures. It has presented several algorithms based

on distinct assumptions enriching the underlying asynchronous crash-prone system. These assump-

tions are:

• Message scheduling (MS),

• Perfect failure detector P ,

• Eventual leader abstraction Ω,

• Randomization with local coins (LC) or a common coin (CC),

• Hybridization (eventual leader plus randomization),

• Abstraction Alpha and Ω, and

• Underlying binary consensus.

The chapter has also presented important notions such as zero-degradation and indulgence, and

shown a condition which, when satisfied, allows processes to decide in one communication step.
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variant of a non-anonymous Ω-based algorithm due to A. Mostéfaoui and M. Raynal [320].

Other anonymous failure detectors are introduced in [318], where their power is investigated.
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• Other distributed computing models have been defined in the literature (e.g., [118, 132, 142,

174, 189, 247, 260, 414]). Among them, the Paxos family of agreement algorithms [111, 177,

260, 261, 352] considers an asynchronous message-passing model in which messages can be lost

and processes can crash and later recover. The interested reader will find in [69, 70, 202, 369]

frameworks for a restriction of these algorithms suited to asynchronous systems where channels

are reliable and the processes that crash never recover.

• An approach to solve consensus (called condition-based approach) in the presence of asyn-

chrony and process crashes, based on a restriction of the set of input vectors, is defined [313].

Its combination with failure detectors to solve agreement problems is investigated in [318], and

its combination with randomization to solve binary consensus is presented in [310].

17.12 Exercises and Problems

1. When considering the algorithm described in Fig. 17.1, let us replace the MS assumption by

a weaker probabilistic MS assumption stating that there a positive probability that, after some

time, there is a round r during which the processes receive the round r messages from the same

set of (n − t) correct processes. Show that when r tends to infinity, the probability that the

processes decide tends to 1.

Solution in [83].

2. When considering the algorithm described in Fig. 17.1, show that, if more than n+t
2 processes

propose the same value b, the decision value is b, and it is obtained in at most three rounds.

3. Let us consider the coordinator-based consensus algorithm designed for the model CAMPn,t[P ]
described in Fig. 17.2. Why do messages not need to carry a round number?

4. Let an anonymous version of Ω (denoted AΩ) be defined as follows. Each process pi is equipped

with a read-only Boolean variable leaderi, such that, after a finite but arbitrarily long period, the

local variable of a single correct process remains forever equal to true, and the local variables

of all the other processes remain forever equal to false.

An algorithm assumed to implement multivalued consensus in CAMPn,t[t < n/2, AΩ] is de-

scribed in Fig. 17.14. This algorithm is inspired from the binary consensus algorithm described

in Fig. 17.9, which implements binary consensus in the hybrid model CAMPn,t[t < n/2,Ω,R].

Is this algorithm correct? If it is not, find a counter-example. If it is, provide a proof.

Solution in [366].

5. Let us consider a privileged value α, initially known by all processes. Design an algorithm that

allow a process pi to decide in one communication step in the executions where it receives the

value α from (n− t) processes during the first communication step.

Let us observe that there are executions in which pi may receive α from (n− t) processes, while

other processes do not. They may receive α from at most (n − 2t) processes and other values

from t processes. In this case, only pi is required to decide in one communication step.

Solution in [84].

6. Does the algorithm described in Fig. 17.11 remain correct if a copy of lines 2-4 is inserted

between any two consecutive lines? Why?

7. Let us consider the algorithm described in Fig. 17.11, in which line 7 is suppressed. How must

the predicate of the wait() statement of line 9 be modified to keep the algorithm correct?
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operation propose (vi) is

est1i ← vi; ri ← 0;

while true do

begin asynchronous round

ri ← ri + 1;

% Phase 0 : select a value with the help of the oracle AΩ %

wait
(
(leaderi) ∨ (PHASE0(ri, v) received)

)
;

if (PHASE0(ri, v) received) then est1i ← v end if;

broadcast PHASE0 (ri, est1i);

% Phase 1 : from all to all %

broadcast PHASE1 (ri, est1i);
wait (PHASE1 (ri,−) received from (n− t) processes);

if (the same estimate v has been received from > n/2 processes)

then est2i ← v else est2i ← ⊥ end if;

% Here, we have
(
(est2i �= ⊥) ∧ (est2j �= ⊥)

)
⇒ (est2i = est2j = v) %

% Phase 2 : try to decide a value from the est2 values %

broadcast PHASE2 (ri, est2i);
wait (PHASE2 (ri,−) received from (n− t) processes);

let reci = {est2 | PHASE2 (ri, est2) has been received};

case (reci = {v}) then broadcast DECIDE(v); return(v)
(reci = {v,⊥}) then est1i ← v
(reci = {⊥}) then skip

end case

end asynchronous round

end while.

when DECIDE(v) is received: broadcast DECIDE(v); return(v).

Figure 17.14: Is this consensus algorithm for CAMPn,t[t < n/2, AΩ] correct? (code for pi)



Chapter 18

Implementing Oracles

in Asynchronous Systems

Prone to Process Crash Failures

The notion of a failure detector has been introduced in Section 3.3. Considering a communication or

agreement abstraction which is impossible to solve in the basic model CAMPn,t[∅], an appropriate

failure detector provides the processes with additional computability power, which allows this com-

munication or agreement abstraction to be implemented in the corresponding enriched model. Various

failure detectors have been presented and used in previous chapters (in Chap. 3 to implement URB-

broadcast for any value of t despite fair channels, in Chap. 7 to implement a read/write register for any

value of t, and in Chap. 17 to implement consensus despite asynchrony and process crashes). As a

failure detector allows us to implement an abstraction that is otherwise impossible to implement in the

basic model CAMPn,t[∅], it requires that the basic model CAMPn,t[∅] satisfies additional appropriate

behavioral assumptions to be implemented.

To be as self-contained as possible, this chapter first recalls the two facets of a failure detector

(modularity, and problem ranking) already stated in Section 3.3. Then, it presents algorithms that

build a failure detector of the class P (perfect failure detectors), a failure detector of the class �P
(eventually perfect failure detectors), and a failure detector of the class Ω (eventual leader failure

detectors). One of the main aims of this chapter is to visit several behavioral assumptions, and present

algorithms, based on different approaches and techniques, that build failure detectors (each providing

a specific computability power).

Finally the chapter presents an implementation of an imperfect (or biased) common coin from n
independent local coins (one per process).

Keywords Abstraction ranking, Asynchronous algorithm, Eventually perfect failure detector, Even-

tual leader failure detector, Eventually timely channel, Hybrid model, Ω Impossibility, Message pat-

tern, Message scheduling assumption, Message pattern, Modularity, Perfect failure detector, Process

monitoring.

Remark All the algorithms described in this chapter work for any value of t. Hence, they are

independent of a t-related assumption (such as t < n/2).

18.1 The Two Facets of Failure Detectors

This section recalls and complements the notions of failure detectors introduced in Section 3.3. From a

formal point of view, a failure pattern is a function F () such that F (τ) is the set of processes that have
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crashed up to time τ , and a failure detector is a device that provides each process pi with a read-only

local variable that gives pi hints on failures. Formally, this variable is denoted H(i, τ), where H() is

the history function associated with the failure detector. When it reads H(i, τ) (the read-only local

variable), process pi obtains its current content. A particular class of failure detectors provides each

process pi with a particular type of information on failures.

18.1.1 The Programming Point of View: Modular Building Block

In asynchronous systems whose behavior is captured by the system model CAMPn,t[∅], physical

time is not accessible to the processes. It is a resource needed to execute programs, but it is not a

programming object that these programs can manipulate. This means that the timing assumptions

used by the underlying system layer to detect failures, are not known by the upper application layer.

Hence, the failure detector concept favors the separation of concerns. This is its modularity dimen-

sion. Let FD be a given class of failure detectors, and A a communication or agreement abstraction

that can be implemented as soon as we can benefit from the information on failures provided by FD .

The modular approach is as follows:

• On the one side, enrich the system model CAMPn,t[∅] with an appropriate (very often time-

related) assumption T that allows the construction of a failure detector of the class FD in the

system model CAMPn,t[T ].

• On the other side, design an algorithm implementing A in the system model CAMPn,t[FD ].

As an example, we have seen in Chap. 7 that the atomic read/write register abstraction can be

implemented, for any value of t, in the system model CAMPn,t[Σ] (Σ is the class of quorum failure

detectors). The construction of a failure detector of the class Σ and the construction of a read/write

register in CAMPn,t[Σ] can be solved independently, each in the appropriate model. More explicitly,

the behavioral assumptions needed to construct Σ do not need to be known in the model CAMPn,t[Σ]
(similarly, when one is using a high-level programming language, it can no longer access machine

instructions).

Such a separation of concerns favors algorithm design and proof, and program transportability.

(Never forget that Informatics is a science of abstraction.) This is made possible because (similar to

stacks, queues, and any other object) a failure detector class is defined by a set of properties that are

independent of a particular implementation.

18.1.2 The Computability Point of View: Abstraction Ranking

Ranking of failure detector classes As we have seen, given an abstraction A and a model such that

A cannot be implemented in this model, the failure detector approach allows us to state the minimal

information on failures the processes have to be provided with in order that A can be implemented

in the considered model. For example, Section 7.2 has shown that the class Σ is the weakest class of

failure detectors that allow an atomic read/write register to be built in CAMPn,t[t < n].

Given two classes of failure detectors FD1 and FD2, we say that FD1 is weaker than FD2 (or

FD2 is stronger than FD1) if there is an algorithm E that builds a failure detector of the class FD1
in CAMPn,t[FD2]. This is denoted FD1 % FD2 (or equivalently FD2 & FD1). It means that the

information on failures provided by a failure detector of the class FD2 “includes” the information

on failures provided by any failure detector of the class FD1. Actually, the algorithm E extracts this

information from FD2. As an example, it is easy to design an algorithm E that builds a failure detector

of the class Ω in CAMPn,t[P ], hence we have Ω % P .

The relation % is transitive and reflexive. If FD1 % FD2 and FD2 % FD1, both classes are

equivalent. If FD1 % FD2 and ¬(FD2 % FD1), then FD1 is strictly weaker than FD2 (denoted

FD1 ≺ FD2). As an example, it is possible to build a failure detector of the class Ω in CAMPn,t[P ]
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while it is not possible to build a failure detector of the class P in CAMPn,t[Ω]. We have consequently

Ω ≺ P .

It is important to notice that not all the failure detector classes can be compared. As an example,

while the class P is strictly stronger than both of them, Ω and Σ cannot be compared with each other.

Remark A failure detector class is actually a failure detector type in the programming language

sense. So, the fact that some failure detector classes cannot be compared is not counter-intuitive. (Let

us remember that, when we look at the classic data types encountered in programming languages, we

have the following: while the type “integer” is included in the type “real”, none of these types can be

compared with the types “Boolean” or “character”.)

Abstraction ranking An interesting side of the ranking of failure detector classes lies in the ranking

of the abstractions they allow us to implement. This ranking is based on the notion of the weakest

failure detector class associated with a given abstraction.

Let A1 be a distributed abstraction such that FD1 is the weakest class of failure detectors that al-

lows us to implement it. This means that there is an algorithm that implements A1 in CAMPn,t[FD1].
Similarly, let A2 be a distributed abstraction such that the class FD2 of failure detectors is the weakest

that allows us to implement it. Hence, there is an algorithm that implements A2 in CAMPn,t[FD2].

We say that A1 is less difficult (or easier) than A2 if the weakest class of failure detectors to

implement A1 is weaker than the weakest class of failure detectors to implement A2, i.e., FD1 %
FD2. This is denoted A1 % A2. If A1 is less difficult than A2, and A2 is less difficult than A1, the

abstractions A1 and A2 are equivalent in the sense that they need the same information on failures

to be implemented, which means that, from a failure detector point of view, one can be implemented

as soon as the other can be implemented. If A1 is less difficult than A2 while A2 is not less difficult

than A1, we say that A1 is strictly less difficult than A2 (denoted A1 ≺ A2). We also say that A2 is

strictly stronger than A1. This means that implementing A1 requires less information on failures than

implementing A2.

As a simple example, the URB-broadcast communication abstraction can be implemented in the

model CAMPn,t[∅] (i.e., without any failure detector, which means with the trivial failure detector

that produces arbitrary outputs). Whereas the construction of an atomic read/write register requires

Σ as soon as half or more processes may crash. It follows that, in the system model CAMPn,t[∅]
(message-passing system with reliable channels where any number of process may crash), the URB-

broadcast abstraction is strictly weaker than the atomic read/write register abstraction. (Let us notice

that they are equivalent in the system model CAMPn,t[t < n/2]). This provides us with a failure

detector-based methodology to establish a hierarchy among distributed computing abstractions.

18.2 Ω in CAMPn,t[∅]: a Direct Impossibility Proof

Reminder: definition of Ω The class Ω of eventual leader failure detectors was introduced by

T. Chandra, V. Hadzilacos, and S. Toueg (1996). It has been formally defined in Section 17.4.1.

Operationally, a failure detector Ω provides each process pi with a read-only local variable leaderi.
These variables, which always contain a process identity, satisfy the following eventual leadership

property: there is a finite time after which the variables leaderi of the non-faulty processes forever

contain the same identity and that identity is the one of a non-faulty process.

A direct impossibility proof This section shows that it is impossible to build a failure detector of

the class Ω in the system model ASn,t[∅]. As Ω ≺ �P ≺ P it follows that neither �P nor P can be

built in ASn,t[∅].
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As consensus can be solved in CAMPn,t[t < n/2,Ω], a reduction-based proof of this impossibil-

ity follows from the impossibility of solving consensus in CAMPn,1[∅]. The following proof is direct

in the sense that it is not based on a reduction to the impossibility of another abstraction.

Theorem 90. No failure detector of the class Ω (eventual leader) can be built in CAMPn,t[∅] for

1 ≤ t < n.

Proof The proof is by contradiction. Let us assume that there is an algorithm that constructs a failure

detector of the class Ω in CAMPn,t[∅]. The proof consists in constructing a crash-free execution in

which there is an infinite sequence of leaders such that any two consecutive leaders are different, from

which it follows that the eventual leadership property cannot be satisfied.

• Let R1 be a crash-free execution, and τ1 be the time after which some process p�1 is elected as

the leader.

Moreover, let R′
1 be an execution identical to R1 until τ1 + 1, and where p�1 crashes at τ1 + 2.

• Let R2 be a crash-free execution identical to R′
1 until τ1 + 1, and where the messages sent by

p�1 after τ1 + 1 are arbitrarily delayed (until some time defined below).

As, for any process px �= p�1 , R2 cannot be distinguished from R′
1, it follows that some process

p�2 �= p�1 is elected as the definitive leader at some time τ2 > τ1. After p�2 is elected, the

messages from p�1 can be received.

Moreover, let R′
2 be an execution identical to R2 until τ2 + 1, and where p�2 crashes at τ2 + 2.

• Let R3 be a crash-free execution identical to R′
2 until τ2 + 1, and where the messages from p�2

are delayed (until some time defined in the next sentence).

Some process p�3 �= p�2 is elected as the definitive leader at some time τ3 > τ2 > τ1. After p�3
is elected, the messages from p�2 are received, etc.

This inductive process, repeated indefinitely, constructs a crash-free execution in which an infinity of

leaders are elected at times τ1 < τ2 < τ3 < . . . and such that no two consecutive leaders are the same

process. It follows that there is no finite time after which the same correct process is forever elected

as the single common leader. �Theorem 90

18.3 Constructing a Perfect Failure Detector (Class P )

18.3.1 Reminder: Definition of the Class P of Perfect Failure Detectors

The failure detector class P was introduced by T. Chandra and S. Toueg (1996). A formal definition

appears in Section 3.5.2. A failure detector of the class P provides each process pi with a local read-

only set variable suspectedi. From an operational point of view, it is defined as follows:

• Completeness. If a process pj crashes, it eventually appears permanently in the set suspectedi
of all correct processes.

• Strong accuracy. No process pj appears in a set suspectedi before crashing.

Ensuring only one of the properties of a perfect failure detector is trivial: to ensure the complete-

ness property only, it is sufficient to permanently suspect all the processes, while to ensure the strong

accuracy property only, it is sufficient to never suspect any process. To ensure both properties, the

main difficulty lies in ensuring strong accuracy because it is a perpetual property, it must never be

violated. (Whereas the completeness property is an eventual property, it specifies something that has

to eventually be satisfied.)
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As Ω ≺ P , it follows from Theorem 90 that P cannot be built in CAMPn,t[∅]. Hence, the con-

struction of a perfect failure detector requires the enrichment of CAMPn,t[∅] with additional proper-

ties (assumptions). Three different properties are presented in the following sections.

18.3.2 Use of an Underlying Synchronous System

A simple monitoring algorithm A simple way to construct a perfect failure detector consists in

using an auxiliary synchronous system (which remains always hidden to the applications). Let us re-

member that a synchronous system is characterized by upper bounds on communication delays and

processing durations. (To simplify the presentation, we consider that processing durations are neg-

ligible with respect to communication delays, and consequently consider that they are equal to 0.

Alternatively, the processing time of a message could be integrated in its transit time.) The upper

bound on a round-trip communication delay is denoted Δ.

Each process pi executes the monitoring algorithm described in Fig. 18.1, which is based on a

simple inquiry/echo mechanism.

Regularly (every β time units, with β > Δ), process pi sends an INQUIRY() message to the

processes it does not suspect (line 3), and resets a timer to the value Δ, which is an upper bound for

the maximal round-trip delay (the maximal duration that can elapse between the sending of a request

and the reception of the corresponding reply, line 5). If it does not receive an answer from pj by the

timer expiration, pi adds j to suspectedi (line 8).

(1) init: suspectedi ← ∅.

(2) repeat forever every β time units

(3) for each j /∈ suspectedi do send INQUIRY(i) to pj end for;

(4) crashedi[1..n] ← [true, . . . , true];
(5) set timeri toΔ
(6) end repeat.

(7) when INQUIRY(j) is received do send ECHO(i) to pj .

(8) when ECHO(j) is received do crashedi[j] ← false.

(9) when timeri expires do suspectedi ← {x | crashedi[x]}.

Figure 18.1: A simple process monitoring algorithm implementing P (code for pi)

Theorem 91. The algorithm described in Fig. 18.1 builds a perfect failure detector on top of a syn-

chronous system, for 1 ≤ t < n.

Proof The completeness property follows from the observation that, if a process pj crashes, and

process pi does not crash, due to the repeated sending of INQUIRY(i) messages, there is a finite time

after which pj no longer answers, and consequently the Boolean crashedi[j] is set to true and keeps

this value forever.

The strong accuracy property results from the fact that a process answers by return each INQUIRY()
message it receives, processing times are equal to 0, and the round-trip delay of an INQUIRY() message

and its corresponding ECHO() message is upper bounded by 2Δ. It follows from the conjunction of

these properties that the message ECHO() sent by a process pj to a process pi necessarily arrives before

the timer expires. �Theorem 91

Remark The previous algorithm is not indulgent in the sense that, if there are “bad” periods during

which the duration Δ is not a round-trip delay upper bound, the strong accuracy property can be
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violated. This is due to the fact that the strong accuracy property is a perpetual property (at any time,

no alive process must be suspected), and indulgence is not appropriate for perpetual properties.

The model It is important to recall that the underlying synchronous system is hidden from the upper

layer. The model in which the application processes evolve is CAMPn,t[P ]. (This is similar to the

speed of the hardware clock which remains always unknown to the processes.)

Remark The algorithm described in Fig. 18.1 can be used in an asynchronous system as follows.

The INQUIRY() and ECHO() messages are defined as “very high priority” messages (sometimes called

“datagrams” in network terminology) that overtake all the other messages on their way to their desti-

nation (these “other messages” are the application messages sent by the processes). It then becomes

possible to compute an upper bound for the round-trip delay of the control messages INQUIRY() and

ALIVE(), while the transit delay of application messages remains finite but unbounded (i.e., asyn-

chronous).

18.3.3 Applications Generating a Fair Communication Pattern

In some cases, the synchrony does not come from the underlying system but from the application

itself. As we are about to see, this synchrony can be used to implement a perfect failure detector.

Fair communication Let communication be α-fair if any process pi can receive at most α messages

from any other process pj without having received at least one message from each other non-crashed

process.

It is easy to see that fair communication with α = 1 is similar to the synchronous system model

CSMPn,t[∅], where in each round a process sends a message to each other process pj and receives a

message from each other non-crashed process pj .

A fair communication-based construction of P Assuming an α-fair application, and the fact that

the constant α is known by all processes, the algorithm described in Fig. 18.2 builds a perfect failure

detector. This algorithm is due to J. Beauquier and S. Kekkonen-Moneta (1997). The data structure,

which is central to the algorithm, is the local array counti[1..n, 1..n], managed by each process pi,
whose meaning is the following:

• (counti[j, k] = x)⇔ (pi received x messages from pj since the last message it received from

pk).

(1) init: suspectedi ← ∅;

(2) for each pair 〈j, k〉 do counti[j, k] ← 0 end for.

(3) when an application message m is received from pj do

(4) for each k /∈ suspectedi ∪ {j} do

(5) counti[j, k] ← counti[j, k] + 1;

(6) if (counti[j, k] = α+ 1)
(7) then suspectedi ← suspectedi ∪ {k}
(8) else counti[k, j] ← 0
(9) end if

(10) end for.

Figure 18.2: Building a perfect failure detector P from α-fair communication (code for pi)

At every process pi, the set suspectedi built by the algorithm is initialized to ∅ (line 1), and all

entries of the array counti are initialized to 0 (line 2).
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When pi receives an application message from pj , it does the following with respect to each

process pk such that k /∈ suspectedi ∪ {j} (line 4). As it has received one more message from pj
since the last message from pk, pi first increases counti[j, k] (line 5). Then, it checks the predicate

counti[j, k] > α (line 6). If this predicate is true, pi received more than α messages from pj without

having received a message from pk. As this would contradict the fair communication assumption if

pk was alive, pi concludes that pk crashed. Consequently pi adds the identity k to its set suspectedi
(line 7). If the predicate is false, pi resets counti[k, j] to 0 as, up to now, it has received no message

from pk since the last message from pj .

Theorem 92. Let us consider an application in which each correct process sends an infinite number

of messages to each other process, and communication is α-fair. Assuming that α is known by the

processes and 0 ≤ t < n− 1 (hence, there are at least two correct processes) the algorithm described

in Fig. 18.2 builds a perfect failure detector. Moreover, the algorithm has only bounded variables.

Proof Proof of the completeness property. This property follows from the fact that a process pk that

crashes is discovered faulty by pi because there is at least one other non-faulty process pj . More pre-

cisely, after pk crashes, it does no longer send messages and consequently there is a finite time from

which counti[j, k] is never reset to 0. However, as pj is non-faulty, it forever sends messages. Conse-

quently, after some finite time, the local predicate counti[j, k] = α+ 1 becomes true and pi adds k to

suspectedi. Finally, let us observe that, once added to suspectedi, no process identity is withdrawn

from this set, which completes the proof of the Completeness property.

Proof of the strong accuracy property. This property follows from the fair communication assumption.

It states that, until pk crashes (if it ever does), pi receives at most α messages from any non-crashed

process pj between two consecutive messages from pk. It follows that until pk crashes, if ever it does,

the predicate counti[j, k] > α is always false when pi receives a message from any process pj .

Boundedness of local variables. It is easy to see that the value of a counter counti[j, k] varies be-

tween 0 and α + 1, which establishes the property that all local variables have a bounded domain.

�Theorem 92

18.3.4 The Theta Assumption

This Theta model was introduced by J. Widder and U. Schmid (2009). It is not to be confused with

the Θ failure detector class (and is not at all related to it).

The model Considering an execution of a synchronous system, let δ+ (resp., δ−) be the maximal

(resp. minimal) transit time for a message between any two distinct processes. Moreover, let θ =
� δ+
δ−
�. As we can see, θ actually characterizes an infinite set of executions, R1, R2, . . . , with each

execution Rx having its own pair of bounds 〈δ+x , δ−x 〉 such that θ = � δ
+

1

δ−
1

� = � δ
+

2

δ−
2

� = · · · .
Let us now consider an infinite execution where, while there are no bounds δ+ and δ− on message

transfer delays, the execution can be sliced into consecutive time periods such that, during each period,

θ is greater than or equal to the ratio of the maximal and the minimal transit times that occur during

this period. As an example, this appears when both the maximal and the minimal transit times double

from one period to the next one.

Notation In the following CAMPn,t[θ] denotes the system model made of all the executions where

the previous assumption on the ratio on the speed of messages, captured by θ, is satisfied, and local

processing takes no time. (This model is clearly asynchronous in the sense that its definition does not

explicitly rely on physical time bounds.)
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As we are about to see, θ captures enough synchrony to implement a perfect failure detector, while

hiding the uncertainty associated with message transfer delays from the processes.

Building a perfect failure detector in CAMPn,t[θ] The principle of the algorithm is similar to the

previous one: a process pi monitors each other process pj and suspects it when, assuming pj is alive,

its behavior would falsify the assumption θ. The algorithm, due to F. Bonnet and M. Raynal (2010), is

described in Fig. 18.3. It assumes there are at least two correct processes.

(1) init: suspectedi ← ∅;

(2) for each j �= i do send PING (i) to pj end for.

(3) when a message PING (j) is received do send PONG (i) to pj .

(4) when a message PONG (j) is received do

(5) for each k /∈ suspectedi ∪ {j} do

(6) counti[j, k] ← counti[j, k] + 1;

(7) if (counti[j, k] > θ)
(8) then suspectedi ← suspectedi ∪ {k}
(9) else counti[k, j] ← 0
(10) end if

(11) end for;

(12) send PING (i) to pj .

Figure 18.3: Building a perfect failure detector P in CAMPn,t[θ] (code for pi)

A process pi executes a sequence of rounds (without using explicit round numbers) with respect

to each other process. During each round with respect to pj , process pi sends it a message PING (i)
(lines 2 and 12), and waits for the PONG (j) message that pj echoes when it receives PING (i). Finally,

when it receives this echo message, pi starts a new round with respect to pj by sending it a new

PING (i) message (line 3).

The assumption θ and these PING/PONG messages actually generate an execution which is θ-fair

in terms of communication (see Fig. 18.4 where the messages between pi and pj take δ− times units,

while the ones between pi and pk take δ+ times units; r, r + 1 and r + 3 denotes three consecutive

rounds of pi with respect to pj). It follows that, when it receives PONG (j), pi has simply to execute

the same statements as those described in Fig. 18.2 before starting a new round with respect to pj
(line 12).

Hence, thanks to the control messages PING() and PONG(), the algorithm reduces the θ model to

the α-fair communication model.

pk

pi

pj

r r + 1 r + 2

3(2× δ−)

PING(i) PONG(j)

PONG(k)
PING(i)

2× δ+

Figure 18.4: Example message pattern in the model CAMPn,t[θ] with θ = 3

Theorem 93. The algorithm described in Fig. 18.3 builds a perfect failure detector in the system model

CAMPn,t[t < n− 1, θ].
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Proof The proof follows from the claim that the assumption θ and the PING/PONG messages generate

θ-fair communication, and Theorem 92.

Proof of the claim. Let us first observe that, until it crashes (if ever it does), a process pk sends PING()
messages and answers by return all the PING() messages it receives. It follows that any two processes

permanently exchange messages until one of them crashes.

As there are always messages exchanged between alive processes, it follows from the θ assumption

on the maximal ratio of the maximal and minimal speeds of messages that, when pi, pj , and pk are

alive, pi receives at most θ messages from pj without receiving a message from pk, which means that

communication is θ-fair. End of the proof of the claim. �Theorem 93

18.4 Constructing an Eventually Perfect Failure Detector (Class �P )

18.4.1 Reminder: Definition of an Eventually Perfect Failure Detector

The class of eventually perfect failure detectors (�P ) was formally defined in Section 3.5.2. Intu-

itively, such a failure detector allows the sets suspectedi, 1 ≤ i ≤ n, to contain arbitrarily values

during an arbitrary long but finite period, after which it behaves as a failure detector of the class P .

From an operational point of view, a failure detector of �P behaves as follows:

• Completeness. If a process pj crashes, it eventually appears permanently in the set suspectedi
of all correct processes.

• Eventual strong accuracy. There a time after which no correct process appears in a set suspectedi.

As we can see, P and �P share the same completeness property. They differs in the strong

accuracy property, which is perpetual in P , and eventual (hence weaker) in �P .

18.4.2 From Perpetual to Eventual Properties

A failure detector of the class �P can be built in a system that satisfies an eventual version of the θ
assumption or the α-fair communication assumption. These weakened versions are denoted �θ and

�α, respectively.

• The �θ property states that there is a finite (but unknown) time after which the ratio of the upper

and lower bounds on message transfer delays is bounded by θ.

• The �α property states that there is a finite (but unknown) time after which communication is

α-fair.

As an example, the algorithm presented in Fig. 18.5 builds a failure detector of the class �P in a

system that satisfies the �α property. This algorithm is a straightforward extension of the algorithm

described in Fig. 18.2. The aim of the new statements is to correct the false suspicions that occur

before communication becomes α-fair.

This algorithm can easily be extended to the case where the bound α exists but is not known by

the processes (it is sufficient to increase α each time a false suspicion occurs, line 4).

18.4.3 Eventually Synchronous Systems

Definition An eventually synchronous message-passing system is a system whose runs satisfy the

following properties:

• There is an upper bound δ on message transfer delays, but this bound (1) is not known, and (2)

holds only after a finite (but unknown) time (called global stabilization time, in short GST).
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(1) init: suspectedi ← ∅;

(2) for each pair 〈j, k〉 do counti[j, k] ← 0 end for.

(3) when a message m is received from pj do

(4) if (j ∈ suspectedi) then suspectedi ← suspectedi \ {j} end if;

(5) for each k �= j do

(6) if (k /∈ suspectedi) then

(7) counti[j, k] ← counti[j, k] + 1;

(8) if (counti[j, k] > α) then suspectedi ← suspectedi ∪ {k} end if

(9) end if;

(10) counti[k, j] ← 0
(11) end for.

Figure 18.5: Building �P from eventual �α-fair communication (code for pi)

• Local processing times are negligible with respect to message transfer delays, and are conse-

quently assumed to be of zero duration.

In the following the notation CAMPn,t[�SYNC] is used to denote such a system model.

Let us observe that the previous property requires that, after a finite time, the system forever be-

haves synchronously. Actually, this is stronger than necessary from the point of view of the algorithms

that use a failure detector of the class �P . Let us consider a �P -based algorithm A that is executed

consecutively several times. As �P is useless between successive invocations of A, the property that

allows the construction of a failure detector of the class �P is not required to be satisfied during these

periods. The “eventual synchrony” property states the existence of a global stabilization time (namely,

“from which ... forever”) only because, to be as general as possible, its statement is formulated in a

way that is independent of the way it is used.

A Construction of a Failure Detector �P The algorithm is described in Fig. 18.6. Each process

pi manages a timer timeri[j] and a timeout value timeouti[j], with respect to each other process pj .
The initial value of timeouti[j] can be arbitrary; timeri[j] is initially set to timeouti[j] (lines 1-5).

Regularly (e.g., every βi time units as measured by its local clock), process pi broadcasts a message

ALIVE(i) indicating it is alive (lines 6-8).

(1) init: suspectedi ← ∅;

(2) for each j �= i do

(3) timeouti[j] ← arbitrary value;

(4) set timeri[j] to timeouti[j]
(5) end for.

(6) repeat forever every βi time units

(7) for each j �= i do send ALIVE (i) to pj end for

(8) end repeat.

(9) when timeri[j] expires do suspectedi ← suspectedi ∪ {j}.

(10) when ALIVE (j) is received do

(11) if (j ∈ suspectedi) then

(12) suspectedi ← suspectedi \ {j};

(13) timeouti[j] ← timeouti[j] + 1
(14) end if;

(15) set timeri[j] to timeouti[j].

Figure 18.6: Building �P in CAMPn,t[�SYNC] (code for pi)
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When it receives a message ALIVE(j), pi stops suspecting pj if it was the case (lines 11-12).

Moreover, in order to prevent future erroneous suspicions, pi increases the timeout value currently

associated with pj (line 13). Finally, in all cases, pi resets timeri[j] to the current value of timeouti[j]
(line 15).

Theorem 94. The algorithm described in Fig. 18.6 builds an eventually perfect failure detector in the

system CAMPn,t[�SYNC].

Proof Proof of the completeness property. Let pi be a non-faulty process and pj a process that crashes.

It follows that pj sends a finite number of messages ALIVE(j). When it receives the last of these mes-

sages, pi resets timeri[j] for the last time (line 15). When timeri[j] expires for the last time (line 9),

j is added to suspectedi and, as there are no more messages ALIVE(j), j is never withdrawn from

suspectedi.

Proof of the eventual strong accuracy property. Let us now consider two non-faulty processes pi and

pj . We have to show that, after some finite time, the predicate j /∈ suspectedi remains forever false.

As pj is non-faulty, it sends an infinite number of ALIVE(j) messages to pi. Each time it receives

such a message, pi suppresses j from suspectedi, if it was in this set (lines 10-12). If this suppression

occurs a finite number of times, the eventual strong accuracy property follows.

pj

pi

βj δ

timeouti[j]

ALIVE(j) ALIVE(j)

Figure 18.7: The maximal value of timeouti[j] after GST

Hence, let us suppose by contradiction that j is suppressed an infinite number of times from

suspectedi. It follows that there is a time τ after which the value of timeouti[j] becomes strictly

greater than βj + δ, which means that, from time τ , timeri[j] is always set to a value > βj + δ (see

Figure 18.7). Let us remember that, after time GST, the value δ – that is unknown to all the processes –

is an upper bound on all message transfer delays.

Let τ ′ ≥ max(GST, τ). It then follows from the definition of τ and GST that, after τ ′, any

ALIVE(j) message arrives at pi before timeri[j] expires, which concludes the proof. �Theorem 94

18.5 On the Efficient Monitoring of a Process by Another Process

18.5.1 Motivation and System Model

Motivation The previous section has shown that local timers can help implement an eventually per-

fect failure detector in an eventually synchronous system. While being correct, the previous algorithm

suffers from the following issues, as analyzed by W. Chen, S. Toueg, and M. Aguilera (2002). Let us

consider Fig. 18.8 where process pi monitors process pj , δ is an upper bound message transfer delay,

and δ′ is the current value of timeouti[j].

• In the left part of Fig. 18.8, process pj sends a message ALIVE(j) to pi, and crashes immediately

after the sending. Moreover, this message takes δ time units to travel to pi. When pi receives

it, it sets its timer to δ′. Finally, as pj has crashed, the timer will expire and, after it expires, pi
starts suspecting pj forever.
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pi

pj pj

pi

δ δ′ δ′

ALIVE(j) ALIVE(j) ALIVE(j)

δ

false

suspicion

Figure 18.8: Possible issues with timers

Let the detection time be the duration that elapses between the crash of a process (pj) and the

time at which another process (pi) starts suspecting it permanently. In the previous scenario, the

detection time is equal to δ+ δ′. As we can see, this scenario describes the worst case detection

time.

• In the right part of Fig. 18.8, pj is non-faulty, but the two consecutive messages ALIVE(j) it

sends to pi are such that the first arrives almost immediately, while the second takes δ units of

time.

When it receives the first message, pi sets its timer to δ′. As the second message has not yet

arrived when the timer expires, pi suspects pj , and will stop suspecting it when it receives the

second message. This creates a false suspicion period.

Aim The aim is to design an algorithm that solves the two previous issues, by reducing both the

detection time of a crashed process and the duration of false suspicion periods. The monitoring algo-

rithm presented in the next section attains these goals when the probabilistic distribution of message

transfer delay is a priori known by the processes.

System model Each pair of processes is connected by a reliable channel, and message delays follow

some probabilistic distribution. E(delay) denotes the average transit time. The algorithm that appears

below describes the monitoring of a process pj by a process pi. It can be trivially extended to the

monitoring of all processes by process pi.

18.5.2 A Monitoring Algorithm

It is easy to see that the issues described in Fig. 18.8 are due to the fact that the timer is reset only

when a message ALIVE() arrives. If the message is late, the timer is reset too late. The belated arrival

of a message ALIVE() increases the uncertainty of the system.

This suggests to base a solution on an appropriate definition of the time instants at which a timer

is reset. To this end, some monotonicity is created as follows.

• On the side of the monitored process pj .

– Process pj sends messages ALIVE() at regular time intervals σ1, σ2 . . . where regularity is

defined as follows: ∀sn ≥ 1: σsn+1 − σsn = Δ (a positive value, known by both pj and

pi).

– A sequence number sn is associated with each message ALIVE(). Moreover, the message

ALIVE(j, sn) is sent at local time σsn.

• On the side of the monitoring process pi.

– The sequence number associated with each message allows us to associate a lifetime with

it. Operationally, this is captured by specifying a time instant ρsn defining the deadline

after which the message ALIVE(j, sn) is meaningless (because it arrives too late).
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(1) when local time = ρsn do

(2) if (no ALIVE(j, x) received with x > sn) then outputi ← suspect end if;

(3) let ρsn+1 = ρsn +Δ; sn ← sn+ 1.

(4) when ALIVE(j, x) is received do

(5) if (local time ≤ ρsn) ∧ (x ≥ sn) then outputi ← no suspect end if.

Figure 18.9: A simple monitoring algorithm (pi monitors pj)

– The sequence ρ0, ρ1, . . . is defined as follows. ∀sn ≥ 1: ρsn+1 = ρsn + Δ, and ρ1 =
σ1 +Δ+ d. The value d is a predefined value that can be set to E(delay) + d′ (where d′

is a “safety margin” added to the average transit delay).

The message ALIVE(j, sn) is taken into account only if it arrives before ρsn. More pre-

cisely, let τ be a time instant at which pi queries the status of pj , with ρsn−1 < τ ≤ ρsn.

Process pi trusts (i.e., does not suspect) pj if, and only if, it has received a message

ALIVE(j, x) such that x ≥ sn.

The corresponding algorithm is described in Fig. 18.9. The variable outputi takes the value

suspect or no suspect. It is initialized to suspect. The local variable sn is initialized to 1, and (as

already indicated) the initial value of ρ1 is σ1+Δ+ d. Due to its very construction, this solution does

not suffer from premature timeouts (such as the one depicted on the right of Fig. 18.8).
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Δ Δ Δ
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pj

σsn−1 σsn

ρsnρsn−1ρsn−2 ρsn+1
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σsn+1

σsn+1

σsn+1

Message ALIVE(j, sn) arrives late but before the deadline

suspect

suspect

no suspect no suspect

Message ALIVE(j, sn) arrives too late (after the deadline)

Figure 18.10: The three cases for the arrival of ALIVE(j, sn)

Illustration Considering that pj does not crash, Fig. 18.10 depicts three possible scenarios.

• In the first scenario (top left part of the figure) the message ALIVE(j, sn) arrives before ρsn−1;

hence, before its deadline ρsn. Consequently, pj is not suspected from the message arrival until

ρsn.
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• In the second scenario (top right part of the figure) the message ALIVE(j, sn) arrives after ρsn−1

but before its deadline ρsn. As before, pj is not suspected from the message arrival until ρsn,

but unlike the previous scenario, it is suspected between ρsn−1 and the message arrival.

• In the third scenario (bottom part of the figure) the message ALIVE(j, sn) arrives after ρsn, i.e.,

after its deadline. Consequently pj is suspected from ρsn−1 until another message ALIVE(j, sn′)
arrives before its deadline ρsn′ .

Finally, if pj crashes between the sending of ALIVE(j, sn) and the sending of ALIVE(j, sn+1), it

is easy to see that pi will suspect it permanently from time ρsn.

18.6 An Adaptive Monitoring-based Algorithm Building �P

18.6.1 Motivation and Model

Adaptability The algorithm presented in Section 18.4.3, which builds a failure detector of the class

�P in an eventually synchronous system (system model CAMPn,t[�SYNC]) is based on a broad-

casting technique: each process regularly sends a message ALIVE() to indicate that it has not crashed

(or more precisely, it had not crashed when it sent the message). This section presents an algorithm

using a totally different approach based on a monitoring technique.

This algorithm directs each process pi to monitor each other process pj and consequently detect

crash (if it ever crashes), but this monitoring is adaptive (or lazy) in the sense that it uses the application

messages sent by pi to pj and acknowledgments whenever it is possible. Additional control messages

from pi to pj are used only in periods where all the application messages sent by pi to pj have been

acknowledged.

Local clocks Each process pi uses a hardware clock (denoted clocki) to measure round-trip delays.

These clocks are purely local: they are not synchronized and there is no assumption on their possible

drift. The only assumption on the behavior of a clock is that, between two consecutive steps of pi, it is

increased by at least 1. The increasing values of clocki will be used to identify the messages sent by

pi.

Operation query () In addition to sending and receiving application messages, a process pi can

invoke query (j). This operation returns suspect or no suspect. In the first case, pi adds j to

suspectedi. In the second case, it withdraws j from suspectedi if it was in this set.

18.6.2 A Monitoring-Based Adaptive Algorithm for the Failure Detector Class �P

The algorithm is described in Fig. 18.11. It is due to Ch. Fetzer, M. Raynal, and F. Tronel (2001).

Messages used by the algorithm The algorithm uses three types of protocol messages, namely

APPL(msg), ACK(msg), and SUBST(msg). The content msg of a protocol message is made up of

two fields that contain a value and a local date.

• APPL(msg). In this case, the field msg.content contains the application message m that pi
wants to send to pj , and the field msg.send time contains the local date at which this message

is sent by pi.

• ACK(msg). In this case, the field msg.content is irrelevant, while msg.send time contains

the sending date of the message that is acknowledged (and not the sending date of the acknowl-

edgment).

• SUBST(msg). This type of message acts as a substitute for an application message when all the

application messages sent by pi have been acknowledged by pj .
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Local variables at each process Each process pi manages the following local data structures.

• pending send timei[1..n] is an array such that, for any j �= i, pending send timei[j] is a set

(initially empty) that contains the sending dates (as measured by clocki) of the messages sent

by pi to pj and not yet acknowledged.

• max rtdi[1..n] is an array such that max rtdi[j] is an integer variable (initially set to 0) that

contains the greatest round-trip delay of the messages sent by pi to pj which have been acknowl-

edged. (In practice, max rtdi[j] can be initialized to a round-trip delay known from previous

executions.)

• rti and lbi are two auxiliary local variables used to save values.

(1) when send m to pj” is invoked do

(2) create msg; msg.content ← m; msg.send time ← clocki;

(3) pending send timei[j] ← pending send timei[j] ∪ {msg.send time};

(4) send APPL(msg) to pj .

(5) when TYPE(msg) is received from pj do

(6) case

(7) TYPE=APPL then deliver msg.content;
(8) msg.content ← ⊥; send ACK(msg) to pj
(9) TYPE=SUBST then send ACK(msg) to pj
(10) TYPE=ACK then rti ← clocki;

(11) max rtdi[j] ← max(max rtdi[j], rt−msg.send time);
(12) pending send timei[j] ← pending send timei[j] \ {msg.send time}
(13) end case.

operation query(j) is

(14) if (pending send timei[j] = ∅)
(15) then create msg; msg.content ← ⊥; msg.send time ← clocki;

(16) pending send timei[j] ← {msg.send time};

(17) send SUBST(msg) to pj ;

(18) return (no suspect)
(19) else rti ← clocki; lbi ← rti −min(pending send timei[j]);
(20) if

(
lbi > max rtdi[j]) then return (suspect) else return (no suspect) end if

(21) end if.

Figure 18.11: An adaptive algorithm that builds �P in CAMPn,t[�SYNC] (code for pi)

Process behavior associated with messages When pi wants to send an application message m to

pj (line 1), a protocol message APPL(msg) is built and sent to pj . Moreover, the sending date is added

to pending send timei[j] (lines 2-4).

The processing of a protocol message that has been sent by a process pj and is received by pi
depends on its type.

• The message is APPL(msg). In this case, its content msg.content is delivered to the upper

layer, and ACK(msg) is sent by return to pj (lines 7-8). It is important to notice that an ACK()
message carries exactly the same value msg.send time as the APPL() message that entails its

sending.

• The message is SUBST(msg). In this case, the message is a pure control message. ACK(msg)
is sent by return to pj (line 9).

• The message is ACK(msg). In this case, the application message msg.content sent by pi to pj
(at time msg.send time) is acknowledged by pj . Process pi computes the corresponding round-

trip delay (equal to clocki −msg.send time), and updates accordingly max rtdi[j] (lines 10-

11). As the application message msg.content has been acknowledged, pi withdraws its sending

date msg.send time from the set pending send timei[j] (line 12).
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Operation query() Finally the operation query(j) is realized as follows. There are two cases ac-

cording to the current value of the set pending send timei[j].

• pending send timei[j] �= ∅. In this case, pi computes a lower bound lbi for the round-trip

delay of the oldest message, not yet acknowledged, that it sent to pj (line 19). Then, if lb >
max rtdi[j], pi suspects pj (maybe erroneously if the global stabilization time has not yet

occurred). Otherwise it returns no suspect (line 20).

• pending send timei[j] = ∅. In this case, all the application messages sent by pi to pj have

been acknowledged. Hence, pi creates a substitute (control) message, sends it to pj , and returns

no suspect to the current query concerning pj (lines 15-18).

18.6.3 Proof the Algorithm

Theorem 95. . The algorithm described in Fig. 18.11 builds an eventually perfect failure detector in

the system model CAMPn,t[�SYNC], where each process is equipped with a local clock.

Proof Proof of the completeness property. (This proof does not rely on the eventual synchrony of the

system.) Let pj be a process that crashes, and pi a non-faulty process. As pj crashes there is a time

τa after which all the messages it sent to pi have been received. It follows that, after the reception of

the last acknowledgment was received from pj , which entailed the last update of max rtdi[j] (line 11,

hence, after τa:

(O1) max rtdi[j] remains forever equal to some constant R1, and

(O2) no date is suppressed from the set pending send timei[j].

We show that there is a time τb ≥ τa after which every invocation query (j) issued by pi returns the

value suspect (which proves the completeness property). There are two cases.

• Case 1: at time τa, there is a message APPL (msg), or SUBST (msg), that has not been acknowl-

edged by pj . Hence, pending send timei[j] remains forever non-empty.

Let us consider the execution of an infinite sequence of query (j) issued by pi after τa. As

pending send timei[j] �= ∅, each query (j) issued by pi after τa always executes lines 19-20.

Let rti(1), rti(2), . . . be the sequence of dates obtained by pi when it reads clocki (line 19) after

τa. Due to the monotonicity and the granularity of the local clock, we have rti(1) < rti(2) < . . .
Moreover, as min(pending send timei[j]) remains constant, it follows that there is an integer

x such that, for any y ≥ x, the predicate (rti(y) − min(pending send timei[j]) > R1) is

satisfied. It follows that there is a time τb ≥ τa after which all the invocations of query (j)
return suspect to pi, which proves the case.

• Case 2: at time τa, all the messages APPL (msg) and SUBST (msg) sent by pi to pj have

been acknowledged by pj . Hence, pending send timei[j] = ∅ at τa. Let us consider the first

invocation of query (j) by pi issued after τa. As pending send timei[j] = ∅, pi executes

lines 15-18, and consequently returns the value no suspect. But, from now on, due to line 16,

pending send timei[j] is no longer empty, and case 1 applies, which concludes the proof of

the completeness property.

Proof of the eventual strong accuracy property. (This proof relies on the eventual synchrony property

of the system �SYNC.) Let pi and pj be two non-faulty processes, and τub a time after which there is

an upper bound on message transfer delays. Moreover, let τa ≥ τub be a time after which the messages

ACK () sent by pj to pi, associated with the messages APPL () and SUBST () sent by pi to pj before

τub, have been received by pi.
Claim C1. There is a time τb ≥ τa after which the predicate

(
rti − min(pending send timei[j]) >

max rtdi[j]
)

is never satisfied.

Let us consider an invocation query (j) issued by pi after τb. If pi executes lines 15-18, (the “then” part
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of the “if” statement), it returns the value no suspect. If it executes lines 19-20 (the “else” part), it

follows from claim C1 that the predicate
(
rti −min(pending send timei[j]) > max rtdi[j]

)
is not

satisfied, which directs pi to return the value no suspect. Hence, after τb, any invocation of query (j)
issued by pi always returns no suspect.

Proof of claim C1. It follows from the definition of τub, and the fact that τa ≥ τub, that, from time τa,

message round-trip delays are upper bounded by some value Δ.

Let us consider the value of rti − min(pending send timei[j]) when, after τa, pi evaluates the

predicate
(
rti−min(pending send timei[j]) > max rtdi[j]

)
at lines 19-20 (let us notice that, as pi

is in the “else” part of the statement, we necessarily have pending send timei[j] �= 0). Let msg be

the content of a protocol message APPL or SUBST sent by pi to pj after τa, not yet acknowledged, and

such that msg.send time = min(pending send timei[j]).
Due to (a) the bound Δ, (b) the fact that ACK(msg) has not yet been received but will be received

(because pj is non-faulty and channels are reliable), and (c) the fact that rti is the current time value,

it follows that rti −msg.send time < RTmsg −msg.send time ≤ Δ, where RTmsg is pi’s local

time at which ACK(msg) will be received (hence, rti < RTmsg). There are two cases.

• Case 1: at τa, we have max rtdi[j] ≥ Δ. In this case, we have rti − msg.send time <
RTmsg −msg.send time ≤ Δ ≤ max rtdi[j], and the claim follows.

• Case 2: at τa, we have max rtdi[j] < Δ. We claim (claim C2) that after some finite time

τc ≥ τa, max rtdi[j] remains constant, equal to a value Δ′ ≤ Δ. This means that Δ′ is an upper

bound for the round-trip delays between pi and pj . We then have RTmsg −msg.send time ≤
Δ′, which terminates the proof of claim C1.

Proof of claim C2. Let us suppose by contradiction that max rtdi[j] never stops increasing.

(Due to the granularity assumption of the local clock clocki, max rtdi[j] increases by steps ≥
1.) It follows that the sequence of values taken by the quantity Δ−max rtdi[j] is monotonically

decreasing and eventually becomes negative. A contradiction as Δ is an upper bound for the

round-trip delays between pi and pj . End of the proof of claim C2.
�Theorem 95

18.7 From the t-Source Assumption to an Ω Eventual Leader

The class Ω of failure detectors was defined in Section 18.2, where a direct proof the impossibility of

implementing it in CAMPn,t[∅] was presented.

18.7.1 The �t-Source Assumption and the Model CAMPn,t[�t-SOURCE]

Eventual timely channel The model CAMPn,t[�t-SOURCE] considers that the channels are uni-

directional. Hence, each bidirectional channel connecting a pair of processes is replaced by two uni-

directional channels. Let ch(i, j) denote the channel from pi to pj .
A channel ch(i, j) is eventually timely if there is a bound δ such that after some finite time τ , the

transit time of the messages from pi to pj message from is bounded by δ. The values of δ and τ are

not necessarily known by the processes.

It follows that, if the channel ch(i, j) is eventually timely, there a unknown (finite) period during

which message transit durations are arbitrary, namely, they can be greater than the upper bound δ.

Eventual t-source This assumption states that there is a non-faulty process p that has t output chan-

nels that are eventually timely. The corresponding system model is denoted CAMPn,t[�t-SOURCE].
Hence, this model is particularly weak, as only t output channels of a non-faulty process are

required to be eventually timely, all the other channels can be fully asynchronous.
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Let us observe that, after a process pj has crashed, the channel from any process pi to pj is timely

whatever the actual transit time of the messages sent by pi. This is because, after pj crashed, everything

appears as if each of these messages is received δ time units after it has been sent.

18.7.2 Electing an Eventual Leader in CAMPn,t[�t-SOURCE]

An algorithm that elects an eventual leader in the system model CAMPn,t[�t-SOURCE] is described

in Fig. 18.12. This algorithm is due to M. Aguilera, C. Delporte, H. Fauconnier, and S. Toueg (2004).

Underlying principle The idea is to elect the least suspected (to have crashed) non-faulty process.

As we are about to see, the �t-SOURCE assumption on the channels behavior provides enough syn-

chrony to ensure that a non-faulty process will become common leader. The algorithm requires the

processes to know the value of the system parameter t.

Local variables at each process Each process pi manages the following local variables.

• The two arrays timeri[1..n] and timeouti[1..n] are such that timeouti[j] contains the current

timeout value that pi uses to monitor pj , while timeri[j] is the associated local timer. Each

timeouti[j] is initialized to a predefined value β and timeri[j] is initially set to the same value.

As a process pi does not monitor itself, timeouti[i] and timeri[i] are useless.

• The array counti[1..n] is such that counti[j] counts the number of suspicions of process pj that

have been committed (see below). The initial value of counti[j] is 0.

• The array suspecti[1..n] is such that suspecti[j] contains the identities of the process that cur-

rently suspect pj to have crashed. If enough processes suspect pj , namely, |suspecti[j]| ≥ n−t,
these suspicions are committed and pi increases counti[j] by 1. Each entry suspecti[j] is ini-

tialized to ∅.

Behavior of a process A process pi regularly sends a message ALIVE(counti) (where counti is a

size n array) to each other process (lines 5-7). This message has two aims: ALIVE() is to inform the

other processes that pi is still alive, while its content (counti) provides them with its current suspicion

view. Hence, when it receives a message ALIVE(count) from a process pj , pi updates its suspicion

array counti[1..n] (line 9), and resets its local timer timeri[j] to the current value of timeouti[j]
(line 10).

When timeri[k] expires, pi suspects pk to have crashed, but it does not commit this local suspi-

cion. Instead, it sends to each process a message SUSPECT(k) to inform them of this local suspicion

(line 12). Moreover, whether pk has crashed or not, pi increases timeouti[k] (line 13), and resets

timeri[k] to that new value (line 14).

When it receives SUSPECT(k) from any process pj , pi first adds j to suspecti[k] (the set of pro-

cesses that locally suspect pk, line 16). Then, if enough processes locally suspect pk, which is captured

by the predicate |suspecti[k]| ≥ (n − t) (line 17), pi commits these local suspicions, transforming

them into a global suspicion, namely by increasing counti[k] (line 18). (The gossiping of the messages

ALIVE() is used to disseminate committed suspicions.)

Finally, when leaderi is read by the upper layer application process, the identity of the least

suspected process is returned (lines 21-22). As several processes can be equally suspected, process

identities are used to do a tie-break, if needed. More precisely, the function min(X), where X is a set

of pairs of integers (such that no two pairs have the same second element), returns the smallest pair

according to lexicographical order, i.e., (v1, x) < (v2, y) ≡
(
(v1 < v2) ∨ (v1 = v2 ∧ x < y)

)
.
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(1) init: for each k do

(2) counti[k] ← 0; suspecti[k] ← ∅; timeouti[k] ← β;

(3) if (k �= i) then set timeri[k] to timeouti[k] end if

(4) end for.

(5) repeat every β time units

(6) for each j �= i do send ALIVE(counti) to pj end for

(7) end repeat.

(8) when ALIVE(count) is received from pj do

(9) for each k ∈ {1, . . . , n} do counti[k] ← max(counti[k], count[k]) end for;

(10) set timeri[j] to timeouti[j].

(11) when timeri[k] expires do

(12) broadcast SUSPECT(k);
(13) timeouti[k] ← timeouti[k] + 1;

(14) set timeri[k] to timeouti[k].

(15) when SUSPECT(k) is received from pj do

(16) suspecti[k] ← suspecti[k] ∪ {j};

(17) if
(
|suspecti[k]| ≥ (n− t)

)

(18) then counti[k] ← counti[k] + 1; suspecti[k] ← ∅
(19) end if.

(20) when leaderi is read by the upper layer do

(21) let (−, �) = min
(
{(counti[x], x)}1≤x≤n

)
;

(22) return(�).

Figure 18.12: Building Ω in CAMPn,t[�t-SOURCE] (code for pi)

Remark It is easy to see that process identities are used only to do a tie-break when several processes

are equally less suspected. If there is a single process that is the less suspected, its identity does

not participate in the fact it is elected. In this sense, the algorithm is fair with respect the process

identities. On another side, as each non-faulty process sends forever messages, this algorithm is not

communication-efficient.

The particular case t = 1 An interesting case, that is a common assumption in some applications,

is t = 1. In that case, Ω can be implemented if the system has only one eventually timely link.

Consequently, this very weak synchrony assumption is sufficient to solve consensus in systems where

at most one process may crash (i.e., consensus can be solved in CAMPn,t[t = 1,�t-SOURCE]).

18.7.3 Proof of the Algorithm

Theorem 96. The algorithm described in Fig. 18.12 builds an eventual leader failure detector in the

system model CAMPn,t[�t-SOURCE].

Proof Claim C1. ∀ i, j : counti[j] never decreases. (The proof of this claim follows directly from

the code of the algorithm.)

Claim C2. If a non-faulty process pj has t eventually timely output channels, counti[j] is bounded at

any process pi.
Proof of claim C2. Let ph(1), . . . , ph(t) be the t processes such that each channel ch(j, h(x)) is eventu-

ally timely. It follows from the fact that these channels are eventually timely, and the management of

the timers timerh(x)[j], 1 ≤ x ≤ t (line 14), that there is a time τ after which no timerh(x)[j] expires.

Consequently, after τ , no process ph(x) broadcasts a message SUSPECT(j). Moreover, it follows from
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the code that the process pj never sends a message SUSPECT(j). Hence, after some finite time, any set

suspecti[j] contains at most (n− t−1) identities, and consequently no process pi increases countx[j]
because the predicate |suspecti[j]| ≥ (n− t) remains forever false. Finally, let us observe that, while

the gossiping of the messages ALIVE(countk) can entail the increase of entries in some local arrays,

it cannot by itself make these entries increase forever.

It follows from the previous arguments that, if pj is non-faulty and has t eventually timely output

channels, for any process pi, counti[j] is bounded. End of the proof of claim C2.

Claim C3. There is a finite time after which the bounded entries of the arrays countx of the non-faulty

processes px remain forever equal.

Proof of claim C3. This is an immediate consequence of the gossiping of the messages ALIVE(count),
and the fact that each entry counti[k] is updated to max(counti[k], count[k]) when such a message

ALIVE(count) is received. End of the proof of claim C3.

Claim C4. ∀ i, k, if pi is non-faulty and pk is faulty, counti[k] is unbounded.

Proof of claim C4. Let pj be any non-faulty process. As pk is faulty, there is a time after which it no

longer sends messages ALIVE(). Consequently, timerj [k] expires, and pj resets this timer (lines 13-

14). Hence, timerj [k] expires an infinite number of times. Each time timerj [k] expires, pj broadcasts

SUSPECT(k) (line 12).

As this is done by each non-faulty process, it follows that, after some finite time, the predicate

|suspecti[k]| ≥ (n− t) is true at every non-faulty process pi, which accordingly increases counti[k].
As the timer timerj [k] of each correct process pj expires an infinite number of times, it follows that

counti[k] increases forever. End of the proof of claim C4.

Let pi be any non-faulty process. Due to the �t-SOURCE assumption, there is at least one non-

faulty process pj that has t eventually timely output channels. It then follows from claim C2 that there

is at least one entry of counti[j] that remains bounded. Moreover, due to claim C4, only entries asso-

ciated with non-faulty processes can remain bounded. If follows from these observations, and claim

C1, that after some finite time, a non-faulty process elects forever the same non-faulty leader. Fi-

nally, it follows from claim C3 that the same eventual leader is elected by all the non-faulty processes.

�Theorem 96

18.8 Electing an Eventual Leader in CAMPn,t[�t-MS PAT]

This section presents an algorithm that constructs a failure detector of the class Ω without relying on

timers or physical time-related assumptions. The corresponding assumption and the associated algo-

rithm are due to A. Mostéfaoui, E. Mourgaya, and M. Raynal (2003). Interestingly, this assumption

does not require the processes to be equipped with local clocks.

18.8.1 A Query/Response Pattern

The following query/response mechanism can be built in CAMPn,t[∅]. Process pi broadcasts a mes-

sage QUERY ALIVE() and waits for corresponding messages RESPONSE() from (n− t) processes (the

maximum number of messages from distinct processes it can wait for without risking being blocked

forever). To simplify the presentation (and without loss of generality), it is assumed that a process

receives always its own response. An example of such a message exchange pattern is described in

Fig. 18.13.

The first (n − t) responses to a query that a process pi receives are winning responses. The other

responses are losing. As, after it crashes, a process never answers a query, and its (missing) responses
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p1

p2

p3

p4

p5

p6

n = 6, t = 2, n− t = 4

Winning responses from {p2, p3, p5, p6}
Losing responses from {p1, p4}

RESPONSE()

QUERY()

Crash

Figure 18.13: Winning vs losing responses

are defined as losing responses. In the example given in the figure, when considering process p3, the

responses from the processes p2, p3, p5 and p6 are winning responses, while the responses from the

processes p1 and p4 are losing (the one from p1 because it arrives late, and the one from p4 because it

is never sent).

The eventual message pattern assumption �t-MS PAT This assumption is as follows: there is a

finite time τ , a non-faulty process q, and a set Q of (t + 1) processes such that, after τ , each process

pj ∈ Q always receives a winning response from q to each of its queries (until pj possibly crashes).

(The time τ , the process q and the set Q need not be explicitly known by the processes.)

An example is given in Figure 18.14 where n = 6 and t = 2. We have Q = {1, 2, 4} and q = p2.

p1

p2

p3

p4

p5

p6
A process starts a query-response

The process waits for responses from (n− t) processes

Figure 18.14: An example illustrating the assumption �t-MS PAT

The system model CAMPn,t[∅] enriched with the message pattern assumption �t-MS PAT is

denoted CAMPn,t[�t-MS PAT]. There is no timing constraint on message transfer delays in this

model (they can increase forever). �t-MS PAT does not involve timers or physical time. It only states

a constraint on the delivery order of some messages.

Let us observe that the set Q can contain crashed processes. After a process pj crashed, it does no

longer issues queries, and consequently, the predicate “each query issued after it has crashed receives

a winning response from q” is satisfied. It follows that, if a set Q′ of t processes crash, after they

crashed and the messages they sent have been received, all response messages are winning.

The model CAMPn,t[�t-MS PAT] vs the model CAMPn,t[�t-SOURCE] The eventual behav-

ioral assumptions t-MS PAT and t-SOURCE cannot be compared. Neither of them is stronger than

the other. Transit times are arbitrary in CAMPn,t[�t-MS PAT], while some channels are eventually
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timely in CAMPn,t[�t-SOURCE]. In the other direction, CAMPn,t[�t-SOURCE] places no restric-

tion on the order in which messages are received, while CAMPn,t[�t-MS PAT] eventually does.

18.8.2 Electing an Eventual Leader in CAMPn,t[�t-MS PAT]

An algorithm constructing a failure detector of the class Ω in CAMPn,t[�t-MS PAT] is described in

Fig. 18.15. The local variable ri (initialized to 0) is used to identify the consecutive query/response

exchanges issued by pi. Similarly to the previous algorithm, counti[j] counts the number of suspicions

of pj , as known by pi. The set rec fromi contains the identities of the processes from which pi received

a response to its last query (its initial value is the set {1, . . . , n}).

(1) init: ri ← 0; rec fromi ← {1, . . . , n}; for each j do counti[j] ← 0 end for.

(2) repeat forever asynchronously

(3) ri ← ri + 1;

(4) for each j �= i do send QUERY ALIVE(ri, counti) to pj end for;

(5) wait
(

RESPONSE(ri, rec from) received from (n− t) processes
)
;

(6) let prev rec fromi = ∪ sets rec from previously received;

(7) for each j /∈ prev rec fromi do counti[j] ← counti[j] + 1 end for;

(8) let rec fromi = {processes from which pi has previously received RESPONSE(ri,−) }
(9) end repeat.

(10) when QUERY ALIVE(r, count) is received from pj do

(11) for each k ∈ {1, . . . , n} do counti[k] ← max(counti[k], count[k]) end for;

(12) send RESPONSE(r, rec fromi) to pj .

(13) when leaderi is read by the upper layer do

(14) let (−, �) = min
(
{(counti[x], x)}1≤x≤n

)
;

(15) return(�).

Figure 18.15: Building Ω in CAMPn,t[�t-MS PAT] (code for pi)

Behavior of a process The behavior of a process pi is as follows.

• Process pi executes an infinite sequence of asynchronous rounds (lines 2-9). The notion of a

round is purely local: there is no coordination linking the rounds of different processes. Any

finite time can elapse between two consecutive rounds executed by a process. During a round,

pi does the following:

– It sends first the message QUERY ALIVE(ri, counti) to each other process (line 4), and

waits for the associated (n − t) winning responses (line 5). The response from a process

px carries the value of its set rec fromx when it sends the response (line 12). As indicated,

this set contains the identities of the processes that sent winning responses to px’s last

query.

– Then, pi suspects each process pj that does not appear in a set rec fromx it has just re-

ceived. Operationally, this suspicion is captured by an increase of counti[j] (lines 5-7).

– Finally, before proceeding to its next local round, pi computes the last value of its local set

rec fromi (line 8).

• When it receives a message QUERY ALIVE(r, count) from a process pj , pi updates its array

counti (line 11), and sends by return the message RESPONSE(r, rec fromi) to pj (line 12).

The sequence number r carried by the response message is related to the QUERY ALIVE(r,−)
message (it is not related to ri).



Chapter 18. Implementing Oracles

in Asynchronous Systems with Process Crash Failures 375

• Finally, when the upper layer application reads the variable leaderi, it obtains (as in the previous

algorithm) the identity of the process that is currently the least suspected.

18.8.3 Proof of the Algorithm

Theorem 97. The algorithm described in Fig. 18.15 builds an eventual leader failure detector in the

system model ASn,t[�t-MS PAT].

Proof Given a run with failure pattern F (), let us consider the following sets of process identities

(where PL stands for “potential leaders”):

PL = {x | ∃i ∈ Correct(F ) : counti[x] is bounded}, and

∀ i ∈ Correct(F ) : PLi = {x | counti[x] is bounded}.
It follows from these definitions that ∀ i ∈ Correct(F ) : PLi ⊆ PL.

Claim C1. PL �= ∅.
Proof of claim C1. Due to the model assumption �t-MS PAT, there is a time τ0, a process pi and a

set Q of (t + 1) processes such that, after τ0, any process pj in Q (until it possibly crashes) receives

winning responses from pi to each of its queries. Let us notice that Q includes at least one non-faulty

process. Let τ ≥ τ0 be a time after which no more processes crash.

Let pk be any non-faulty process. After it has issued a query, pk waits for messages RESPONSE()
from (n − t) processes, and, after τ , at most (n − (t + 1)) processes do not receive winning re-

sponses from pi. It follows from these observations that there is a time τk ≥ τ after which i is

always in prev rec fromk (line 12 executed by pk). Hence, after τk, pk never executes countk[i]←
countk[i] + 1 at line 7.

As this is true for any non-faulty process, there is a time ≥ max({τx}x∈Correct(F )) after which,

due to the permanent gossiping of the countx arrays between non-faulty processes, we have forever

countx[i] = county[i] = Mi (a constant value) for any pair of non-faulty processes px and py. End of

the proof of the Claim C1.

Claim C2. PL ⊆ Correct(F ).
Proof of claim C2. We show the contrapositive, i.e., if px is a faulty process, each non-faulty process

pi is such that counti[x] increases forever. Thanks to the permanent gossiping of the counti arrays

among the non-faulty processes, it is sufficient to show that there is a non-faulty pi such that counti[x]
increases forever if px is faulty.

Let τ be a time after which all the faulty processes have crashed and all their messages RESPONSE()
have been received, pi and pj non-faulty processes, and px a faulty process. We have the following:

1. Each query issued by pj after τ generates a set rec fromj such that x /∈ rec fromj (line 8).

2. It follows that, after τ , the predicate x /∈ prev ref fromi is always true, and consequently, each

query of pi after τ entails the execution of the statement counti[x]← counti[x]+1 (line 7). As

pi executes an infinite number of queries, counti[x] increases without bound. End of the proof

of claim C2.

Claim C3. (i ∈ Correct(F ))⇒ (PLi = PL).
Proof of claim C3. Let pi be a non-faulty process. As already noticed, PLi ⊆ PL. Hence, it follows

that we only have to show that PL ⊆ PLi. Moreover, due to claim C2, PLi ⊆ Correct(F ).
Let k ∈ PL (i.e., pk is a non-faulty process such that there is a non-faulty process pj such

that countj [k] is bounded). Let Mk be the greatest value taken by countj [k]. We have to show

that counti[k] is bounded. As, at any time, countj [k] ≤ Mk, it follows from the gossiping of the

QUERY ALIVE() messages exchanged between pi and pj (line 4 and lines 10-11), and the fact that Mk
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is a constant, that counti[k] is never greater than Mk. End of the proof of claim C3.

Claim C4. Let pi and pj be two non-faulty processes. If, after some time, counti[k] remains forever

equal to some constant Mk, so does countj [k].
Proof of claim C4. This claim follows directly from the permanent exchange of QUERY ALIVE() mes-

sages between pi and pj (line 4 and lines 10-11). End of the proof of claim C4.

The proof of the theorem follows from claims C1, C2 and C3 which state that the non-faulty

processes have the same set of potential leaders (PL), this set is not empty, and includes only non-

faulty processes. Moreover, the processes in PL are the only ones to be suspected a bounded number

of times, and (claim C4) this number is eventually the same at each non-faulty process. It follows that

the non-faulty processes eventually elect the process that is the least suspected. �Theorem 97

The particular case t = 1 When t = 1, the t-�t-MS PAT assumption can be reformulated as

follows. There is a time after which there are two processes pi and pj such that the channels connecting

them are never the slowest among the channels connecting any of these processes to any other process.

(This ensures that the responses of pj to pi will always be winning, i.e., arrive to pi among the (n− 1)
first responses. As we can see, this is a particularly weak assumption that allows the implementation

of Ω – hence the consensus abstraction – in the system model CAMPn,t[t = 1,�t-MS PAT].)

18.9 Building Ω in a Hybrid Model

Interestingly, the algorithms described in Fig. 18.12 and Fig. 18.15 can be combined to give an al-

gorithm that builds an eventual leader (failure detector of the class Ω) in a system model whose runs

satisfy at least one or both the assumptions �t-SOURCE or �t-MS PAT, i.e., the runs accepted in the

system model CAMPn,t[�t-SOURCE ∨�t-MS PAT].

Let us the local array used in Fig. 18.12 as tsource counti, and the local array used in Fig. 18.15

as mp counti. The hybrid algorithm is the union of both algorithms (each using its own local array

counti), where the processing associated with the reading of leaderi is replaced by the following one:

when leaderi is read by the upper layer do

for each x ∈ {1, . . . , n} do counti[k]← min(mp counti[x], tsource counti[x]) end for;

let (−, 	) = min
(
{(counti[x], x)}1≤x≤n

)
;

return(	).

Theorem 98. The hybrid algorithm described previously builds an eventual leader failure detector in

the system model CAMPn,t[�t-SOURCE ∨�t-MS PAT].

Proof The proof follows from Theorem 96 and Theorem 97, plus the following observation.

Let pi be a non-faulty process. If a process pj crashes, both the local variables tsource counti[j]
and mp counti[j] increase forever, from which we conclude that, if at least one of these variables

remains bounded, process pj is non-faulty. �Theorem 98

The best of both worlds This hybrid algorithm benefits from the best of both worlds, namely the

world defined by the runs that satisfy the �t-SOURCE assumption, and the world defined by the runs

that satisfy the �t-MS PAT assumption. As the hybrid algorithm is correct if either of the assumptions

�t-SOURCE and �t-MS PAT are satisfied, it provides an increased overall assumption coverage (it

works if �t-SOURCE and �t-MS PAT are alternatively satisfied during “long enough” periods).
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18.10 Construction of a Biased Common Coin from Local Coins

This section presents the construction of a biased (or imperfect) common coin from local coins in the

system model CAMPn,t[t < n/2,LC].

18.10.1 Definition of a Biased Common Coin

A binary common coin with bias ρ (BCCB) is an abstraction which provides the processes with a

one-shot operation denoted bias random() satisfying the following assumptions.

• BCCB-validity. The value returned by bias random() is 0 or 1.

• BCCB-agreement. Let pb0 and pb1 be two constants such that 0 < bp0 + bp1 ≤ 1, and:

– bias random() returns 0 to all the processes that invoke it with probability at least pb0,

– bias random() returns 1 to all the processes that invoke it with probability at least pb1, and

– in the other cases, some processes may obtain 0, while other processes obtain 1.

• BCCB-termination. The invocation of bias random() by a correct process terminates.

The coin is common in the sense there is a known probability (0 < pb0+pb1 ≤ 1) that all processes ob-

tain the same value, but it is imperfect in the sense it can happen that not all processes obtain the same

value. For any value v ∈ {0, 1}, all processes output v with probability at least ρ = min(bp0, bp1),
which is called the bias.

Let us observe that, if each process is enriched with a random number generator which returns

each v ∈ {0, 1} with probability 1/2, we have (for free, i.e., without additional communication or

computation), a common coin whose bias is ρ = 1/2n.

18.10.2 The CORE Communication Abstraction

The algorithm that builds a biased common coin uses an underlying communication abstraction de-

noted CORE-broadcast. According to H. Attiya and J. Welch (2004), this communication abstraction

is due to E. Gafni.

Definition CORE-broadcast is a one-shot all-to-all communication abstraction (recall that “all-to-

all” means it is assumed that all correct processes invoke the abstraction). It provides the processes

with a single operation denoted core broadcast(). When a process pi invokes core broadcast(v), we

say it “core-broadcasts v”. This operation returns a vector with one entry per process. Let vi denote

the value core-broadcast by pi, and reci[1..n] denote the vector it obtains. CORE-broadcast is defined

by the following properties:

• CORE-validity. If pi returns from its invocation, ∀j �= i : reci[j] ∈ {vj ,⊥}, and reci[i] = vi.

• CORE-agreement. There is a set of processes, denoted CORE , such that |CORE | > n/2, and

for any process pj that returns from its invocation, recj is such that ∀pi ∈ CORE : recj [i] = vi.

• CORE-termination. The invocation of core broadcast(v) by a correct process terminates.

Hence, CORE-broadcast ensures that (at least) all correct processes deliver the values core-broadcast

by a majority set of processes. Let us notice that this does not mean they all obtain the same vector of

values.
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Remark This communication abstraction is similar but weaker than the interactive consistency

agreement abstraction, defined in Section 10.2. Interactive consistency allows processes to obtain the

same vector, and this vector includes at least the values proposed/broadcast by the correct processes.

Moreover, interactive consistency is a stronger abstraction than consensus.

Algorithm: local variables The algorithm is described in Fig. 18.16. Each process pi manages the

following local variables:

• termi: a Boolean initialized to false, used to indicate that pi can terminate.

• knowni[1..n]: an array with one entry per process, initialized to [⊥, · · · ,⊥]. The aim of

knowni[j] is to contain the value core-broadcast by pj .

It is assumed that the default value ⊥ is smaller than any value core-broadcast by a process

(hence the operation max() used at lines 6 and 8 is well-defined).

• reci is the array returned by pi.

operation core broadcast (vi) is

(1) broadcast STEP1(vi);
(2) wait (termi);
(3) return(reci).

when STEP1(v) is received from pj do

(4) knowni[j] ← v;

(5) if (STEP1(-) rec. from (n− t) processes including pi) then broadcast STEP2(knowni) end if.

when STEP2(known) is received from pj do

(6) for each x ∈ {1, · · · , n} do knowni[x] ← max(knowni[x], known[x]) end for;

(7) if (STEP2(-) rec. from (n− t) processes) then broadcast STEP3(knowni) end if.

when STEP3(known) is received from pj do

(8) for each x ∈ {1, · · · , n} do knowni[x] ← max(knowni[x], known[x]) end for;

(9) if (STEP3() rec. from exactly (n− t) processes) then reci ← knowni; termi ← true end if.

Figure 18.16: Algorithm implementing CORE-broadcast in CAMPn,t[t < n/2] (code for pi)

Algorithm: process behavior When a process pi invokes core broadcast (vi), it broadcasts the mes-

sage STEP1(vi), and waits until termi becomes true (lines 1-3). (Recall that the operation broadcast()
sends a message to all the processes, including the sender, but is not reliable if the sender crashes dur-

ing its invocation.) The algorithm consists of three communication steps, with the messages STEP1(vi)
entailing the first communication step.

• When pi receives the message STEP1(v) from pj , it first assigns v to knowni[j] (line 4). Then,

if it received a message STEP1(−) from (n − t) processes, pi starts the second exchange step,

by broadcasting STEP2 (knowni) (line 5). Hence, this broadcast occurs exactly once.

• When pi receives the message STEP2(known) from a process pj , it learns the values known by

pj at the time it broadcast the message. Hence, it aggregates what it knows (knowni) and what

it learns known). This is done with the operation max() (line 6).

Then, if pi received a message STEP2(−) from (n − t) processes, it broadcasts the message

STEP3(). This message is a “witness” message including all the messages STEP2() from these

(n− t) processes.

• When pi receives the message STEP3(known) from a process pj , as in step 2, it adds what it

learns from this message to what it learned previously (line 8). If pi received such a message
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from (n− t) processes (the maximum number of processes from which it can wait for messages

without risking being blocked forever), it defines the current value of knowni as its output, and

returns it (line 9 and lines 2-3).

Let us notice that it is possible that a (late) process pk is such that termk = true when it in-

vokes core broadcast (). The three communication steps ensure only that (n− t) processes broadcast

messages STEP1(), STEP2(), and STEP3().

Let us assume that the adversary cannot manage message asynchrony according to their content

(which means that it cannot delay some messages according to their content).

Theorem 99. The algorithm described in Fig. 18.16 implements the CORE-broadcast communication

abstraction in the system model CAMPn,t[t < n/2].

Proof Proof of the CORE-validity property. The part ∀j �= i : reci[j] ∈ {vj ,⊥} follows from the

following observations: (i) knowni is initialized to [⊥, · · · ,⊥], (ii) and it is then updated at lines 4,

6 and 8 with the max() operation applied to knowni and the vectors known it receives (an entry

knownx[k] can contain only vk or its initial value ⊥).

The part reci[i] = vi follows from the predicate of line 4, which states that knowni[i] must include

vi.

Proof of the CORE-agreement property. We have to show that there is a set of processes CORE

such that |CORE | > n/2, and for any process pj that returns from its invocation, recj is such that

∀pi ∈ CORE : recj [i] = vi.

pj

pi

STEP2(knownj)

STEP3(knowni)

pj

pi

STEP2(knownj)

possibly pj crashes after sending STEP2() to pi

pi crashes before or during broadcast STEP3()

Figure 18.17: Definition of W [i, j] = 1

Given an execution, let W [1 : n, 1 : n] (where W stands for “witness”) be a matrix of 0/1
defined as follows, where “successful broadcast” means that the invoking process did not crash before

returning from the broadcast invocation.

• If pi successfully broadcasts the message STEP3():

– If pi has received a message STEP2() from pj before it broadcasts the message STEP3(),
then W [i, j] = 1 (left part of Fig. 18.17).

– Otherwise W [i, j] = 0.

• If pi does not successfully broadcast the message STEP3():

– If pj successfully broadcasts a message STEP2(), then W [i, j] = 1 (right part of Fig. 18.17).

– Otherwise W [i, j] = 0.

The intuitive meaning of W [i, j] is the following. Let τ be the time at which pj broadcasts the message

STEP2(knownj) (if it ever does it), and knownτ
j be the corresponding value of knownj . W [i, j] = 1

means that all the processes eventually know the content of knownτ
j .
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Each row of W contains at least (n− t) copies of the value 1. This is a direct consequence of the

definition of W [i, j]. If pi broadcasts a message STEP3(), it has received before a message STEP2()
from (n− t) processes, otherwise, pj broadcasts a message STEP2(). Hence, at least n(n− t) entries

of the matrix contain the value 1. As there are n columns, there is a column (say k) that has at least

(n − t) entries containing the value 1, from which we conclude that the set Q of processes that did

not receive a message STEP2() from pk before broadcasting their message STEP3() contains at most t
processes.

Let CORE be the value of the vector knownk when pk broadcast STEP2(knownk). Due to

t < n/2 and line 5, we have |CORE | = n− t > n/2.

Moreover, as n − t > t, each process receives a message STEP3(knowny) (lines 8-9) from

at least one process py /∈ Q. As, due to the previous observation, knowny includes the vector

knownk = CORE , the CORE-agreement property follows.

Proof of the CORE-termination property. Recall that, as CORE-broadcast is an all-to-all commu-

nication abstraction, all the processes are assumed to invoke core broadcast (). As there are at least

(n − t) correct processes, it follows that they all broadcast a message STEP1() (line 1), and conse-

quently at least (n − t) processes broadcast a message STEP2() (line 5). The same reasoning shows

that at least (n − t) processes broadcast a message STEP3() (line 7). It follows that each correct pro-

cess pi eventually receives a message STEP3() from (n− t) processes, and sets termi to true, which

concludes the proof. �Theorem 99

18.10.3 Construction of a Common Coin with a Constant Bias

Fairness assumption FM Let FM be the following message delivery assumption. The adversary,

which creates asynchrony (e.g., by delaying and reordering messages), cannot read the message con-

tent. This means it can only consider messages as “black boxes” that it can reorder, but this reordering

does not depend on the content of the messages.

Algorithm An algorithm implementing a binary common coin, with bias ρ ≥ 1/4, in the system

model CAMPn,t[t < n/2,LC,FM] (CAMPn,t[t < n/2] enriched with n independent local coins,

and a message adversary constrained by the assumption FM) is described in Fig. 18.18. Here, LC

provides each process with the operation dis random(n) which

• returns 0 with probability 1
n , and

• returns 1 with probability 1− 1
n .

The prefix “dis” (for dissymmetric) stresses the fact that the values 0 and 1 are not “equal” from an

output point of view. Their distribution is not uniform.

operation bias random () is

(1) ci ← dis random(n);
(2) reci ← CB .core broadcast (ci);
(3) if (∃ x such that reci[x] = 0) then return(0) else return(1) end if.

Figure 18.18: Common coin with bias ρ ≥ 1/4 in CAMPn,t[t < n/2,LC,FM] (code for pi)

A process pi first invokes dis random(n) to obtain a binary value ci that is used as local input

parameter of an underlying CORE-broadcast abstraction CB . Then, if the vector returned by CB
contains a 0, 0 is decided. Otherwise 1 is decided.

Theorem 100. The algorithm described in Fig. 18.18 implements a common coin in the system model

CAMPn,t[t < n/2,LC,FM] whose bias is ρ = min(pb0, pb1) ≥ 1
4 .
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Proof Due to property FM, and the fact that the choices of the coins at line 1 are random, the adver-

sary, which governs asynchrony, cannot delay messages due to their (random) content. It follows that

it has no way of impacting the content of the set CORE output by the object CB at line 2.

BCCB-validity follows from line 3, and BCCB-termination follows from the CORE-termination

property (line 2). The proof of BCCB-agreement is composed of two parts.

Part 1: pb1 ≥ 1
4 . We have to prove that the probability that “all the processes that return from

bias random () obtain the value 1” is at least 1
4 .

This probability is at least the probability that all the processes that execute line 1 obtain value

1. This is because, if they all obtain 1 from their local coins, due to the CORE-validity and CORE-

agreement properties, no process can obtain a vector containing 0 from BC at line 2.

As the probability for a process to obtain 1 at line 1 is 1− 1
n , and the local coins are independent,

the probability that all the processes that execute line 1 obtain value 1, is at least
(
1− 1

n

)n
. For n ≥ 2,

the function
(
1 − 1

n

)n
increases up to its limit 1

e (where e = 2.718281... is Euler’s number). As the

function is increasing, for n = 2 we have
(
1− 1

2

)2
= 1

4 , which proves the case is proved.

Part 2: pb0 ≥ 1
4 . We have to prove that the probability that “all the processes that return from

bias random () obtain the value 0” is at least 1
4 .

Any process pi obtains a vector reci from the CORE-abstraction instance BC (line 2). Due to

the CORE-agreement property, the vector reci includes the values of all the processes belonging to

the set CORE . Moreover, due to the CORE-validity property, reci[x] = vx for any px ∈ CORE .

Hence, if a process px ∈ CORE obtains 0 from its local coin (line 1), all processes will be such that

reci[x] = vx = 0, and will return 0 at line 3.

It follows that the probability we are looking for cannot be smaller than the probability that a

process of CORE obtains 0 from its local coin (this is a consequence of the FM assumption: the ad-

versary does not know the value of the coins ci and consequently cannot play with message reordering

to favor a value at the expense of the other in the definition of the set CORE ). This probability is

1−
(
1− 1

n

)C
, where C = |CORE |. As C > n

2 , we have 1−
(
1− 1

n

)C
> 1−

(
1− 1

n

)n
2 . Showing

1−
(
1− 1

n

)n
2 ≥ 1

4 , amounts to showing
(
1− 1

n

)n ≤ (
3
4

)2
. As

(
1− 1

n

)n
is an increasing function, the

limit of which is 1
e  0.3678, and

(
3
4

)2  0.5625, the result follows. �Theorem 100

18.10.4 On the Use of a Biased Common Coin

The perfect common coin introduced in Section 17.5 allows the design of efficient binary consensus

algorithms, such as the algorithm described in Fig. 17.8. Despite the fact it is not perfect, a biased

common coin can be used to solve binary consensus. An an example, using a new instance of a biased

common coin at every round instead of pure local coins, the binary consensus algorithm presented in

Section 17.5.3 remains correct. Such an approach allows us to reduce the average number of rounds

needed for the processes to decide.

18.11 Summary

This chapter was on the construction of failures detectors of the classes P (perfect failure detec-

tors), �P (eventually perfect failure detectors), and Ω (eventual leaders). For each class, it has pre-

sented several algorithms, each based on a specific assumption which enriches the basic system model

CAMPn,t[∅]. The chapter has also presented algorithms that allow a process to monitor another
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process, and an algorithm building a biased common coin from n independent local coins (one per

process).
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18.13 Exercises and Problems

1. Prove the algorithm described in Fig. 18.5.

2. When considering the algorithm defined in Fig. 18.16, describes an execution in which a process

returns without having sent messages STEP2() and STEP3().

3. Let us consider the algorithm describes in Fig. 18.19. This algorithm is designed for the system

model CAMP n, t[t < n/3,LC] (where LC is defined as in Section 18.10.3).

Is this algorithm correct? If it is not, find a counter-example. If it is, to provide a proof of it.

operation bias random () is

(1) ci ← dis random(n);
(2) broadcast MY COIN(ci);
(3) wait (MY COIN(−) received from (n− t) processes);

(4) seti ← set of coins received;

(5) broadcast MY SET(seti);
(6) wait (MY SET(−) received from (n− t) processes);

(7) set of seti ← set of the sets received;

(8) if (0 ∈ one set of st of seti) then return(0) then return(1) end if.

Figure 18.19: Does it build a biased common coin in CAMPn,t[t < n/3,LC] (code for pi)?

Solution in [413].

4. Is assumption FM needed in part 1 of the proof of Theorem 100? Why?

5. Why is assumption FM not needed in the randomized consensus algorithm described in Sec-

tion 17.5.3?



Chapter 19

Implementing Consensus in Enriched

Byzantine Asynchronous Systems

This chapter is on the implementation of the consensus abstraction in the Byzantine system model

BAMPn,t[∅] enriched with appropriate additional assumptions. All the algorithms it presents assume

that the network is not controlled by the adversary, and are optimal with respect to the model resilience

parameter t (namely, t < n/3).

Two binary consensus algorithms are first presented. The first one is based on the message schedul-

ing assumption MS introduced in Section 17.2. The second one is a random-based binary consensus

algorithm, which relies on an all-to-all broadcast communication abstraction. This algorithm, which

converges in a constant expected number of rounds, is also optimal with respect to the number of

messages per round (namely, O(n2)).

Finally, the chapter presents two reductions of multivalued consensus to binary consensus in the

presence of up to t < n/3 Byzantine processes. Both ensure that, if all correct processes propose the

same value, they decide it (BC-validity property). The second one ensures the following additional

property (called BC-no-intrusion): no value proposed only by Byzantine processes can be decided.

Hence, the value that is decided is either a value proposed by a correct process, or a default value ⊥
(which cannot be proposed by processes). In the last case, the output ⊥ by the consensus instance

means that not enough processes proposed the same value, and consequently the consensus instance

is aborted.

Keywords Asynchronous algorithm, Binary consensus, Byzantine process, Common coin, Consen-

sus abstraction, Fair message scheduling, Local coin, Multivalued consensus, Random number, Re-

duction algorithm.

19.1 Definition Reminder and Two Observations

19.1.1 Definition of Byzantine Consensus (Reminder)

Basic definition of Byzantine consensus The definition of the consensus abstraction in the context

of Byzantine processes was stated in Section 14.1.2. It is recalled below.

• BC-validity. If all correct processes propose the same value v, only v can be decided.

• BC-agreement. No two correct processes decide different values.

• BC-termination. Each correct process decides a value.
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On validity properties for Byzantine consensus As already indicated, when the correct processes

do not propose the same value, the BC-validity definition allows the correct processes to decide a value

proposed by a correct process, or a value proposed by a Byzantine process, or even any other value.

Some applications may require that a value proposed only by Byzantine processes is not decided.

This implies that, in the executions in which not enough correct processes propose the same value,

the default value ⊥ can be decided. In this case, the result ⊥ can be interpreted as an abort of the

consensus execution.

The corresponding Byzantine consensus abstraction is defined by the previous BC-validity, BC-

agreement, and BC-termination properties plus the following validity-related property:

• BC-no-intrusion. The value decided by a correct process is either a value proposed by a correct

process or ⊥ (a default value that no process can propose).

In the case of binary consensus, Theorem 60 has shown that, independently of the failure model

(crash or Byzantine failures), the fact that only two values can be proposed which combined with

the BC-validity property implies that the value decided value by a correct process is always a value

proposed by a correct process. Hence, in binary consensus, the BC-no-intrusion property is given for

free.

19.1.2 Why Not to Use an Eventual Leader

This chapter does not present an Ω-based consensus algorithm in the presence of Byzantine processes.

This is due to the following reason.

A Byzantine process can behave as a correct process during the execution of an eventual leader

algorithm, and behave erroneously during all the other parts of its execution, for example in the exe-

cution of the instances of a leader-based consensus algorithm. To put it differently, the election of a

Byzantine process as a leader (which can collude with other Byzantine processes to pollute the system)

may threaten the safety of the system, without correct processes being aware of it.

19.1.3 On the Weakest Synchrony Assumption for Byzantine Consensus

The question In addition to Ω or randomization, an approach to ensure the BC-termination property

consists in enriching the underlying system with a synchrony property. A fundamental issue is then the

statement of the weakest synchrony assumption that allows the implementation of consensus despite

up to t < n/3 Byzantine processes.

The weakest synchrony assumption The previous issue issue has been solved by Z. Bouzid, A.

Mostéfaoui, and M. Raynal (2015). They showed the following system model captures the weakest

synchrony assumption that allows consensus to be solved despite Byzantine processes.

Let us consider that each pair of processes is connected by two unidirectional channels (with

possibly different timing properties). Hence, a process has n input channels (one from each process –

including itself – to itself, and n output channels).

The notion of an eventually timely channel was introduced in Section 18.7.1. A channel is eventu-

ally timely if there a finite time τ , and a duration δ, such that, after time τ the transfer times of all the

messages sent on this channel are upper bounded by δ. Neither τ nor δ is required to be known by the

processes.

An eventual 〈t + 1〉bisource is a correct process p that has (a) eventually timely input channels

from t correct processes, and (b) eventually timely output channels to t correct processes (these input

and output channels can connect p to different subsets of processes).

The eventual 〈t+1〉bisource synchrony assumption is necessary and sufficient to solve consensus

despite asynchrony (for the rest of the system) and up to t < n/3 Byzantine processes. For the design
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of a Byzantine consensus algorithm in such a model see the “Bibliographic Notes” at the end of this

chapter.

19.2 Binary Byzantine Consensus from a Message Scheduling Assump-

tion

19.2.1 A Message Scheduling Assumption

Assumption TMS This assumption is the same as the one stated in Section 17.2 extended to two

consecutive rounds (hence its name TMS), namely, there are two consecutive rounds r and (r + 1)
during which all the correct processes receive their first (n − t) round r messages from the same set

of correct processes.

Let BAMP t,n[t < n/3; TMS] denote the model BAMP t,n[t < n/3] enriched with the TMS

behavioral assumption.

A weaker probabilistic assumption As seen in Section 17.2, this assumption can be weakened by

assuming that, at any round r, there is a constant probability ρ > 0 that all correct processes receive

their first (n−t) round r messages from the same set of (n−t) correct processes. Hence, a probability

ρ2 that there are two consecutive rounds r and (r + 1) during which they receive their first (n − t)
round messages from the same set of (n− t) correct processes.

19.2.2 A Binary Byzantine Consensus Algorithm

A binary consensus algorithm for the system model BAMP t,n[t < n/3; TMS] is described in

Fig. 19.1. This algorithm is due to G. Bracha and S. Toueg (1985).

Local variables at a process pi The variables esti (round number), esti (current estimate of the

decision value), and nbi[0] and nbi[1] (number of processes that voted 0 and 1 in the current round,

respectively), are the same as in the algorithm described in Fig. 17.1.

operation propose(vi) is

(1) esti ← vi; ri ← 0;

(2) while true do

(3) ri ← ri + 1;

(4) ND broadcast EST (ri, esti);
(5) wait (EST (ri,−) nd-delivered from (n− t) different processes);

(6) nbi[0] ← number of messages EST(ri, 0) nd-delivered at line 5;

(7) nbi[1] ← number of messages EST(ri, 1) nd-delivered at line 5;

(8) if (nbi[0] > nbi[1]) then esti ← 0 else esti ← 1 end if;

(9) if (nbi[esti] >
n+t
2

) then ND broadcast DEC (r, esti); return(esti) end if

(10) end while.

Figure 19.1: Binary consensus in BAMPn,t[t < n/3, TMS] (code for pi)

Algorithm The processes execute an asynchronous sequence of rounds. During a round r, a correct

process first informs the other processes of its current estimate value esti (line 4).

This is done with the ND-broadcast communication operation, which was defined in Section 4.2.

This operation is weaker than Byzantine reliable broadcast (BRB-broadcast) communication abstrac-

tion defined in Section 4.3) in the following sense. While BRB-broadcast ensures that two correct

processes brb-deliver the same message (or no message at all) from the same Byzantine process, ND-

broadcast guarantees only that no two correct processes nd-deliver different messages from the same
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Byzantine process. Hence, considering an ND-broadcast instance issued by a Byzantine process p, it

is possible that some correct processes deliver the same message m from p, while other correct pro-

cesses nd-deliver no message from p. (With BRB-broadcast, either all correct processes, or none of

them, brb-deliver m.)

Then, a correct process pi waits until it has nd-delivered messages from (n− t) processes (line 5),

and counts the number of these messages that carry 0 and 1, respectively (lines 6-7). It then defines its

new current estimate esti as the most received value (line 8); 1 is selected if nbi[0] = nbi[1].
Finally, if esti = v was received from “enough” processes, where “enough” means “more than n+t

2
processes”, pi decides v by returning it (line 9). But, before deciding, pi nb-broadcasts the message

DEC(r, v) to inform the other processes it is about to decide v. Let us notice that, due to the termination

properties of the ND-broadcast abstraction, if pi is correct, all processes will nd-deliver its message

DEC(r, v).
In order to prevent permanent blocking (some correct processes receiving not enough messages at

line 5) a message DEC(r, v) has the following semantics. A process pj that receives DEC(r, v) from a

process pi considers DEC(r, v) as a digest encapsulating the infinite sequence of messages EST(r′, v)
for r′ > r.

19.2.3 Proof of the Algorithm

Lemma 71. If the local estimate variables esti of all the correct processes contain the same value b
at the beginning of a round r, they have the same value at the end round r.

Proof Let b be the value of the estimates of all correct processes at the beginning of a round r. Let pi
be any correct process. Due to lines 4-7, we have nbi[b] ≥ n− 2t, and nbi[1− b] ≤ t. As n− 2t > t,
we have nbi[b] > nbi[1− b], from which we conclude that pi assigns b to esti at line 8, which proves

the lemma. �Lemma 71

Theorem 101. The algorithm described in Fig. 19.1 implements the binary consensus agreement ab-

straction in the system model BAMPn,t[TMS, t < n/3].

Proof Proof of the BC-validity property. If correct processes propose 0 while other correct processes

propose 1, it follows from the assignments of esti at line 8 that no correct process can decide a value

v /∈ {0, 1} at line 9. Hence, let us assume that all correct processes propose the same value b ∈ {0, 1}.
As there are at most t Byzantine processes, it follows from Lemma 71 that the local variables esti
of all correct processes never change. Consequently, no value different from b can be decided by a

correct process.

Proof of the BC-agreement property. Assuming processes decide, let r be the first round at which

this occurs. Moreover, let pi be a process that decides at round r and b the value it decides.

As pi decides b in round r, we have nbi[b] >
n+t
2 (line 9). As at most t messages EST(r, b) are

from Byzantine processes, it follows that more than n+t
2 − t = n−t

2 correct processes nd-broadcast

the message EST(r, b). Moreover, it follows from the ND-no-duplicity property of ND-broadcast (no

two correct processes nd-deliver different message from the same sender) that each correct process pj
nd-delivers the message EST(r, 1−b) from at most t correct processes, and the message EST(r, b) from

more than n−t
2 ≥ t+1 correct processes. As t+1 > t, pj assigns b to estj (line 8). Consequently, all

correct processes are such that estj = b at the end of round r. It follows then from Lemma 71 that no

value different from b can be decided.

Proof of the BC-termination property. Let us first assume that a correct process pi decides. Let

r be the first round at which this occurs, and b be the decided value. It follows from the proof of

the BC-agreement property that, at the end of round r, all correct processes pj are such that estj = b.
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Moreover, let us remember that the nd-broadcast of the message DEC(r, b) by a correct process (line 9)

is equivalent to the nd-broadcast of the messages EST(r′, b) for all r′ > r. It follows that, any correct

process pj , that does not decide at round r, (i) proceeds to round (r + 1) with estj = b and, (ii) at

any round r′ > r, receives a message EST(r′, b) from any correct process that decided in a previous

round (direct consequence of the semantics of the message DEC(−,−) sent by a correct process when

it decides). Due to TMS (message scheduling assumption), it follows that the correct processes that

have not yet decided eventually enter a round r′′ during which they all receive a message EST(r, b)
from (n− t) correct processes. When this occurs, we have nbj [b] = n− t. As n > 3t⇒ n− t > n+t

2 ,

the predicate of line 9 is satisfied at any correct process pj that has not yet decided, which entails its

decision.

Let us now consider that no process ever decides. Due to TMS (message scheduling assumption),

there are two consecutive rounds r and (r+1), such that, during r (resp. (r+1)), all correct processes

receive their first (n − t) messages from the same set Q1 (resp. Q2) of correct processes. When

this occurs (round r), all correct processes execute the same code (lines 5-8) with the very same

set of messages as input (sent by the processes in Q1). Consequently they all compute the same

estimate value esti = estj = · · · = b. Moreover, as n > 3t, and during round (r + 1) the correct

processes receive their first (n − t) messages from the same set of correct processes Q2, we have

nbi[b] = n− t > n+t
2 , at each correct process pi. It then follows from the predicate at line 9 that any

correct process decides. �Theorem 101

19.2.4 Additional Properties

The following properties, which are easy to verify, are left to the reader.

• If all processes propose the same value, decision is obtained in two rounds (second item of the

proof of the C-validity property).

• If t processes crash initially, or never send messages, decision is obtained in two rounds.

• If more than n+t
2 correct processes start with the same proposed value b, they decide b in two

rounds (Exercise 2 in Section 19.9).

19.3 An Optimal Randomized Binary Byzantine Consensus Algorithm

This section presents a binary round-based consensus algorithm for the asynchronous system model

enriched with a common coin BAMPn,t[t < n/3,CC]. This algorithm, due to A. Mostéfaoui, H.

Moumen, and M. Raynal (2014), is optimal in the number of messages per round (namely O(n2)),
and its expected number of rounds is constant.

This algorithm relies on an all-to-all binary-value broadcast abstraction (denoted BV-broadcast).

Each round of the consensus algorithm uses an instance of it, whose cost is O(n2) messages.

19.3.1 The Binary-Value Broadcast Abstraction

Definition The BV-broadcast is an all-to-all broadcast abstraction, which provides the processes with

a single operation denoted BV broadcast(). “All-to-all” means that all the correct processes invoke

the operation BV broadcast(). When a process invokes BV broadcast TAG(m), we say that it “bv-

broadcasts the message TAG(m)” or “the message TAG(m) is bv-broadcast by pi”). The content of a

message m is 0 or 1 (hence the term “binary-value” in the name of this communication abstraction).

In a BV-broadcast instance, each correct process pi bv-broadcasts a binary value and obtains binary

values. To store the values obtained by each process pi, the BV-broadcast abstraction provides it with

a read-only local variable denoted bin valuesi. This variable is a set, initialized to ∅, which increases
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when a new value has been received from “enough” processes. BV-broadcast is defined by the four

following properties:

• BV-validity. If pi is correct and v ∈ bin valuesi, v has been bv-broadcast by a correct process.

• BV-uniformity. If a value v is added to the set bin valuesi of a correct process pi, eventually

v ∈ bin valuesj at any correct process pj .

• BV-termination. Eventually the set bin valuesi of each correct process pi is non-empty.

The following property is an immediate consequence of the previous definition.

Property 5. Eventually the sets bin valuesi of the correct processes pi become non-empty and equal.

Moreover, they do not contain a value bv-broadcast only by Byzantine processes.

operation BV broadcast MSG(vi) is

(1) broadcast B VAL(vi).

when B VAL(v) is received

(2) if
(

B VAL(v) received from (t+ 1) different processes and B VAL(v) not yet broadcast
)

(3) then broadcast B VAL(v) % a process echoes a value only once %

(4) end if;

(5) if
(

B VAL(v) received from (2t+ 1) different processes
)

(6) then bin valuesi ← bin valuesi ∪ {v} % local delivery of a value %

(7) end if.

Figure 19.2: An algorithm implementing BV-broadcast in BAMPn,t[t < n/3] (code for pi)

Algorithm The very simple algorithm described in Fig. 19.2 implements the BV-broadcast abstrac-

tion in BAMPn,t[t < n/3]. This algorithm is based on a particularly simple “echo” mechanism,

which is used at most once per process and per value. This will generate a cost of at most O(n2)
messages per round of the consensus algorithm.

When a process invokes BV broadcast MSG(v), v ∈ {0, 1}, it broadcasts B VAL(v) to all the

processes (line 1). Then, when a process pi receives (from any process) a message B VAL(v), (if not

yet done) it forwards this message to all the processes (line 3) if it received the same message from at

least (t+1) different processes (line 2). Moreover, if pi has received v from at least (2t+1) different

processes, the value v is added to bin valuesi (line 5-7).

Remark It is important to notice that no correct process pi can know when its set bin valuesi has

obtained its final value. (Otherwise, consensus could be directly obtained by directing each process pi
to deterministically extract the same value from bin valuesi.) As already mentioned, this impossibil-

ity is due to the net effect of asynchrony and process failures.

Theorem 102. The algorithm described in Fig. 19.2 implements the BV-broadcast communication

abstraction in the system model BAMPn,t[t < n/3].

Proof Proof of the BV-validity property. To show this property, we prove that a value BV-broadcast

only by faulty processes cannot be added to the set bin valuesi of a correct process pi. Hence, let

us assume that only faulty processes bv-broadcast v. It follows that a correct process can receive the

message B VAL(v) from at most t different processes. Consequently the predicate of line 2 cannot

be satisfied at a correct process. Hence, the predicate of line 5 cannot be satisfied either at a correct

process, and the property follows.
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Proof of the BV-uniformity property. If a value v is added to the set bin valuesi of a correct process pi
(local delivery), this process received B VAL(v) from at least (2t+1) different processes (line 5), i.e.,

from at least (t + 1) different correct processes. As each of these correct processes sent this message

to all the processes, it follows that the predicate of line 2 is eventually satisfied at each correct process,

which consequently broadcasts B VAL(v) to all. As n − t ≥ 2t + 1, the predicate of line 5 is then

eventually satisfied at each correct process, and the BV-uniformity property follows.

Proof of the BV-termination property. As (a) there are at least (n − t) correct processes, (b) each of

them invokes BV broadcast MSG(), (c) n − t ≥ 2t + 1 = (t + 1) + t, and (d) only 0 and 1 can be

BV-broadcast, it follows that there is a value v ∈ {0, 1} that is bv-broadcast by at least (t+ 1) correct

processes. As each correct process that has not bv-broadcast v receives v from at least (t + 1), it

eventually forwards the message B VAL(v) at line 3. As n − t ≥ 2t + 1, it follows that the predicate

of line 5 is eventually satisfied at each correct process pi, which consequently adds v to bin valuesi
at line 6. BV-termination follows. �Theorem 102

Cost of the algorithm As far as the cost of the algorithm is concerned, we have the following for

each BV-broadcast instance.

• If all correct processes bv-broadcast the same value, the algorithm requires a single communi-

cation step. Otherwise, it can require two communication steps.

• Let c ≥ n − t be the number of correct processes. The correct processes send c n messages if

they bv-broadcast the same value, and send 2 c n messages otherwise. Hence, in a BV-broadcast

instance, the correct processes sends O(n2) messages.

• In addition to the control tag B VAL, a message carries a single bit. Hence, message size is

constant.

19.3.2 A Binary Randomized Consensus Algorithm

Common coin (Reminder) The notion of a common coin was introduced in Section 17.5.1. Such

an object is a global entity that provides the processes with an operation denoted random(), which

delivers the same sequence of random bits b1, b2, . . . , br, etc. to the processes, each bit br having the

value 0 or 1 with probability 0.5. More explicitly, the r-th invocation of random() by any process pi
returns it the bit br.

Randomized BC-termination (Reminder) As seen in Section 17.5.2, the BC-termination property

of a randomized consensus algorithm states that each non-faulty process decides with probability 1.

Moreover, in round-based algorithms, this termination property translates as follows. For any correct

process pi, we have:

limr→+∞

(
Probability [pi decides by round r]

)
= 1.

Local variables at a process pi The algorithm is described in Fig. 19.3. In addition to esti and ri
(which have the same meaning as in the previous consensus algorithms), a process pi manages the

following local variables:

• si: a local variable containing the value of the random bit associated with the current round ri.

• valuesi: the set of binary values received during the current round.

• bin valuesi[r]: the output set for the BV-broadcast instance associated with round r.



392 19.3. An Optimal Randomized Binary Byzantine Consensus Algorithm

operation propose(vi) is

esti ← vi; ri ← 0;

repeat forever

(1) ri ← ri + 1;

(2) BV broadcast EST[ri](esti);
(3) wait (bin valuesi[ri] �= ∅);

% bin valuesi[ri] has not necessarily obtained its final value when wait terminates %

(4) broadcast AUX[ri](w) where w ∈ bin valuesi[ri];
(5) wait

(
∃ a set valuesi and a set of (n− t) messages AUX[ri]() such that

valuesi is the set union of the values x carried by these (n− t) messages

∧ valuesi ⊆ bin valuesi[ri]
)
;

(6) si ← random();
(7) if (valuesi = {v}) % i.e.,|valuesi| = 1 %

(8) then if (v = si) then decide(v) if not yet done end if;

(9) esti ← v
(10) else esti ← si
(11) end if

end repeat.

Figure 19.3: A BV-broadcast-based binary consensus algorithm for the model BAMPn,t[n > 3t,CC]
(code for pi)

Algorithm The processes proceed by consecutive asynchronous rounds and (as just indicated) a BV-

broadcast instance is associated with each round. The behavior of a correct process pi during a round

ri can be decomposed in three phases.

• Phase 1: lines 1-3. This first phase is an exchange phase. During a round ri = r, a process

pi first invokes BV broadcast EST[ri](esti) (line 2) to inform the other processes of the value

of its current estimate esti. This message is tagged EST and associated with the round number

r (hence the notation EST[r]()). Then, pi waits until its underlying read-only BV-broadcast

variable bin valuesi[ri] is no longer empty (line 3). Due to the BV-termination property, this

eventually happens. When the predicate becomes satisfied, the set bin valuesi[r] does not yet

necessarily have its final value, but it contains at least one value ∈ {0, 1}. Moreover, due to

the BV-validity property, any value in bin valuesi[r] was bv-broadcast by at least one correct

processes.

• Phase 2: lines 4-5. The second phase of a round ri = r is also an exchange phase during

which each correct process pi invokes the operation broadcast AUX[r](w), where w is a value

belonging to bin valuesi[r] (line 4). Let us notice that all the correct processes pj broadcast a

value of their set bin valuesj [r] (i.e., an estimate value of a correct process), while a Byzantine

process can broadcast an arbitrary binary value. To summarize, the broadcasts of the second

phase inform the other processes of estimate values that have been bv-broadcast by correct

processes.

A process pi then waits until the predicate of line 5 becomes satisfied. This predicate has two

aims.

– One is to discard (if any) a value that has been sent only by Byzantine processes (sub-

predicate valuei ⊆ bin valuesi[r]).

– The second is to ensure that, if during a round r, a correct process pi is such that valuesi =
{v}, any other correct process pj is such that v ∈ valuesj .

From an operational point of view, a process pi waits until there is a set valuesi containing only

the values broadcast at line 4 by (n − t) distinct processes, and these values originated from

correct processes (which bv-broadcast them at line 2). Hence, after line 5, we have valuesi ∈
{0, 1}, and for any v ∈ valuesi, v is an estimate vb-broadcast by a correct process.
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• Phase 3: lines 6-11. This last phase is a local computation phase. A correct process pi first

obtains the value of the common coin associated with the current round, of the common coin

and saves it si (line 6).

– If |valuesi| = 1, pi decides v (the single value present in valuesi) if additionally si = v
(line 8). Otherwise it adopts v as its new estimate (line 9).

– If |valuesi| = 2, both the value 0 and the value 1 are estimate values of correct processes.

In this case, pi adopts the current value si of the common coin as its new estimate (line 10).

The statement decide() used at line 8 allows the invoking process pi to decide but does not stop

its execution. A process executes rounds forever. This facilitates the description and the under-

standing of the algorithm. A terminating version of the algorithm is presented in Section 19.3.4.

19.3.3 Proof of the BV-Based Binary Byzantine Consensus Algorithm

Notation Let pi be a correct process, and valuesri be the value of the local variable valuesi which

satisfies the predicate of line 5 at round r.

Lemma 72. If, at the beginning of a round r, the estimates esti of all the correct processes pi are

equal to the same value v, their estimates remain forever equal to v.

Proof If all the correct processes (which are at least n− t > t+ 1) have the same estimate value v at

beginning of a round r, they all bv-broadcast EST[r](v) at line 2. It follows that the set bin valuesi[r]
of each correct process pi contains v (BV-termination property) and only v (BV-validity property).

Hence, due to the lines 4-5, we have valuesri = {v} at any correct process pi, and due to the predicate

of line 7 and line 9, the estimate esti of each correct process pi is set to v, which concludes the proof

of the lemma. �Lemma 72

Lemma 73. Let pi and pj be two correct processes. (valuesri = {v}) ∧ (valuesrj = {w}) ⇒ (v =
w).

Proof Let us consider a correct process pi and assume valueri = {v}. It follows from the predicate

of line 5 that pi received the same message AUX[r](v) from at least (n− t) different processes. As at

most t processes can be Byzantine, it follows that pi received AUX[r](v) from at least (n−2t) different

correct processes, i.e., as n− 2t ≥ t+ 1, from at least (t+ 1) correct processes.

Let us consider another correct process pj such that valuerj = {w}. This process received the

message AUX[r](w) from at least (n− t) different processes. As (n− t)+ (t+1) > n, it follows that

one correct process px sent AUX[r](v) to pi and AUX[r](w) to pi. As px is correct, it sent the same

message to all the processes. Hence v = w, which concludes the proof of the lemma. �Lemma 73

Lemma 74. A decided value is a value proposed by a correct process.

Proof Let us consider the round r = 1. It follows from (a) the BV-validity property of the BV-

broadcast (line 2), (b) the wait statement at line 3, and (c) the broadcast by each correct process pj of a

message AUX[1]() carrying a value taken from its set bin valuesj [1], that, the set values1i computed at

line 5 by any correct process pi contains only estimate values coming from correct processes. Then, if

values1i = {v} and v is equal to the value si of the common coin, v is decided. Irrespective of whether

the value v is decided or not, pi adopts it as its new estimate (line 9). If values1i = {0, 1}, both values

have been proposed by correct processes and pi assigns to its estimate esti the value defined by the

common coin (line 10). In all cases, the estimate value of a correct process is equal to a proposed

value. Then the same reasoning applies to all other rounds, from which follows that a decided value is

a value that was proposed by a correct process. �Lemma 74
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Lemma 75. No two correct processes decide different values.

Proof Let r be the first round at which processes decide. If two correct processes pi and pj decide at

round r, they decide the same value, namely, the value of the common coin associated with round r,

and update their estimates to the value of the common coin.

Moreover, due to Lemma 73, if pi decides v during round r, there is no correct process pj such

that valueri = {w}, with w �= v. Hence, if a process pj does not decide during r, we necessarily have

valuesrj = {v, w} = {0, 1}. It follows that such a process pj executes line 10, and assigns the value

of the common coin to its estimate estj .
Hence, at the beginning of round (r+1), the estimates of all the correct processes are equal to the

common coin, which is itself equal to the decided value v. It then follows from Lemma 72 that they

keep this value forever. As a decided value is an estimate value, only v can be decided. �Lemma 75

Lemma 76. Each non-faulty process decides with probability 1.

Proof Let us first prove that no correct process remains blocked forever during a round r. There are

two statements wait(). Due to the BV-termination property, no correct process can block forever at

line 3. To show that no correct process can block forever at line 5, we have to show that the predi-

cate of line 5 becomes eventually true at every correct process pi. This follows from the following

observations: during round r, (a) the set bin valuesi[r] of each correct process contains only values

BV-broadcast by correct processes (BV-validity), and eventually the sets of all the correct processes

are equal (BV-uniformity), (b) each of the at least (n − t) correct processes pi broadcasts a message

AUX[r](w) such that w ∈ bin valuesi[r], and (c) each of these messages is eventually received by

each correct process.

Claim. With probability 1, there is a round r at the end of which all the correct processes have the

same estimate value.

Assuming the claim holds, it follows from Lemma 72 that all the correct processes pi keep their

estimate value esti = v and consequently the predicate valuesi = {v} at line 7 is true at every round

r′ ≥ r. Due to the common coin CC, it follows that, with probability 1, there is eventually a round in

which random() outputs v. Then, the predicates of lines 7 and 8 evaluate to true, and all the correct

processes decide.

Proof of the claim. We need to prove that, with probability 1, there is a round at the end of which all

the correct processes have the same estimate value. Let us consider a round r.

• If all the correct processes execute line 10, they all adopt the value of the common coin at the

end of round r, and the claim follows.

• Similarly, if all the correct processes execute line 9, they adopt the same value v as their new

estimate, and the claim follows.

• The third case is when some correct processes execute line 9 and adopt the same value v, while

others execute line 10 and adopt the same value s.

Due to the properties of the common coin, the value it computes at a given round is indepen-

dent from the values it computes at the other rounds (and also, due to the assumption that the

Byzantine processes do not control the network, from the Byzantine processes and the network

scheduler). Thus, s is equal to v with probability p = 1/2. Let P (r) be the following probability

(where xr is the value of x at round r): P (r) = Probability[∃r′ : r′ ≤ r : vr
′
= sr

′
]. We have

P (r) = p+ (1− p)p+ · · ·+ (1− p)r−1p. So, P (r) = 1− (1− p)r. As limr→+∞ P (r) = 1,

the claim follows. (End of the proof of the claim.)
�Lemma 76
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Theorem 103. The algorithm described in Fig. 19.3 implements the randomized binary Byzantine

consensus abstraction in the system model BAMPn,t[t < n/3,CC].

Proof BC-validity follows from Lemma 74. BC-agreement follows from Lemma 75. BC-termination

follows from Lemma 76. �Theorem 103

Theorem 104. The expected number of rounds to decide is constant (four rounds).

Proof As indicated in the proof of Lemma 76, BC-termination is obtained in two phases. First, a phase

during which all the correct processes adopt the same value v, followed by a second phase where the

outcome of the common coin has to be the same as the commonly adopted value v.

It follows from the proof of Lemma 76 that there is only one situation in which the correct pro-

cesses do not adopt the same value. This is when the predicate of line 7 is satisfied for a subset of

correct processes and not for the other correct processes. Thus, the expected number of rounds for

this to happen is two. As for the second phase, here again, the probability that the value output by the

common coin is the same as the value held by all the correct processes is 1/2. Thus, the expected time

for this to occur is also two. Consequently, combining the two phases, the expected termination time

is four rounds (i.e., a small constant). �Theorem 104

Cost of the algorithm to decide As far as the cost of the algorithm is concerned, we have the

following, where c ≥ n− t denotes the number of correct processes.

• If the correct processes propose the same value, each round requires two communication steps

(one in the BV-broadcast and one broadcast), and the expected number of rounds to decide is

two. Hence, the total number of messages sent by correct processes is 2 c n.

• If the correct processes propose different values, each round requires three communication steps

(two in the BV-broadcast and one broadcast), and the expected number of rounds to decide is

four. Moreover, the total number of messages sent by the correct processes is then 4 c n per

round.

• In addition to a round number, both a message EST[r]() and a message AUX[r]() sent by a correct

process carry a single bit. An underlying message B VAL() has to carry a round number and a

bit.

• The total number of bits exchanged by the correct processes is O(n2r log r) where r is the num-

ber of rounds executed by the correct processes to decide. Hence, the expected bit complexity

is O(n2).

19.3.4 From Decision to Decision and Termination

As we have seen, while all correct processes eventually decide, they have to execute rounds forever.

Using the same technique as in the algorithm described in Fig. 19.1, it is easy to direct a process to

stop its execution when it decides. To this end, the statement at line 8

if (v = si) then decide(v) if not yet done end if

is replaced by the statement

if (v = si) then broadcast DEC(ri, v); return(v) end if,

where the statement return(v) entails both the local decision of the value v and the halt of the invoking

process pi.
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Moreover, as with the algorithm described in Fig. 19.1, the message DEC(r, v) broadcast by pi is

a compressed representation of the following infinite sequences of messages sent by pi: EST[r′](v),
AUX[r′](v), and B VAL(r′, v), for all r′ > r. These messages prevent the processes that have not yet

decided by round r from blocking forever, i.e., waiting for messages that will never be sent by the

processes that have terminated. More precisely, the message B VAL(r′, v) ensures that no process can

block forever in the algorithm implementing the BV-broadcast instance of round r′ (Fig. 19.2), while

the messages EST[r′](v) and AUX[r′](v) ensure that no process can block forever in the algorithm

implementing the operation propose() (Fig. 19.3).

19.4 From Binary to Multivalued Byzantine Consensus

This section presents a reduction of multivalued Byzantine consensus to binary Byzantine consen-

sus. It is based on the use of the reliable broadcast communication abstraction BRB-broadcast (which

ensures that if a message is brb-delivered by a correct process, it is brb-delivered by all correct pro-

cesses), and n underlying binary consensus instances – one per process – which execute in parallel.

The corresponding algorithm is an adaptation of an agreement algorithm for secure computations due

to M. Ben-Or, B. Kelmer, and T. Rabin (1994).

19.4.1 A Reduction Algorithm

Model and notations The system model is denoted BAMPn,t[t < n/3,BBC] (base system model

BAMPn,t[t < n/3] enriched with a binary Byzantine consensus abstraction).

In order not to confuse the operation propose() of the multivalued Byzantine consensus with the

operation of the underlying binary Byzantine consensus instances, the latter is denoted bin propose().
The algorithm is described in Fig. 19.4.

Underlying binary Byzantine consensus There are n binary Byzantine consensus instances de-

noted BIN CONS [1..n]. The instance BIN CONS [j ] is used by the processes to agree on the value

proposed by pj .

To prevent processes from deadlocking, the n binary consensus instances are exploited in par-

allel by each process. To this end, for each binary consensus BIN CONS [j ], the invocation of

bin propose() and the reception of a result (decided value) are dissociated. Given a binary consensus

BIN CONS [j ], a process pi first invokes bin propose() (line 4 or line 17), and only later obtains the

value decided by this binary consensus (line 19). In between, pi can execute any other operations.

Local variables at a process Each process pi manages a multiset mseti and two local arrays of size

n, each initialized to [⊥, · · · ,⊥].

• A multiset is a set in which an element can appear several times. As an example, while {a, b, b}
and {a, b} are the same set, they are different multisets. The multiset mseti is used to contain

values proposed in the multivalued consensus.

• The array bin deci[1..n] is such that bin deci[j] will contain the value (0 or 1) decided from the

binary consensus instance BIN CONS [j ].

• The array proposalsi[1..n] is such that proposalsi[j] will contain the value proposed by pj to

the multivalued consensus (if it is ever known by pi).
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operation propose(vi) is

(1) BRB broadcast PROP(vi);
(2) wait

(
|{x such that bin deci[x] = 1}| ≥ n− t

)
;

(3) for each j such that pi did not invoked BIN CONS [j ].bin propose()
(4) do invoke BIN CONS [j ].bin propose(0)
(5) end for;

(6) wait
(∧

1≤x≤n bin deci[x] �= ⊥
)
;

(7) wait
(∧

1≤x≤n(bin deci[x] = 1) ⇒ (proposalsi[x] �= ⊥)
)
;

(8) let mseti = multiset of values proposalsi[x] such that bin deci[x] = 1;

(9) if (∃ v appearing at least (t+ 1) times in the multiset mseti)
(10) then return(v)
(11) else � ← min({x such that bin deci[x] = 1);
(12) return(proposali[�])
(13) end if.

(14) when PROP (v) is brb-delivered from pj do

(15) proposalsi[j] ← v;

(16) if BIN CONS [j ].bin propose() not invoked

(17) then BIN CONS [j ].bin propose(1)
(18) end if.

(19) when BIN CONS [j ].bin propose() returns b do bin deci[x] ← b.

Figure 19.4: From multivalued to binary Byzantine consensus in BAMPn,t[t < n/3,BBC] (code of

pi)

Behavior of a process: use a Byzantine reliable broadcast A process pi first disseminates the

value vi it proposes with the help of a Byzantine reliable broadcast (invocation of BRB broadcast

PROP(vi) at line 1). Hence, if pi is correct all correct processes will eventually know vi.

When pi brb-delivers such a message PROP(v) from a process pj (lines 14-18), it stores the value

v in proposalsi[j], and (if not yet done) invokes BIN CONS [j ].bin propose(1). The meaning of

the parameter value 1 is to indicate it knows the value vj proposed by pj (the value 0 will be used to

indicate it does not know this value).

Behavior of a process: first wait Then pi waits until it knows that at least (n − t) processes have

brb-broadcast the values they propose to the multivalued consensus. This is captured by the fact that

the value decided by at least (n− t) underlying binary consensus is 1 (line 2).

After this has occurred, pi proposes the value 0 to each remaining binary consensus instance

(lines 3-5). In this way, after line 5, each correct process has invoked BIN CONS [j ].bin propose()
for all j ∈ {1, ..., n}.

Behavior of a process: second and third wait After it has invoked BIN CONS [j ].bin propose()
for each j, pi waits until it knows the values decided by all binary consensus instances (line 6). Then

it waits again until it knows the value proposed by each process px such that bin deci[x] = 1 (line 7).

As each of the n binary consensus instances provides each process with the same decided value,

and the local variables proposalx[j] of the correct processes are filled in with the BRB-broadcast

abstraction, it follows that, when any two correct processes pi and pj have terminated waiting at

line 7, we have

∀x ∈ {1, ..., n} : (BIN CONS [x ] decided 1)⇒ (proposali[x] = proposalj [x] �= ⊥),

from which we conclude that mseti = msetj .
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Behavior of a process: finally decide Due to the previous property, pi and pj will decide the same

value if they execute the same deterministic statements. If there is a value v that appears more than t
times in mseti, pi decides it (line 10). Otherwise, pi computes the smallest x such that bin deci[x] =
1, and decides the value proposed by px, which is saved in proposalsi[x].

19.4.2 Proof of the Reduction Algorithm

Theorem 105. The algorithm described in Fig. 19.4 reduces the multivalued Byzantine consen-

sus abstraction to the binary Byzantine consensus abstraction in the system model BAMPn,t[t <
n/3,BBC].

Proof Proof of the BC-termination property. We first show that no correct process can block forever

in the first wait statement. Let us assume, by contradiction, that there is a correct process pi that never

exits line 2. As there are m ≥ n − t correct processes, and each of them brb-broadcasts a value at

line 1, it follows from the BRB-termination-1 property that each correct process brb-delivers these m
messages PROP() (line 14), and consequently invokes bin propose(1) on the m corresponding binary

consensus instances. As all correct processes propose value 1 to each of these m binary consensus

instances, if follows from their BC-termination property that they decide, and from their BC-validity

property that they all decide 1. Consequently, due to line 19, we have m entries x such that eventually

bin deci[x] = 1 at process pi. As m ≥ t, process pi cannot block forever at line 2.

As none of the m correct processes can block forever at line 2, it follows from lines 3 5, that each

correct process invokes bin propose() on all binary consensus instances. Due to its BC-termination

property, each of these instances decide a value, and eventually we have
∧

1≤x≤n bin deci[x] �= ⊥ at

each correct process pi. Hence, no correct process can block forever at line 6.

Let us now consider the wait statement at line 7. If bin deci[x] = 1, there is a correct pro-

cess pk that proposed 1 to BIN CONS [x ]. (This is because binary consensus has the property that,

if b ∈ {0, 1} is decided, a correct process proposed b, Theorem 60.) The only line where pk in-

vokes BIN CONS [x ].bin propose(1) is line 17. Due to lines 14-18, it follows that pk previously

brb-delivered the message PROP(v) from px. Due to BRB-termination-2 property of BRB-broadcast,

it follows that any correct process brb-delivers the message PROP(v). When pi brb-delivered it, it

assigned v to proposalsi[x] (line 15), from which we conclude that pi cannot block forever at line 7.

As a process pi is such that |{x such thatbin deci[x] = 1}|n−t (line 2), it follows that the multiset

mseti is not empty, and consequently pi decides (and stops) at line 10 or line 12, which concludes the

proof of the BC-termination property.

Proof of the BC-agreement property. Due to the BC-agreement property of the binary consensus in-

stances BIN CONS [x ] (line 19) and the fact that at least (n− t) of them decides 1 (line 2), it follows

that, when they execute line 8, any two correct processes pi and pj are such that mseti = msetj �= ∅.
As lines 9-13 are deterministic, pi and pj decide the same value.

Proof of the BC-validity property. This property follows from the following observation. Due to line 2,

a multiset mseti contains at least (n− t) elements. As n > 3t, we have |mseti| ≥ n− t ≥ 2t+ 1.

When all the correct process propose the same value v, the worst case is when the (at most) t
Byzantine processes propose the same value w �= v. This means that |mseti| contains at most t copies

of w and at least (t+1) copies of v. If follows from the predicate of line 9 that only v can be decided.

�Theorem 105
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19.5 From Binary to No-intrusion Multivalued Byzantine Consensus

This section presents a reduction of multivalued consensus to binary consensus in which the value

decided is never a value proposed only by Byzantine processes. If all correct processes propose the

same value v, v is decided. In the other cases, the decided value is either a value proposed by correct

processes, or a default value ⊥. As an example, if t processes are Byzantine and they all propose

the same value w, while no correct process proposes w and no two correct processes propose the

same value, ⊥ is decided. As mentioned in the introduction of this chapter, this additional property to

Byzantine consensus is called BC-no-intrusion.

The consensus construction relies on an appropriate broadcast abstraction, called validated Byzan-

tine broadcast (in short VBB-broadcast), which is presented first. VBB-Broadcast, and the reduction

from multivalued to binary Byzantine consensus in which it is used were introduced by A. Mostéfaoui

and M. Raynal (2015).

19.5.1 The Validated Byzantine Broadcast Abstraction

Validated Byzantine broadcast The VBB-broadcast communication abstraction is an all-to-all com-

munication abstraction designed to be used in the implementation of distributed agreement abstrac-

tions. It provides processes with two operations denoted VBB broadcast() and VBB deliver() (we

then say that a process vbb-broadcasts a message and vbb-delivers a message). In a VBB-broadcast

instance each correct process invokes VBB broadcast() once, and vbb-delivers messages from at least

(n− t) distinct processes. The content of a message that is vbb-delivered can be a value that has been

vbb-broadcast or the default value ⊥.

VBB-broadcast integrates a notion of message validation, namely, assuming that each non-faulty

process vbb-broadcasts a message, it requires that, for a message to be vbb-delivered, its content v
is validated; otherwise the default value ⊥ is vbb-delivered instead. To be valid, a message with the

content v has to be vbb-broadcast by at least one non-faulty process. As no process pi knows if it is

itself correct or faulty (e.g., if a process executes correctly its algorithm and then unexpectedly crashes,

it is faulty), for a message m to be valid in the presence of up to t faulty processes, messages with

the same content need to be vbb-broadcast by “enough” processes, where “enough” means “at least

(t+1)” (including its sender pi). As already indicated, if a message is not validated, the default value

⊥ is delivered instead. More precisely, VBB-broadcast is defined by the following properties:

• VBB-validity. As previously, this property relates the outputs (vbb-delivered messages) to the

inputs (vbb-broadcast messages). It is made up of two sub-properties.

– VBB-justification. Let pi be a non-faulty process that vbb-delivers a message m as the

value vbb-broadcast by some (faulty or non-faulty) process. If m �= ⊥, there is at least

one non-faulty process that invoked VBB broadcast MSG(m).

– VBB-obligation. If all the non-faulty processes vbb-broadcast the same value v, each non-

faulty process vbb-delivers m = v from each non-faulty process.

• VBB-uniformity. If a non-faulty process vbb-delivers a message from a (possibly faulty) process

pi, all the non-faulty processes eventually vbb-deliver the same message from pi (which can be

a validated non-⊥ value or the default value ⊥).

• VBB-termination. If pi is non-faulty and vbb-broadcasts a message m, all the non-faulty pro-

cesses eventually vbb-deliver the same message m′ from pi where m′ is m or ⊥.

19.5.2 An Algorithm Implementing VBB-broadcast

Notation Let rec be a multiset and v a value. |rec| denotes the number of elements in rec (as an

example, the multiset {a, b, b} has three elements). The operation equal(v, rec) returns the number
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of occurrences of v in rec. differ(v, rec) returns the number of elements of rec different from v. As

examples, we have equal(b, {a, b, b}) = 2, and differ(b, {a, b, b}) = 1.

Algorithm: global view The algorithm described in Fig. 19.5 implements the VBB-broadcast all-

to-all communication abstraction. (Let us recall that “all-to-all” means here that all the non-faulty

processes are assumed to invoke VBB broadcast().) As already mentioned, a process vbb-delivers at

least (n − t) messages. This implementation of the VBB-broadcast abstraction uses two instances of

the reliable broadcast abstraction (BRB-broadcast) defined in Section 4.3. It is made up of two parts.

operation VBB broadcast(vi) is

(1) BRB broadcast INIT(i, vi);
(2) wait (|reci| ≥ n− t) where reci is the multiset of values brb-delivered to pi;
(3) if (equal(vi, reci) ≥ n− 2t) then auxi ← yes else auxi ← no end if;

(4) BRB broadcast VALID(i, auxi).

for 1 ≤ j ≤ n VBB-delivery background task Ti[j] is

(5) wait
(

VALID(j, x) and INIT(j, v) brb-delivered from pj
)
;

(6) if (x = yes) then wait (equal(v, reci) ≥ n− 2t); d ← v
(7) else wait (differ(v, reci) ≥ t+ 1); d ← ⊥
(8) end if;

(9) VBB deliver(d) at pi as the value vbb-broadcast by pj .

Figure 19.5: VBB-broadcast on top of reliable broadcast in BAMPn,t[t < n/3] (code of pi)

Algorithm: first part In this part, a process pi first brb-broadcasts the message INIT(i, vi) (which

carries the value vi it wants to vbb-broadcast), and waits until it has brb-delivered messages from at

least (n− t) processes (lines 1-2). The values brb-delivered are deposited in a multiset denoted reci.
Then, if the value vi (brb-broadcast by pi) has been brb-delivered from at least n−2t ≥ t+1 processes

(which means that it was brb-broadcast by at least one non-faulty process), pi validates it by assigning

yes to auxi (line 3). Otherwise, vi is not validated and pi sets auxi to no. Then, pi invokes a second

BRB-broadcast (line 4) to disseminate auxi (the fact vi is or is not validated) to all processes.

Let us remember that each time a message INIT(−, w) is brb-delivered to pi, the corresponding

value w is added to reci. Hence, after the predicate |reci| ≥ n− t becomes true at line 2, the set reci
still keeps increasing when new messages INIT() are brb-delivered to pi.

Algorithm: second part This part (lines 5-9) is made up of n local tasks, that pi executes in the

background. The task Ti[j] is associated with the vbb-delivery of the message from pj . It first waits

both the message INIT(j, v) (which caries the value vbb-broadcast by pj) and the message VALID(j, v)
(which carries the validation status of v, line 5).

• If x = yes (line 6), as pj can be Byzantine, v was not necessarily validated by a non-faulty

process. Hence, pi has to check it. To this end, it waits until the predicate equal(v, reci) ≥ n−2t
becomes true. When this predicate becomes true (if it ever does), it follows from n− 2t ≥ t+1
that equal(v, reci) ≥ t + 1. If this occurs, v is vbb-delivered to pi as the value vbb-broadcast

by pj .

• Similarly, if x = no (line 7), pi waits until reci contains more than t occurrences of values

different from v (the value brb-delivered from pj), which means that at least one non-faulty

process did not validate v. When this occurs (if it ever does), pi vbb-delivers ⊥ as the value

vbb-broadcast by pj .

It is possible that the waiting predicate used at line 6 or line 7 never becomes satisfied. When this

occurs, the corresponding sender process pj is necessarily a faulty process. The waiting condition is

always satisfied when pj is a correct process, and can become satisfied for some faulty senders pj .
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As two BRB-broadcast instances are used, and one BRB-broadcast costs 3 communication steps,

the algorithm requires 2×3 = 6 communication steps. Moreover, as VBB-broadcast is an all-to-all ab-

straction (n invocations of VBB-broadcast), and each BRB-broadcast instance costs O(n2) messages,

the algorithm uses O(n3) messages as far as the correct processes are concerned.

19.5.3 Proof of the VBB-broadcast Algorithm

Theorem 106. The algorithm described in Fig. 19.5 implements the validated Byzantine broadcast

abstraction in the system model BAMPn,t[t < n/3].

Proof Proof of the VBB-termination property. This property states that, if a process pi is non-faulty

and vbb-broadcast m, then all the non-faulty processes eventually vbb-deliver the message m′ from

pi, where m′ is m or ⊥.

As there are at least (n − t) non-faulty processes, and each of them vbb-broadcasts a value, we

eventually have |recj | ≥ n− t at every non-faulty process pj . Hence, no non-faulty process can block

forever at line 2, and eventually brb-broadcasts a message VALID() at line 4. We consider two cases.

• The non-faulty process pi brb-broadcasts VALID(i, yes) at line 4. As auxi = yes it follows

from the predicate of line 3 at pi that reci contains (n − 2t) copies of vi, from which we

conclude that pi brb-delivered a message INIT(−, v), where v = vi, from (n − 2t) different

processes. Due to the BRB-no-duplicity and BRB-termination-2 properties of BRB-broadcast,

each non-faulty process pj eventually brb-delivers both these (n − 2t) messages INIT (−, v),
and the message VALID(i, yes) from pi.

As eventually recj contains (n−2t) copies of v, and pj brb-delivers the message VALID(i, yes)

from pi, it follows from line 6 that d = vi (the value vbb-broadcast by pi). As pj is any correct

process, it follows that all correct processes vbb-deliver the message m′ = vi from pi.

• The non-faulty process pi brb-broadcasts VALID(i, no) at line 4. It follows from the BRB-

termination properties of BRB-broadcast that each non-faulty process pj brb-delivers the mes-

sage VALID(i, no) from pi. Moreover, it follows from the predicate of line 4 that, if pi brb-

broadcasts VALID(i, no), among the (n− t) values in reci, less than (n− 2t) values are equal to

vi, i.e. more than t values are different from vi. Hence due to the BRB-no-duplicity and BRB-

termination-2 properties of BRB-broadcast, every non-faulty process pj eventually brb-delivers

at least (t+ 1) values different from vi, and consequently vbb-delivers m′ = ⊥ at line 9.

Proof of the VBB-uniformity property. This property states that, if a non-faulty process pi vbb-delivers

a message from pj – possibly faulty –, then all the non-faulty processes eventually vbb-deliver the same

message from pj .

Let pi be a non-faulty process that vbb-delivers a value d from pj . This means that pi previously

brb-delivered a message INIT(j, v) and a message VALID(j, x) from pj . The proof of this property is

similar to the previous one.

Hence, pi brb-delivered (1) a message VALID(j, x) and a message INIT(j, v) from pj , and (2) a

multiset reci of values that satisfies some property (depending on the value of x). As pi is non-faulty,

it follows from the BRB-no-duplicity and BRB-termination-2 properties of BRB-broadcast, that every

non-faulty process pk eventually brb-delivers (1) both VALID(j, x) and INIT(j, v), and (2) a multiset

reck of values such that eventually reck = reci. As the value x brb-delivered to pi and pk is the same,

it follows from the waiting condition (used at line 6 or line 7, according to the value of x) that pk
eventually vbb-delivers the same value d as pi at line 9.

Proof of the VBB-obligation property. This property states that, if all the non-faulty processes vbb-

broadcast the same value v, each of them vbb-delivers v as the value vbb-broadcast by each of them.
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As each non-faulty process pj vbb-broadcasts the value v, it follows that it brb-broadcasts INIT(j, v)
(line 1). Consequently, at least (n − 2t) copies of v are eventually in the multiset reci of every non-

faulty process pi. Hence, due to the predicate of line 3, each non-faulty process pi brb-broadcasts at

line 4 the message VALID(i, yes) and (from the BRB-termination-1 property of BRB-broadcast) each

non-faulty process pk brb-delivers the message VALID(i, yes). Consequently, each non-faulty process

pk executes the task Tk[i] with respect to each non-faulty process pi (and possibly also with respect to

faulty processes). The waiting predicate of line 6 is then eventually satisfied at pk, and this is true for

value v only. When this occurs, each non-faulty process pk vbb-delivers v as the value vbb-broadcast

by the non-faulty process pi.

Proof of the VBB-justification property. This property states that, if a correct process pi vbb-delivers

a message m �= ⊥, there is at least one non-faulty process that invoked VB broadcast MSG(m).

If m �= ⊥ is vbb-delivered by a non-faulty process pi as the value vbb-broadcast by pj , this value

appears at least (n− 2t) times in reci (waiting predicate of line 6). As n− 2t ≥ t+ 1, it follows that

at least one non-faulty process has brb-broadcast m. As it is correct, this process brb-broadcast m at

line 1, i.e., due an invocation of VBB broadcast(v) where v = m. �Theorem 106

19.5.4 A VBB-Based Multivalued to Binary Byzantine Consensus Reduction

This section presents an algorithm that reduces multivalued consensus to binary consensus in the

presence of up to t < n/3 Byzantine processes. The system model is consequently BAMPn,t[t <
n/3, BBC] defined in Section 19.4.1. As previously, the operation propose() is the multivalued

consensus operation, while bin propose() is the operation provided by the model BAMPn,t[t <
n/3, BBC]. Unlike the reduction algorithm presented in Fig. 19.4 (which uses n binary Byzantine

consensus instances), the one presented below uses a single binary Byzantine consensus instance.

Required properties for the multivalued Byzantine consensus In addition to the basic BC-validity,

BC-agreement and, BC-termination properties, the multivalued consensus algorithm satisfies the BC-

no-Intrusion property defined in Section 19.1.1 (namely, the value decided by a correct process is

either a value proposed by a correct process or the default value ⊥).

A VBB-broadcast-based reduction The algorithm is described in Fig. 19.6. It is based on the

validated VBB-broadcast communication abstraction. As it requires t < n/3, it is optimal from a t-
resilience point of view. Moreover, as it directs each process to invoke the VBB-broadcast abstraction

only once, this reduction involves a constant number of consecutive communication steps and O(n3)
messages.

Principles and description of the algorithm After it has VBB-broadcast its value (line 1), a process

pi waits for EST() messages from (n − t) processes and deposits the corresponding values in the

multiset reci (lines 2-3). Then, pi checks if (1) (in addition to ⊥) it has vbb-delivered exactly one

non-⊥ value v, and (2) v has been vbb-broadcast by at least (n − 2t) processes (line 4). If there is

such a value, pi proposes 1 to the underlying binary consensus, otherwise it proposes 0 (line 5, where

BIN CONS denotes the underlying binary consensus).

Finally, pi decides ⊥ if the underlying binary consensus returns 0 (line 10). Whereas, if 1 is

returned, pi waits until it has vbb-delivered (n − 2t) messages EST() carrying the very same value v
(line 9), and then decides this value v (line 9). Let us notice that, among these (n − 2t) messages,

some have already been vbb-delivered at line 2. The important point is (as shown in the proof) that

the net effect of (a) the vbb-broadcast, (b) the predicate used at line 4, and (c) the predicate used in
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the wait statement at line 9, ensures that if a non-faulty process invokes bin propose(1), then all the

non-faulty processes eventually vbb-deliver (n− 2t) times the same value v and decide it.

operation propose(vi) is

(1) VBB broadcast EST(vi);
(2) wait

(
EST(−) messages vbb-delivered from (n− t) different processes

)
;

(3) let reci = multiset of the (n− t) values previously vbb-delivered;

(4) if (∃v �= ⊥ : equal(v, reci) ≥ n− 2t) ∧ (reci contains a single non-⊥ value)

(5) then bpi ← 1 else bpi ← 0
(6) end if;

(7) resi ← BIN CONS .bin propose(bpi); % underlying binary consensus %

(8) if (resi = 1)
(9) then wait (∃v �= ⊥ : equal(v, reci) ≥ n− 2t); return(v)
(10) else return(⊥)
(11) end if.

Figure 19.6: From multivalued to binary consensus in BAMPn,t[t < n/3,BBC] (code for pi)

On the predicate “reci contains a single non-⊥ value” used at line 4 The aim of this predicate is

to ensure that, if bpi = bpj = 1 (where pi and pj are two non-faulty processes), the multisets reci and

recj contain only instances of the same value v (plus possibly instances of ⊥).

To motivate this predicate, let us consider the predicate of line 4 restricted to its first part, namely,

“∃ v �= ⊥ : equal(v, reci) ≥ n − 2t”. Assuming n = 10 and t = 3, let us consider the case where,

at line 1, four processes vbb-broadcast the message EST(v), while six processes vbb-broadcast the

message EST(w). Moreover, let us consider the following execution:

• On the one side, pi vbb-delivers n− t = 7 messages EST(), four that carry v and three that carry

w. As equal(v, reci) = 4 ≥ n− 2t = 4, the restricted predicate is satisfied for v, and pi assigns

1 to bpi.

• On the other side, pj vbb-delivers n − t = 7 messages EST(), four that carry w and three that

carry v. As equal(w, reci) = 4 ≥ n− 2t = 4, the restricted predicate is satisfied for w, and pj
assigns 1 to bpj .

It follows that we have bpi = bpj = 1 (pi and pj being non-faulty processes), while v is the value

that will be decided by pi if the underlying binary Byzantine consensus algorithm returns 1, and the

value decided by pj will be w �= v. Hence, while bpi = bpj = 1, they do not have the same meaning;

bpi = 1 refers to v, and bpj refers to w, while they should be two witnesses of the same value. It is

easy to see that the second part of the predicate of line 4 prevents this bad scenario from occurring.

19.5.5 Proof of the VBB-Based Reduction Algorithm

Theorem 107. The algorithm described in Fig. 19.6 implements the multivalued Byzantine consensus

abstraction with the additional BC-no-intrusion validity property in the system model BAMPn,t[t <
n/3,BBC].

Proof Proof of the BC-termination property (every non-faulty process decides). Let us first observe

that, as all the (at least (n − t)) correct processes invoke VBB broadcast EST() at line 1, it follows

from the VBB-Termination property that no correct process can block forever at line 1.

Hence, all correct processes invoke the underlying binary consensus at line 1. By assumption,

all correct processes return from this binary consensus. If the binary consensus algorithm returns 0
(line 10) termination is trivial. Hence, let us consider that 1 is returned. Due to Theorem 60 (the value

decided by the underlying binary consensus is a value proposed by a correct process), there is a non-

faulty process pi such that bpi = 1. Due to the first predicate in line 4, this implies that, at line 2, pi
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received at least (n− 2t) messages EST(v). Due to the VBB-Uniformity property of VBB-broadcast,

any non-faulty process eventually vbb-delivers these (n− 2t) messages EST(v). Hence, no non-faulty

process pj blocks forever at line 9, which concludes the proof.

Proof the BC-agreement property (no two non-faulty processes decide differently). The proof is sim-

ilar to the previous one. If the underlying binary consensus returns 0, agreement is trivial. If 1 is

returned, it follows from n− 2t ≥ t+ 1, and the fact that – at any non-faulty process pi – there is no

w �= v such that w ∈ reci (second predicate of line 4), that the value v the processes are waiting for at

line 9 is unique, which completes the proof of the agreement property.

Proof of the BC-validity property (if all the non-faulty processes propose the same value, this value is

decided). If all the non-faulty processes propose the same value v, it follows from the VBB-obligation

property that v is necessarily validated, and from the VBB-termination property that all the non-faulty

processes vbb-deliver at least (n − 2t) messages EST(v). Moreover, as n − 2t > t, there is a single

value v.

Due to the VBB-justification property, a value vbb-broadcast only by faulty processes cannot be

validated and consequently no non-faulty process can vbb-deliver it. This means that only v, ⊥ or

nothing at all can be vbb-delivered from a faulty process. It follows that, at each non-faulty process

pi, the predicate of line 4 is satisfied and pi proposes bpi = 1. Due to the BC-validity property of

the underlying binary consensus, all correct processes decide 1 and consequently decide the proposed

value v.

Proof of the BC-no-intrusion property (a non-⊥ value proposed only by faulty processes cannot be

decided). If a value w is proposed only by faulty processes, it follows from the VBB-justification

property that no non-faulty process pi vbb-delivers it. If the underlying binary consensus algorithm

returns 0, w is not decided. If it returns 1, we have seen in the proof of the BC-agreement property that

the processes decide a value v such that at least (n − 2t) messages EST(v) have been vbb-delivered.

As n− 2t > t, it follows that w cannot be decided. �Theorem 107

19.6 Summary

This chapter was on algorithms implementing the consensus abstraction in asynchronous message-

passing system where up to t processes may behave arbitrarily (Byzantine processes), namely algo-

rithms for the system model BSMPn,t[t < n/3]). As in synchronous systems, t < n/3 (where n is

the total number of processes) is a necessary t-resilience requirement for such algorithms.

Algorithms relying on different types of additional assumptions have been presented, namely:

• a binary consensus algorithm based on a message scheduling assumption,

• a binary consensus algorithm based on randomization, and

• two reductions of multivalued consensus to binary consensus.

One of these algorithms ensures that no value proposed only by Byzantine processes can be

decided. If all correct processes propose the same value, this algorithm decides it. Otherwise, it

decides the value proposed by a correct process or the default value ⊥.

It is worth noticing that all the algorithms presented in this chapter are t-resilience optimal (t < n/3)

and signature-free.
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19.7 Appendix:

Proof-of-Work (PoW) Seen as Eventual Byzantine Agreement

Recently, applications related to cryptocurrency ledgers have received more and more attention (edger-

related definitions have been given in Section 16.7.1). These ledgers, called blockchains, define a

research domain that is still in its infancy. Consequently, its basic concepts and implementation tech-

niques have not yet stabilized, and lot of work remain to be done for scientific foundational knowledge

to emerge, from which researchers may extract general properties, and engineers can rely on to imple-

ment provable distributed blockchain-related software.

Nevertheless, blockchains seem to open a new distributed computing domain targeting a lot of

ledger-based applications. This short section does not address the technicalities of blockchains, but

presents a few of its main features. The reader will find references for a deeper investigation in Sec-

tion 19.8.

Local representation of the state of the blockchain Each process pi maintains a tree of blocks

treei, each block pointing to its parent block. The root – denoted g – is called the genesis block. A

block contains a set of data and operations related to the application that is implemented, and control

information (whose aim is to ensure the global consistency of the blockchain).

At any time time, a process pi considers a path of its tree – starting from g – as the path representing

its current view of the blockchain (as an example, Bitcoin associates a weight – called difficulty – with

each block and considers the heaviest path of treei.) Let us call this path, its main path (Fig. 19.7

depicts the local representation of a blockchain at a process. Its main path is the chain inside the

ellipsis.

g bx by

Figure 19.7: Local blockchain representation

Solving a cryptopuzzle: the proof-of-work approach In order the local trees eventually agree on

the same main path (i.e., the same blockchain), the processes execute an agreement algorithm whose

aim is to prevent them eventually having diverging main paths. This is realized with the help of

cryptopuzzles that a process pi must locally solve when it wants to add a new block to the blockchain.

The algorithm cryto puzzle() that solves the cryptopuzzle has two input parameters, a block b
(which is the block that pi wants to append to the blockchain) and a nounce nounce (obtained from

a local coin). Before invoking the cryptopuzzle, pi inserts the nounce in the block. The invocation

of cryto puzzle(nounce, b) returns true or false. Process pi repeatedly selects a new nounce and

invokes cryto puzzle(nounce, b) until if obtains the value true. When this occurs, pi broadcasts its

current main path to the other processes (to simplify the presentation we consider here that a process

broadcasts its whole main path).
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When a process pi receives such a new path, it first checks its validity (are the nounces of its blocks

in agreement with respect to the cryptopuzzle). Then, if they are, pi merges the path and treei.

The cryptopuzzle, which is also related to the hash value of the block, is such that the nounce

space is very large. Consequently, solving the cryptopuzzle may require the trial of a large number

of nounces. This characterizes the difficulty of the cryptopuzzle, and limits the number of blocks

that can be generated by time unit. In this sense, the proof-of-work approach assumes an underlying

synchronous system.

Probabilistic guarantees It appears that, due to the difficulty of the cryptopuzzle, we have the fol-

lowing property, exhibited by J. Garay, A. Kiayias, and Leonardos N. (2015). The probability that the

processes agree on the same block b at the same index y of their local main paths increases exponen-

tially fast with the distance from b to their last element of the blockchain.

Proof-of-Work-based eventual agreement versus synchronous consensus The proof-of-work-

based eventual agreement algorithm sketched previously considers a synchronous system made up

of an arbitrary number of processes, some of them being Byzantine. It actually is a Monte Carlo

consensus algorithm, namely, the BC-agreement property is probabilistic.

Differently, the BC-agreement property of the Byzantine synchronous consensus algorithms pre-

sented in Chap. 14 (system model BSMPn,t[t < n/3]), is deterministic. This is obtained at the price

of a system model in which the system parameters n and t are fixed and known by the processes.

Hence the question: is it possible to obtain the deterministic BC-agreement property when the number

of processes is arbitrary?

19.8 Bibliographic Notes

• The notion of a Byzantine process failure is due to L. Lamport, R. Shostack, and M. Pease,

who also introduced the first algorithms implementing consensus in Byzantine synchronous

systems [263, 342].

• Many algorithms implementing the consensus abstraction in the presence of asynchrony and

Byzantine processes have been proposed (e.g., [13, 87, 89, 90, 91, 170, 172, 268, 281, 305, 370,

398] to cite a few).

• The weakest synchrony assumption to solve Byzantine consensus was established by Z. Bouzid,

A. Mostéfaoui, and M. Raynal [46, 79].

• A relation linking error-correcting codes and consensus in the presence of Byzantine processes

was established in [167]. Relations between crash failures and Byzantine failures are addressed

in [236, 336].

• The Byzantine consensus algorithm based on a message scheduling assumption, presented in

Section 19.2, is a variant of an algorithm proposed by G. Bracha and S. Toueg [83]. Their

algorithm relies on a (more general) probabilistic message scheduling assumption, while the

one presented here relies on a simpler eventual property.

• The binary consensus algorithm based on a common coin, presented in Section 19.3, and the

underlying BV-broadcast communication abstraction, are due to A. Mostéfaoui, H. Moumen,

and M. Raynal [303]. This algorithm assumes that the adversary does not control the network.

A more sophisticated algorithm in which the adversary controls both the behavior of the Byzan-

tine processes and the network (hence it can reorder and slow down messages, but not modify

their content) is presented in [304]. Moreover, this algorithm accepts an imperfect common coin

whose definition depends on an integer d ≥ 2. The invocation of random() by the processes at a

round r, returns 0 to all correct processes with probability 1/d, returns 1 to all correct processes
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with probability 1/d, and returns 0 to some correct processes and 1 to the other correct processes

with probability (d− 2)/d (d = 2 defines a perfect coin).

A reduction of multivalued Byzantine consensus to binary Byzantine consensus where the value

decided by the correct processes is always a value proposed by one of them is described in [326].

This reduction assumes that there is a value proposed by at least (t + 1) correct processes

(which is a necessary and sufficient condition to always satisfy this additional particularly strong

validity property).

• The implementation of a common coin in the presence of Byzantine processes is addressed

in [32, 88, 90, 354].

• The reduction from multivalued consensus to binary consensus, in the presence of Byzantine

processes, presented in Section 19.4, is due M. Ben-Or, B. Kelmer, and T. Rabin [57].

• The BC-no-intrusion property of Byzantine consensus was introduced by A. Mostéfaoui and M.

Raynal [322, 325], and M. Correia, F. N. Neves, and P. Verı́ssimo in [115, 338].

The Byzantine consensus algorithm satisfying the BC-no-intrusion property, presented in Sec-

tion 19.5, and the underlying VBB-broadcast communication abstraction on which it relies, are

due to A. Mostéfaoui, and M. Raynal [325].

The notion of returning an abort value ⊥ in specific circumstances is addressed in [17].

• The concept of a blockchain was introduced in 2008 in the Bitcoin cryptocurrency system [333],

and a few years later (2014) used in cryptocurrency system Ethereum [415]. Both systems

consider a type of synchronous systems in which some processes may be Byzantine. Relations

between blockchain consensus and Byzantine fault-tolerance are investigated in several articles

(e.g. [2, 190]). A relation between blockchains and regular registers is presented in [30].

A non-technical introduction to blockchains is presented in [138]. Anomalies encountered in

some blockchain-based applications are presented in [334].

The content of Section 19.7 follows an article of V. Gramoli [190], to which the reader is referred

for more detailed developments.

• A Byzantine-tolerant efficient consensus algorithm for consortium blockchains is described

in [116] (in a consortium blockchain all the processes have an identity, and each process knows

all identities).

19.9 Exercises and Problems

1. When considering the algorithm described in Fig. 19.1, is it possible to weaken the TMS as-

sumption (used in its proof) as follows: there are are two distinct rounds r1 and r2 such that

during round r1 (resp. r2), all correct processes receive their first (n − t) messages from the

same set Q1 (resp. Q2) of (n− t) correct processes.

2. When considering the algorithm described in Fig. 19.1, show that decision is obtained in two

rounds, if all correct processes propose the same value b ∈ {0, 1}.
3. Let us consider the algorithm described in Fig. 19.1, executed in the system model BAMPn,t[t <

n/5,TMS]. Show that, as soon as a process decides, all other correct processes decide in at most

one additional round.

4. Let us consider the binary consensus algorithm described in Fig. 19.3 extended with the mes-

sages DEC(r, v), introduced in Section 19.3.4, which ensure that all correct processes decide

and stop.

• Is it possible for a message DEC(r, v) to carry only the value v?
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• Is the algorithm still correct if, to expedite decision, the following background task is

added to the algorithm:

background task

if (DEC(v) received from (t+ 1) different processes)

then broadcast DEC(v); return(v)
end if.

Solution in [304].

5. Modify the algorithm described in Fig. 19.4 to obtain an algorithm in which the correct processes

agree on the set of values proposed by (2t + 1) processes (some being correct processes, other

being Byzantine processes).

Solution in [57].

6. Let us consider an application context in which, in any execution, at least (t + 1) correct pro-

cesses always propose the same value. Design an algorithm reducing multivalued Byzantine

consensus to binary Byzantine consensus inn which the value decided by the correct processes

is always a value proposed by one of them (hence, unlike the algorithm described in Fig. 19.6,

⊥ can never be decided). This reduction, suited to the model BAMPn,t[t < n/3,BBC], must

use a constant number of communication steps, and O(n2) messages.

Solution in [326].
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Chapter 20

Quorum, Signatures, and Overlays

While all the notions described in this appendix are not specific to distributed computing, they are

briefly presented here for completeness, and allow the reader to have a better understanding of them.

They concern the notion of quorums, digital signatures, and network overlays.

Quorums have been used in Part III and Part V to implement consistency (properties related to

safety), and signatures have been used in Chap. 14 to solve synchronous consensus despite Byzantine

processes (model BSMPn,t[SIG, t < n/2]). Network overlays can be used to provide regular commu-

nication structures on top of networks in order to obtain simpler and efficient distributed algorithms.

20.1 Quorum Systems

As indicated by its name, the notion of a quorum is related to the power of voting in a set of entities

(in our case, computing entities such as processes, sensors, etc.) denoted p1, ..., pn. In the following

the index i will be used to represent entity pi. While they were introduced in Mathematics in 1928

by E. Sperner, they were used for the first time in distributed computing independently by L. Lamport

in 1978 (under the name Amoeba), and by R. H. Thomas and D. K. Gifford in 1979 (under the name

majority voting).

20.1.1 Definitions

Quorum A quorum is a non-empty subset of Π = {1, 2, · · · , n}.

Quorum system A quorum system is a set Q of non-empty subsets of Π (hence each subset is a

quorum) satisfying the following intersection property:

• Intersection. ∀A,B ∈ Q: A ∩B �= ∅.

Coterie A coterie is a quorum system satisfying the following additional property:

• Minimality. ∀A,B ∈ Q: A �⊂ B.

The minimality property is related to efficiency (defined as the number of messages involved in the

use of a quorum).

Complement of a quorum and antiquorum Given a quorum system Q, a complement of Q is a set

of quorums, denoted Qc, that satisfies the following property:
• Complement. ∀A ∈ Q, ∀B ∈ Qc: A ∩B �= ∅.
Among all the complements of Q, let us consider the complement which is made up of the greatest

number of quorums of minimal size. This complement of Q is called antiquorum of Q, and denoted

Q−1. An antiquorum is not necessarily a quorum system.
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Example Let Π = {1, 2, 3, 4}.

• Q0 = {{1, 2}, {1, 2, 4}, {3, 4}} is not a quorum system.

• Q1 = {{1, 2}, {1, 2, 4}, {2, 3, 4}} is quorum system.

• Q2 = {{1, 2, 4}, {1, 3, 4}, {2, 3, 4}} is a coterie.

• Q3 = {{1, 2}, {3, 4}} is a complement of Q2.

• Q4 = {{1, 2}, {3, 4}, {1, 3}, {4}} is an antiquorum of Q2.

Quorum domination A set of quorums Q1 dominates a set of quorums Q2 if they are different, and

satisfy the following property:

• Domination. ∀A ∈ Q2, ∃B ∈ Q1: B ⊆ A.

As an example, Q1 and Q2 dominate Q5 = {{1, 2, 4}, {2, 3, 4}}.
The “domination” relation structures the set of quorums defined on a given set Π, as a partial order

set. It allows us to capture the quality of a set of quorums with respect to another one, a non-dominated

set of quorums being always a better choice than a set of quorums it dominates.

20.1.2 Examples of Use of a Quorum System

Example of a use of a quorum system: mutual exclusion Quorum systems are classically used in

the following way. A process broadcasts a request, and then waits until it has received a response from

all the processes belonging to a quorum. The properties of the quorum system allow us then to ensure

consistency properties of the problem to be solved.

As a simple example, let us consider the mutual exclusion problem in a failure-free system. Let

us associate a permission with each process. These permissions are individual in the sense that the

permission associated with pi and the permission associated with pj are different.

• Client side. When a process pi wants to enter the critical section, it sends a request to a quorum

Q of processes. Then, it waits until it has received the permission from each process in the

quorum. When this occurs pi enters the critical section.

When pi exits the critical section, it returns to each process pj ∈ Q the permission message it

previously received from it.

• Server side. When a process pi receives a request for its permission from a process pj , it sends

it back to pj if it has it. Otherwise, it saves the request of pj in a local queue, and will send its

permission to pj when it will be at the head of its local queue.

It is easy to see that, due to the intersection property of a quorum system, no two processes can be in

the critical section at the same time. For pi and pj to be simultaneously in the critical section, they

should have simultaneously the permission of a process that belongs to the intersection of the quorum

sets to which they sent the requests. This is impossible, as a process gives its permission to one process

at a time.

Let us remark, that while quorums systems ensure the safety property of mutual exclusion (no

two processes are simultaneously in the critical section), they guarantee neither deadlock-freedom,

nor starvation-freedom. Additional mechanisms need to be used to solve the liveness issue. A simple

solution – but inefficient in heavy load scenarios – consists in defining a total order on all the permis-

sions (processes), and requesting the permissions in a quorum set one after the other in the previously

defined total order.
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Example of use of a quorum system and its antiquorum: readers/writers Let Q be a quorum

system, and Qc its antiquorum. Let us observe that, while each set of Qc intersects with any set of its

associated quorum set Q, any two sets of Qc are not required to intersect. This can be exploited to

ensure the safety property of the mutual exclusion problems of the read/write class. In these problems

there are two or more classes of operations with different mutual exclusion requirements. In the

read/write class a write excludes any other operation, while a read excludes only the write operations.

This can be easily solved, using the request/permission mechanism previously described, where a

write must obtain the permissions of all the processes of a quorum of Q, while a read must obtain the

permissions of all the processes of a quorum of its antiquorum Qc.

20.1.3 A Few Classical Quorums

Vote-based quorum systems Each quorum Q is composed of a smallest majority of processes.

“Smallest majority” implies the minimality property. As each set is a majority set, the intersection

property follows trivially. The quorum system is then composed of all the sets of �n2 �+ 1 processes.

This amounts to give an equal vote to each process. It is possible to associate weighted votes with

processes. Let m be the sum of the weighted votes. A quorum is then a set of processes with �m2 �+ 1
votes.

Grid quorum systems The size of a set in a majority quorum systems is O(n). The grid-based

quorums have been introduced to reduce this size from O(n) to O(
√
n).

A simple way to obtain quorums of size O(
√
n), consists in arbitrarily placing the processes in a

square grid. If n is not a square, (�
√
n�)2 − n arbitrary processes can be used several times to com-

plete the grid. An example with n = 14 processes is given in Table 20.1. As (�
√
14�)2 − 14 = 2, two

processes are used twice to fill the grid (namely, p6 and p8 appear twice in the grid).

12 8 5 9
6 2 13 1
10 3 4 7
14 11 8 6

Table 20.1: Defining quorums from a
√
n×

√
n grid

A quorum consists then of all the processes in a line plus all the processes in a column. As an

example the set {6, 2, 13, 1, 8, 3, 11} constitutes a quorum. As any quorum includes a line of the grid,

it follows from their construction rule that any two quorums intersect. Moreover, due to the grid

structure, and according to the value of n, the size of a quorum is at most ≤ 2�
√
n� − 1.

On the fault-tolerance side (process crash failures), a quorum system based on a grid can cope with

up to t ≤
√
n−1 (this follows from the observation that if all the processes in a column crash – except

the invoking process – no quorum can be formed from alive processes).

Crumbling walls In a crumbling wall, the processes are arranged in several lines of possibly differ-

ent lengths (hence, all quorums will not have the same size). A quorum is then defined as a full line,

plus a process from every line below this full line.

A triangular quorum system is a crumbling wall in which the processes are arranged in such a way

the 	th line has 	 processes (except possibly the last line).

Quorum systems based on finite projective planes Finite projective planes allows us to define a

quorum system in which the size of each quorum is O(
√
n), and any two quorums Q1 and Q2 are
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such such that |Q1 ∩Q2| = 1. These quorums are consequently optimal in the sense the size of their

intersection is minimal. Such quorum systems can be obtained from finite projective planes.

There exist finite projective planes of order k when k is the power of a prime number. Such a plane

has n = k(k+1)+1 points and the same number of lines. Each point belongs to (k+1) distinct lines,

and each line is made up of (k + 1) points. Two distinct points share a single line, and two distinct

lines meet a single point. A projective plane with n = 7 points (i.e., k = 2) is depicted in Fig. 20.1.

(The points are marked with a black bullet. As an example, the lines “1,6,5” and “3,2,5” meet only at

the point denoted “5”.) A line defines a quorum.

6

3

74

2

5

1

Figure 20.1: An order two projective plane

Being optimal, any two quorums (lines) defined from finite projective planes have a single process

(point) in common. Unfortunately, there are no finite projective planes for any value of n, and there

is no systematic way to build a finite projective plane for all the values of n for which exist finite

projective planes.

20.1.4 Quorum Composition

This section presents a general method to compose quorums defined on two distinct systems, made

up of the set of processes Πa and Πb, respectively, where Πa ∩ Πb = ∅. It addresses consequently

quorum scalability issues when composing two or more independent systems. This method is due to

M.L. Nielsen, M. Mizuno, and M. Raynal (1992).

Composition rule Let x ∈ Πa, and Πr = (Πa \ {x}) ∪ Πb; x is called a pivot. The quorum

composition based on pivot x, denoted Tx() is defined as follows, where Qa and Qb are the quorum

systems of Πa and Πb, respectively, and Qr = Tx(Qa, Qb) is the resulting quorum system for the set

processes Πr = Πa ∪Πb.

Qr = Tx(Qa, Qb) = {S such that ∀ Sa ∈ Qa, ∀ Sb ∈ Qb:

S = (Sa \ {x}) ∪ Sb if x ∈ Sa

S = Sa if x /∈ Sa

}.

Example Let us consider the three following independent systems.

• System A: ΠA = {1, 2, 3}, with the quorum system QA = {{1, 2}, {2, 3}, {1, 3}}.

• System B: ΠB = {4, 5, 6, 7}, with the quorum system QB = {{4, 5}, {4, 6}, {4, 7}, {5, 6, 7}}.

• System C: ΠC = {8}, with the quorum system QC = {{8}}.

At the (high) level defined by the composed system Σ = (A,B,C), let us consider the fol-

lowing quorum set QΣ = {A,B, {A,C}, {B,C}}. At the (low) process level, we have ΠΣ =
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{1, 2, 3, 4, 5, 6, 7, 8}. The corresponding quorum set at the process level is

Q = TC(TB(TA(QΣ, QA), QB), QC).

The reader can check that the quorum {1, 2, 4, 7, 8} belongs to Q.

Property The composition Tx satisfies the following properties.

• It ensures the quorum intersection property.

• If Qa and Qb are coteries, Qr is a coterie.

• If Qa and Qb are not dominated, Qr is not dominated.

• If Qa and Qb are two quorum sets and Qc
a and Qc

b their antiquorums, given x ∈ Πa, the sets

W = Tx(Qa, Qb) and R = Tx(Q
c
a, Q

c
b) define a quorum set and its associated antiquorum.

20.2 Digital Signatures

Due to privacy, security, and fault-tolerance, digital signatures are becoming more and more important.

This appendix presents very basic notions related to cryptography. More advanced development can

be found in specialized textbooks (see the “Bibliographic notes” section).

20.2.1 Cipher, Keys, and Signatures

Cryptography system A cryptography system is made up of two algorithms, and a set of keys (see

Fig. 20.2).

Plaintext m Encipherment
(Encryption)

Algorithm E
Cipher text

Key K

Key K ′

Algorithm D

Decipherment
(Decryption)

Plaintext m

c = EK(m)

Figure 20.2: Structure of a cryptography system

A encipherment (or encryption) algorithm E transforms a text, called plaintext, into another text,

called cipher text, in order to make it unintelligible to anyone other than the intended recipients. To this

end, it uses an encipherment key denoted K. A key is a specific information (some kind of “magic”

value) used by the algorithm E to make unintelligible the value it sends. Let m be a plaintext. The

encipherment of m with E and the encipherment key K is denoted c = EK(m).
A decipherment (or decryption) algorithm D transforms a cipher text c into a plaintext m. To this

end, it uses a decipherment key denoted K ′. The keys K and K ′ are strongly related. They need

to match in the sense that, if c = EK(m), we have DK′(c) = m. If K ′′ is not the decryption key

associated with K, DK′′(c) �= m. Hence, given on the one side an encipherment algorithm E and its

associated decipherment algorithm D, and on the other side the pair of corresponding keys 〈K,K ′〉,
we have DK′(EK(m)) = m.

It is assumed that the algorithms E and D are known by everyone, i.e., the strength of a cryptog-

raphy system does not rely on the fact that E and D are unknown by an adversary, but only on the fact

both the key K used by the “sender” of m and the key K ′ used by the “receiver” of c = EK(m), (or

at least one of them) are not known by the adversary.

The fundamental equation characterizing a criticism is consequently(
∀m : DK′(EK(m)) = m

)
if and only if 〈K,K ′〉 is a pair of matching keys.
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Symmetric cryptography systems In such a system (also called secret key cryptography system) we

have K = K ′, and the key must remain secret. Moreover, we have E = D. Hence, DK(EK(m)) =
m. An example of an encryption/decryption algorithm is DES (Data Encryption Standard).

Such systems provides data integrity (no one can modify the content of the encrypted information

in an undetectable way) and data confidentiality (except for the two communicating entities, no one

can know the content of the encrypted data). They do not allow us to sign messages.

Asymmetric cryptography systems In an asymmetric cryptography system (also called public

key cryptography system), K �= K ′ and one of them is kept secret, while the other is made pub-

lic. Moreover, given any pair of matching keys 〈K,K ′〉, the algorithms E and D are such that

DK′(EK(m)) = m, and DK(EK′(m)) = m.

Digital signature Considering an asymmetric cryptography system, if the key K is kept secret,

the sender can use it to sign any message m. More precisely, c = EK(m) constitutes the signed

message. Everyone, who knows K ′, can decrypt c = EK(m), and obtain the plaintext DK′(c) =
DK′(EK(m)) = m. As only the sender knows K, and the associated key K ′ is public, we can

conclude that the message c is from the sender. Digital signatures allow the following, where 〈Ki,K
′
i〉

is the pair of matching keys of a process pi.

• If Ki is the secret key and K ′
i the associated public key of pi, signatures guarantee message

authentication, i.e., a receiver can authenticate the sender pi of the message.

• If, in addition to sign its message m, the sender wants to hide its content to all processes except

an intended destination process pj it can use the public key K ′
j of the receiver to compute

c′ = EK′
j
(c) and sends c′ to the destination process (or even broadcasts c′). If another process

pk learns c’, it cannot restore its content as it does not know the secret key Kj associated with

K ′
j . Only pj (the intended receiver) can do it. As pj is the only process which knows Kj , it can

first compute DKj (c
′) = DKj (EK′

j
(c)) to obtain c, and can then compute m with the help of

the public key of pi, namely DK′
i
(EKi(c)) = m.

20.2.2 How to Build a Secret Key: Diffie-Hellman’s Algorithm

A crucial issue of symmetric cryptography systems lies in the construction of a secret key by a pair

of communicating entities without meeting at the same place, without requiring them to be simultane-

ously present, and without using hidden channels?

An answer to such a problem was proposed by Diffie and Hellman (1976). Their algorithm is

presented below. It consists in four steps, where pi and pj are the two concerned processes.

1. The processes pi and pj first agree upon two integers p, a large prime, and r, which lies between

1 and (p − 1). This agreement is “in clear”: it can be done by email, and both p and r can be

known by any other process.

2. Independently, pi and pj do the following.

• Process pi chooses a secret number x, which lies between 1 and (p − 1). This number x
must have no common factor with (p − 1) (hence, as (p − 1) is even, x cannot be even).

Let us insist on the fact that pi reveals its secret number x to no one (including pj).

Then, pi computes ki = rx mod p, and sends it to pj .

• Similarly, pi chooses a secret number y (that has no common factor with (p−1)), computes

kj = ry mod p, and sends it to pi. Both ki and kj can be sent in clear, and known by other

processes.

3. When pi receives kj , it computes kxj mod p. Similarly, when it receives ki, pj computes

kyi mod p.
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4. We have kxj mod p = (ry)x mod p, and kxi mod p = (rx)y mod p. As (ry)x = (rx)y, we have

kxj mod p = (ry)x mod p = kxi mod p = (rx)y mod p = K. K is the value of the secret key

shared by pi and pj .

Let us remark that an adversary can know p, r, ki and kj . The difficulty to build K from these data

comes from the modulo arithmetic, and the difficulty to compute the inverse of a discrete logarithm.

Of course, the difficulty in breaking the secret key is also related to the value of the prime number

p. The greater it is (more than one hundred bits long), the more difficult it is to break Diffie-Hellman

algorithm.

20.2.3 How to Build a Public Key: Rivest-Shamir-Adleman’s (RSA) Algorithm

The most famous algorithm to build a pair of keys 〈K,K ′〉 for a symmetric cryptography system is

due to R.L. Rivest, A. Shamir, and L. Adleman (1978).

Computing a secret key K and the associated public key K ′ This algorithm is executed by a

process pi to compute its secret key K and the associated key K ′ that it makes public. It is as follows.

1. Process pi selects two very large prime number p and q, that it keeps secret. (As before, the

larger these numbers, the better it is.)

2. Then pi computes r = p× q, s = (p− 1)(q − 1), and selects a value K which has no common

factor with r, nor with s.

3. Process pi then computes the public key K ′ associated with K. Its value is such that K ×K ′ =
1 (mod s). The pair 〈K ′, r〉 is made public by pi.

When p, q, and K are known, there is a method to compute K ′. Differently, if p and q are not

known, there is no way to find K despite the knowledge of the pair 〈K ′, r〉. The security of

RSA relies on the modulo arithmetic and the fact that, if p and q are very large – e.g., more than

10200 – factoring r in pq cannot be done in “reasonable” time.

Let us note that the relation linking K and K ′ is symmetric. This means that, while K can be used as

the enciphering key and K ′ as the associated deciphering key, it is possible to use K ′ as an enciphering

key associated with the deciphering key K.

Enciphering and deciphering in RSA The message to be encrypted is decomposed in a sequence of

blocks, each block being appropriately enciphered. We consider here that the message m is composed

of a single block. Both enciphering and deciphering consist in exponentiation (for which there are

very efficient algorithms). We have the following.

• Encipherment. pi computes c = mKmod r.

• Decipherment. A process pi computes c′ = cK
′
mod r.

Then, due to r = p×q, the definition of K, and the definition of K ′ (namely, K×K ′ = 1 (mod s)),
we have cK

′
= mK′×Kmod r = m.

20.2.4 How to Share a Secret: Shamir’s Algorithm

Let us consider a data d (for example a secret key) shared by some participants. If each participant has

a copy of d, an intrusion attack of a single participant by an adversary can allow it to obtain the data.

Differently, if each participant has only a part (or an encoding of a part) of d, the situation becomes

more difficult for an adversary to obtain the value of d. This kind of problem gave rise the notion of

(k, n)-threshold secret sharing scheme.
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(k, n)-Threshold secret sharing scheme In such a scheme, a data d is “decomposed” into n parties,

called images, and denoted d1, .., dn, such that the following two properties are satisfied.

• Availability property. The knowledge of any set of k (or more) distinct images of d, allow a

process to (easily) build the data d.

• Confidentiality property. The knowledge of any set of (k − 1) (or less) images of d, gives no

information on the value of the data d.

Shamir’s algorithm All computations are done mod q, in a Galois field GF (q) = {1, · · · , q − 1},
where q is a prime number, such that the confidential data d ∈ GF (q). Hence, d can be any value in

{1, · · · , q − 1}.

1. Let us consider a polynomial p(x) of degree (k − 1)

p(x) = a0 + a1x+ · · ·+ ak−1x
k−1.

The coefficients ai, 1 ≤ i < k, are selected arbitrarily in GF (q), while a0 = d.

2. n images d1, d2, ..., dn (one per node) are created, according to the values of p(x) at points

whose abscissa is 1, .. n. Hence, di = p(i) for 1 ≤ i ≤ n. Let (xi, yi) = (i, di).

3. To recompose d, a process first need to obtain any set of k points, and then retrieves p(x) using

Lagrange’s interpolation formula:

p(x) =
k∑

i=1

yi
∏

1≤j 
=i≤k

(x− xi)

(xi − xj)
.

Then, the computation of p(0) returns the shared secret a0 = d.

This algorithm relies on the fact that, given k points (xi, yi) of the (x, y) plane, there is a single

polynomial of degree (k − 1) such that yi = p(xi) (e.g., given three distinct points, there is a single

graph ax2 + bx + c defined by these three points). There exist efficient algorithms in O(nlog2n) to

compute polynomial interpolation.

If an adversary obtains up to (k−1) images (points of the polynomial), it has no means to discover

d. This is because, while there is a single polynomial of degree (k − 2) passing through these (k − 1)
points, there is an infinity of polynomials of degree (k − 1) passing through them.

20.3 Overlay Networks

In some distributed applications (e.g., peer-to-peer systems), the use of a regular underlying logical

communication structure can render algorithms both easier to design and more efficient. This appendix

section describes three such graph structures: hypercubes, de Bruijn graphs, and Kautz graphs. As

they are used to “cover” an existing network (where the term “cover” has its graph meaning), these

structures are called overlays.

20.3.1 On Regular Graphs

A graph is characterized by several parameters, among which its number of vertices n, its number of

edges e, its diameter D (longest of its shortest paths), and its maximal degree Δ (maximal number of

edges at any vertex), are particularly important. For some problems, we are interested in communi-

cation graphs in which the processes have the same number of neighbors (i.e., the same degree Δ).

When they exist such graphs are called regular.
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Given Δ and D, Moore’s bound (1958) is an upper bound on the maximal number of vertices

(processes) that a regular graph with diameter D and degree Δ can have. This number is denoted

n(D,Δ), and we have n(D,Δ) ≤ 1 + Δ+Δ(Δ− 1) + · · ·+Δ(Δ− 1)D−1, i.e.,

n(D, 2) ≤ 2D + 1, and

n(D,Δ) ≤ Δ(Δ− 1)D − 2

Δ− 2
for Δ > 2.

This is an upper bound. It is important to recall that (a) this bound does not mean that regular

graphs for which n(D,Δ) is equal to the bound exist for any pair (D,Δ), and (b) when such graphs

exist, it does not state how to build them. However, this bound states that, in the regular graphs that

can be built, we have Δ ≥ D
√
n.

20.3.2 Hypercube

Definition A hypercube H(x) is a regular graph, made up of 2x vertices, and such that D = Δ = x.

The identity of a vertex is a word of size x, built on the vocabulary {0, 1}; x is called the degree of the

hypercube.

Each vertex V , identified a1a2, . . . ax has x neighbors. The identity of each of them is the same as

the identity of V , except in one position k, 1 ≤ k ≤ x, whose value is (1 − ak). Hence, considering

H(3), the three neighbors of the vertex 001 are 101, 011, and 000. As we can see, the distance between

two vertices is their Hamming distance (number of bit positions in which they differ). Hence, to send

a message to the vertex 111, vertex 001 must send the message to a neighbor whose distance to 111 is

shorter than its own distance (e.g., to its neighbor 101).

0

H(1)

1

H(2)

10

00

11

01

001

101

110 111

100

010 011

000

H(3)

Figure 20.3: Hypercubes H(1), H(2), and H(3)

Examples: iterative construction A single vertex defines a hypercube of dimension 0, namely

H(0). Duplicating H(0) and connecting the vertices by an edge defines H(1). Then, more generally, a

hypercube of dimension H(x) is obtained by (a) taking two hypercubes of dimension (x− 1), namely

H1(x − 1) and H2(x − 1) , and (b) connecting the vertices with the same label in H1 and H2 by an

edge, and (c) prefixing the labels of H1 by 0, and the labels of H2 by 1.

The hypercubes H(1), H(2), and H(3), are depicted on Fig 20.3, while H(4) is depicted on Fig. 20.4.

The edges added when going from two hypercubes H(x − 1) to the hypercube H(x) are depicted as

red dashed curves.
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Figure 20.4: Hypercube H(4)

20.3.3 de Bruijn Graphs

The graphs known as de Bruijn graphs are directed regular graphs, which can be easily built. Let

x be a vertex of a directed graph. Δ+(x) denotes its input degree (number of incoming edges),

while Δ−(x) denotes its output degree (number of output edges). In a regular network, we have

∀ x : Δ+(x) = Δ−(x) = Δ, and the value Δ defines the degree of the graph.

de Bruijn graph dB(d,D) Let us consider a vocabulary V of d letters (e.g., {0, 1, 2} for d = 3).

• The vertices are all the words of length D that can be built on a vocabulary V of d letters.

• Each vertex x = [x1, ..., xD−1, xD] has d output edges that connect it to the vertices y =
[x2, ...xD, α], where α ∈ V (this is called the shifting property).

It follows from this definition that the input channels (edges) of a vertex x = [x1, ..., xD−1, xD]
are the d vertices labeled [β, x1, ...xD−1], where β ∈ V . Let us also observe that the definition of the

directed edges implies that each vertex labeled [a, a, ..., a], a ∈ V , has a channel to itself (this channel

counts then as both an input channel and an output channel).

A de Bruijn graph defined from a specific pair (d,D) is denoted dB(d,D), and we have Δ = d.

Such a graph has n = dD = ΔD vertices and e = nd directed edges.

Examples of de Bruijn’s graphs Examples of directed de Bruijn graphs are described Fig. 20.5.

• The graph at the top of the figure is dB(2,1). We have Δ = d = 2, D = 1, and n = 21 = 2.

• The graph in the middle of the figure is dB(2,2). We have Δ = d = 2, D = 2, and n = 22 = 4.

• The graph at the bottom of the figure is dB(2,3). We have Δ = d = 2, D = 3, and n = 23 = 8.

A fundamental property of a de Bruijn graph In addition to being easily built, de Bruijn graphs

possess a noteworthy property which makes them attractive for the distributed computing, namely

there is exactly one directed path of length exactly D between any pair of vertices (including each pair

of the form (x, x)).
As a simple example of use, this property allows an easy computation of a global function F () in

a round-based synchronous (or asynchronous) distributed system whose communication graph is a de

Bruijn graph. The processes execute D synchronous rounds. At every round each process sends to its

neighbors the union of the sets of pairs 〈j, vj〉 it received from its neighbors during the previous round

(at the first round, a process pi sends the set {〈i, vi〉}, where vi is its local input). Due to the previous
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Figure 20.5: The de Bruijn directed networks dB(2,1), dB(2,2), and dB(2,3)

property no process needs to locally save the values received during a round: the last round provides

it with the whole input vector.

20.3.4 Kautz Graphs

Given a vocabulary V of size (d+ 1), a Kautz graph, denoted K(d,D), is a graph whose vertices are

words of size D, no two consecutive letters in a vertex label are the same, and if a vertex is labeled

x = [x1, ..., xD] there is a directed edge from it to the vertices labeled x = [x2, ..., xD−1, xD, α] for

any α ∈ V \ {xD}.
An important connectivity property of the graph K(d,D) is the fact there is exactly one path of

length D or (D − 1) between any two vertices.

0

12

K(2,1)

K(2,2)

01

20 12

10

02 21

Figure 20.6: Kautz graphs K(2, 1) and K(2, 2)

The graph (d,D) is regular, its diameter is D, and its number of vertices is dD+dD−1. The graphs

K(2, 1) and K(2, 2) are depicted in Fig. 20.6, while the graph K(2, 3) is depicted in Fig. 20.7.
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Figure 20.7: Kautz graph K(2, 3)

20.3.5 Undirected de Bruijn and Kautz Graphs

Undirected de Bruijn graph The undirected de Bruijn graph UdB(d,D) is obtained from the de

Bruijn graph UdB(d,D) where (a) self loops are removed, (b) edges are no longer oriented, and

(c) double edges (one in each direction) are replaced by a single edge. Hence, the vertex x =
[x1, ..., xD−1, xD] is now adjacent to all the vertices [x2, ...xD−1, β] and [β, x1, ...xD−1], where β ∈
V . The maximal degree is Δ = 2d, and UdB(d,D) is not longer regular (some vertices have degree

(2d − 2), and some vertices have degree (2d − 1)). Expressed as a function of Δ and D, UdB(d,D)

has
(
Δ
2

)D
vertices.

Undirected Kautz graphs These graphs are defined similarly to undirected de Bruijn graphs. They

are not regular, their maximal degree is Δ = 2d, and their minimal degree is (2d − 1). Given Δ and

D, the number of vertices of such an undirected graph is
(
Δ
2

)D
+

(
Δ
2

)D−1
vertices.

Number of vertices of the previous undirected graphs To illustrate the previous undirected graphs

(hypercubes and undirected de Bruijn and Kautz graphs), Table 20.2 gives the number of vertices n of

each of them for a few (small) values of d and D (Δ = 2d). As D = Δ in a hypercube, and we want

to compare undirected de Bruijn and Kautz graphs with hypercubes, we consider D = Δ in the table.

It is clear from the table that, for the same pair 〈Δ, D〉, undirected de Bruijn and Kautz graphs

have many more vertices than a hypercube.

D = Δ = 2d 4 6 8 10

Hypercube 16 64 256 1024

de Bruijn 16 729 65 536 9 765 625

Kautz 24 972 81 920 11 718 750

Table 20.2: Number of vertices for D = Δ = 4, 6, 8, 10

While there is a single hypercube (n is then a power of 2) for a given pair 〈Δ, D〉, there are

several undirected Bruijn graphs and Kautz graphs associated with the same pair. let us consider as

an example n = 256. There is a single hypercube. Differently, there are several undirected de Bruijn

(UdB) graphs, namely UdB(2,8) – with maximal degree 2d = 4 –, UdB(4,4) – with maximal degree

2d = 8 –, and UdB(16,2) – with maximal degree 2d = 32 –).
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Afterword

Post hoc, ergo propter hoc, ...1

The Aim of This Book

From sequential computing The practice of sequential computing has greatly benefited from the

results of the theory of sequential computing that were captured in the study of formal languages and

automata theory. Everyone knows what can be computed (computability) and what can be computed

efficiently (complexity). All these results constitute the foundations of sequential computing, which,

thanks to them, has become a science. These theoretical results and algorithmic principles have been

described in many books from which students can learn basic results, algorithms, and principles of

sequential computing.

To distributed computing Since L. Lamport’s seminal article “Time, clocks, and the ordering of

events in a distributed system” [255], and other articles such as (to cite only two more among many

others) “Impossibility of distributed consensus with one faulty process” by M. Fischer, N. Lynch, and

M. Paterson [162], and “Wait-free synchronization” by M. Herlihy [212]2, distributed computing is

no longer a set of tricks or recipes, but a domain of Informatics with its own concepts, methods, and

applications3. The world is distributed, and today the majority of applications involves distributed

computing. This means that message-passing algorithms are now an important part of any Informatics

or computing engineering curriculum.

Thanks to appropriate curricula – and associated textbooks – students have a good background in

the theory and practice of sequential computing. In the same spirit, one aim of this book is to try to

provide them with an appropriate background when investigating distributed computing problems in

message-passing systems prone to failures.

Technology is what makes everyday life easier. Science is what allows us to transcend it, and

capture the deep nature of the objects we are manipulating. To this end, science provides us with the

right concepts to master and understand what we are doing. Considering failure-prone asynchronous

message-passing distributed computing, an ambition of this book is to be a step in this direction.

1After this, therefore because of it, ...
2These articles were awarded the “Dijkstra Prize” (in 2000, 2001, and 2003, respectively). As stated in

https://en.wikipedia.org/wiki/Dijkstra Prize, this prize “is given for outstanding papers on the principles of distributed com-

puting, whose significance and impact on the theory and/or practice of distributed computing has been evident for at least a

decade”.
3“Computer science is no more about computers than astronomy is about telescopes” (M. R. Fellows and I. Parberry,

sometimes falsely attributed to E.W. Dijkstra). Hence, mimicking the words “mathematics” and “physics”, I use the word

Informatics in place of “computer science” as done in a lot of European countries. As a pleasant aside, there is no more

“computer science” than “washing machine science”.
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Acknowledgment, Asynchronous system, Atomic register, Client, Composability, Majority, Process

crash failure, Read must write, Read/write register, Regular register, Sequentially consistent register,

Server, Two-phase algorithm.

Chapter 7:

Asynchronous system, Atomic register, Extraction algorithm, Impossibility, Process crash failure,

Quorum failure detector Σ, Uniform reliable broadcast, Weakest failure detector.

Chapter 8:

Asynchronous system, Atomicity, Communication abstraction, Communication pattern, Computabil-

ity equivalence, Conflict-free replicated data type, Counter object, Lattice agreement task, Process

crash failure, Read/write register, Sequential consistency, Snapshot object.

Chapter 9:

Asynchronous system, Atomicity, Byzantine process, Byzantine reliable broadcast, Impossibility, Lin-

earization point, Upper bound, Read/write register.

Chapter 10:

Agreement, Binary vs multivalued, Atomic crash, Atomic round, Consensus, Convergence, Hamming

distance, Interactive consistency, Lower bound, Process crash failure, Round-based algorithm, Unifor-
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mity, Valence, Vector consensus, Synchronous system.

Chapter 11:

Consensus, Early decision, Early stopping, Interactive consistency, Process crash, Round-based algo-

rithm, Synchronous system.

Chapter 12:

Atomic round, Clean round, Condition-based simultaneity, Early-decision, Failure discovery, Failure

pattern, Horizon, k-Set agreement, Simultaneous consensus, Waste.

Chapter 13:

Crash failure, Fast abort, Fast commit, Impossibility, NBAC, Synchronous system, Weak fast abort,

Weak fast commit.

Chapter 14:

Binary consensus, Byzantine process, Consensus, Common coin, Constant message size, Fair message

scheduling, Impossibility, Interactive consistency, Local coin, Message authentication, Multivalued

consensus, Random number, Reduction algorithm, Signature-based algorithm, Synchronous system.

Chapter 15:

Agreement abstraction, Approximate agreement, Asynchrony, Crash failure, Lower bound, Majority

of correct processes, Read/write register, Renaming, Safe agreement, Snapshot.

Chapter 16:

Consensus abstraction, Consensus number, Crash failure, FLP Impossibility, Non-determinism, Pro-

cess crash, Sequential specification, State machine replication, Total order broadcast, Universal object

(abstraction).

Chapter 17:

Asynchronous algorithm, Binary consensus, Common coin, Consensus abstraction, Eventual leader

(Ω), Fair message scheduling, Failure detector, Hybrid algorithm, Indulgent algorithm, Local coin,

Process crash, Random number, Unreliable broadcast, Zero degradation.

Chapter 18:

Abstraction ranking, Asynchronous algorithm, Eventually perfect failure detector, Eventual leader

failure detector, Eventually timely channel, Hybrid model, Ω Impossibility, Message scheduling as-

sumption, Message pattern, Modularity, Perfect failure detector, Process monitoring.

Chapter 19:

Asynchronous algorithm, Binary consensus, Byzantine process, Common coin, Consensus abstrac-

tion, Fair message scheduling, Local coin, Multivalued consensus, Random number.

How to Use This Book

This section presents two possible approaches to use this book. Of course, a teaching approach de-

pends mainly on the teacher, the global view and the technical knowledge she wants to give students.

What is presented below are only suggestions.

Approach 1 This approach consists in dividing the content of the book into two parts as follows.
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• First a one-semester course on communication abstractions in the crash failure model and the

Byzantine failure model (Chap. 1 to Chap. 9). The aim is here to allow students to better under-

stand:

– the net effect of an “asynchrony adversary” and a “failure adversary” (first in the simpler

crash failure model, and then in the more difficult Byzantine failure model), and

– simple impossibility results (such as the construction of a read/write atomic register when

half or more processes may crash).

• Then another one-semester course on agreement abstractions in the crash failure model and the

Byzantine failure model (Chap. 10 to Chap. 19).

The aim is here for students to understand that agreement lies at the core of “non-trivial” dis-

tributed computing, and know what can and cannot be done in a given distributed computing

model, and which is the appropriate distributed computing model to implement a given applica-

tion.

Approach 2 The second approach consists in adopting an orthogonal presentation, in which the first

one-semester course considers communication and agreement abstractions in the crash failure model,

and the second one-semester course considers them in the Byzantine failure model.

Beyond a specific teaching approach The aim is to help students understand that distributed com-

puting is different from both sequential computing and parallel computing4. The nature of “impossi-

ble” is not the same as that encountered in sequential or parallel computing. Here impossibilities are

due to fact that, in some executions, due to asynchrony and failures, it is impossible for a process to

distinguish different executions in which they should behave differently.

On the “construction” side, the understanding of algorithms building communication abstractions

such as reliable broadcast or read/write registers, and basic agreement abstractions such as consen-

sus or interactive consistency, in systems where processes may crash or behave arbitrarily (Byzan-

tine behavior), helps students master basic algorithmic techniques for failure-prone (synchronous and

asynchronous) distributed computing.

The spirit of the book is to be an introductory book, giving students a correct intuition of what dis-

tributed computing in the presence of failures is, and what fault-tolerant distributed message-passing

algorithms are (they are not simple “extensions” of sequential or parallel algorithms!). It is also im-

portant to notice that there are problems which are specific to distributed computing (e.g., consensus).

Of course, thanks to its table of contents and its index, the book can also be used by engineers

and researchers, who work on distributed applications, to find answers to some of their questions, and

allow them better understand the concepts and mechanisms that underlie their work.

A Few Books on Distributed Computing

Books from colleagues The following books (in alphabetical order of their first author) address

distinct facets of distributed computing.

• The books by H. Attiya and J. Welch [43], A. Kshemkalyani and M. Singal [250], and N. A.

Lynch [271], cover both synchronous and asynchronous systems, crash failure and Byzantine

failures, and both message-passing and shared memory.
4The aim of parallel computing is to benefit from parts of a computation which are independent, and can consequently

be executed “in parallel”. In distributed computing, the computing entities are distributed “by nature” (this is imposed and

not under the control of the designer/programmer), and the input data are initially distributed (as illustrated in Fig. 1.5). The

aim of distributed computing is to allow computing entities to cooperate despite the uncertainty created by the environment

(asynchrony, failures, mobility, etc.) [371].
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• The book by Ch. Cachin, R. Guerraoui, and L. Rodrigues [88] is an incremental introduction

to distributed programming, addressing message-passing systems with both crash failures and

Byzantine processes.

• The book by V. K. Garg [185] adopts an approach in which the aim of each chapter is to corre-

spond to exactly one lecture.

• The book by M. Herlihy, D. Kozlov, and S. Rajsbaum [214] presents a topology-based theory,

whose aim is to provide distributed computing with sound mathematical foundations.

• The book by D. Peleg [344] is on distributed graph problems in failure-free synchronous net-

works, where the communication graph is connected. It is focused on a locality-sensitive ap-

proach.

• The book by N. Santoro [384] develops analytic tools, skills, and techniques to evaluate the cost

of complex designs and algorithms.

Tentative global view The present book is the last in a series of three books, written by the author,

devoted to concurrent and distributed computing.

• The book “Distributed algorithms for message-passing systems [368] addresses asynchronous

message-passing algorithms in failure-free systems. Its aim is to introduce the reader to basic

distributed problems and techniques. It presents distributed graph algorithms, the notion of a

global state and associated notions of logical time (scalar time and vector time), distributed al-

gorithms for mutual exclusion and resource allocation, high level communication abstractions,

on the fly detection of distributed executions (mainly deadlock detection and termination de-

tection), and the implementation of a distributed shared memory. This book targets a Master 1

Curriculum.

• The book “Concurrent programming: algorithms, principles and foundations” [369] considers

asynchronous distributed computing systems where processes are prone to crash failures and

communicate through read/write registers (e.g., multicore machines). Both the previous book

and the present book address distributed computing in the presence of failures. They differ

in the underlying communication medium, one considers a read/write shared memory, while

the present book considers message-passing communication. Both target end of Master 1 and

Master 2 Curricula.

Enseigner, c’est réfléchir à voix haute devant les étudiants.

Henri-Léon Lebesgue (1875–1941)

Make everything as simple as possible, but not simpler.

Albert Einstein (1879–1955)

Felix qui potuit rerum cognoscere causas.

In Georgica, Liber II, 490, Publius Virgilius (70 BC–19 BC)
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[305] Mostéfaoui A., Moumen H., and Raynal M., Randomized k-set agreement in crash-prone and Byzantine

asynchronous systems. Theoretical Computer Science, 709:81-98 (2018)
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[321] Mostéfaoui A. and Raynal M., Low-cost consensus-based atomic broadcast. 7th IEEE Pacific Rim Int’l

Symposium on Dependable Computing (PRDC’00), IEEE Computer Press, pp. 45-52 (2000)
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