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Preface

La recherche du temps perdu passait par le Web. [...]

La mémoire était devenue inépuisable, mais la profondeur du temps |[...] avait disparu.
On était dans un présent infini.

In Les années (2008), Annie Ernaux (1940)

Sed nos immensum spatiis confecimus aequor,
Et iam tempus equum fumentia solvere colla.!
In Georgica, Liber II, 541-542, Publius Virgilius (70 BC-19 BC)

Je suis arrivé au jour ot je ne me souviens plus quand j’ai cessé d’étre immortel.
In Livro de Cronicas, Anténio Lobo Antunes (1942)

C’est une chose étrange a la fin que le monde
Un jour je m’en irai sans en avoir tout dit.
In Les yeux et la mémoire (1954), chant I, Louis Aragon (1897-1982)

Tout garder, c’est tout détruire.
Jacques Derrida (1930-2004)

"French: Mais j’ai déja fourni une vaste carriére, il est temps de dételer les chevaux tout fumants.
English: But now I have traveled a very long way, and the time has come to unyoke my steaming horses.
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What is distributed computing? Distributed computing was born in the late 1970s when researchers
and practitioners started taking into account the intrinsic characteristic of physically distributed sys-
tems. The field then emerged as a specialized research area distinct from networking, operating sys-
tems, and parallel computing.

Distributed computing arises when one has to solve a problem in terms of distributed entities
(usually called processors, nodes, processes, actors, agents, sensors, peers, etc.) such that each entity
has only a partial knowledge of the many parameters involved in the problem that has to be solved.
While parallel computing and real-time computing can be characterized, respectively, by the terms
efficiency and on-time computing, distributed computing can be characterized by the term uncertainty.
This uncertainty is created by asynchrony, multiplicity of control flows, absence of shared memory
and global time, failure, dynamicity, mobility, etc. Mastering one form or another of uncertainty is
pervasive in all distributed computing problems. A main difficulty in designing distributed algorithms
comes from the fact that no entity cooperating in the achievement of a common goal can have an
instantaneous knowledge of the current state of the other entities, it can only know their past local
states.

Although distributed algorithms are often made up of a few lines, their behavior can be difficult
to understand and their properties hard to state and prove. Hence, distributed computing is not only
a fundamental topic but also a challenging topic where simplicity, elegance, and beauty are first-class
citizens.

Why this book? In the book “Distributed algorithms for message-passing systems” (Springer, 2013),
I addressed distributed computing in failure-free message-passing systems, where the computing enti-
ties (processes) have to cooperate in the presence of asynchrony. Differently, in my book “Concurrent
programming: algorithms, principles and foundations” (Springer, 2013), I addressed distributed com-
puting where the computing entities (processes) communicate through a read/write shared memory
(e.g., multicore), and the main adversary lies in the net effect of asynchrony and process crashes
(unexpected definitive stops).

The present book considers synchronous and asynchronous message-passing systems, where pro-
cesses can commit crash failures, or Byzantine failures (arbitrary behavior). Its aim is to present in a
comprehensive way basic notions, concepts and algorithms in the context of these systems. The main
difficulty comes from the uncertainty created by the adversaries managing the environment (mainly
asynchrony and failures), which, by its very nature, is not under the control of the system.

A quick look at the content of the book The book is composed of four parts, the first two are on
communication abstractions, the other two on agreement abstractions. Those are the most important
abstractions distributed applications rely on in asynchronous and synchronous message-passing sys-
tems where processes may crash, or commit Byzantine failures. The book addresses what can be done
and what cannot be done in the presence of such adversaries. It consequently presents both impossi-
bility results and distributed algorithms. All impossibility results are proved, and all algorithms are
described in a simple algorithmic notation and proved correct.

e Parts on communication abstractions.

— Part I is on the reliable broadcast abstraction.
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— Part IT is on the construction of read/write registers.

e Parts on agreement.

— Part I1I is on agreement in synchronous systems.
— Part IV is on agreement in asynchronous systems.

On the presentation style When known, the names of the authors of a theorem, or of an algorithm,
are indicated together with the date of the associated publication. Moreover, each chapter has a bib-
liographical section, where a short historical perspective and references related to that chapter are
given.

Each chapter terminates with a few exercises and problems, whose solutions can be found in the
article cited at the end of the corresponding exercise/problem.

From a vocabulary point of view, the following terms are used: an object implements an abstrac-
tion, defined by a set of properties, which allows a problem to be solved. Moreover, each algorithm
is first presented intuitively with words, and then proved correct. Understanding an algorithm is a
two-step process:

e First have a good intuition of its underlying principles, and its possible behaviors. This is nec-
essary, but remains informal.

e Then prove the algorithm is correct in the model it was designed for. The proof consists in a
logical reasoning, based on the properties provided by (i) the underlying model, and (ii) the
statements (code) of the algorithm. More precisely, each property defining the abstraction the
algorithm is assumed to implement must be satisfied in all its executions.

Only when these two steps have been done, can we say that we understand the algorithm.

Audience This book has been written primarily for people who are not familiar with the topic and
the concepts that are presented. These include mainly:

e Senior-level undergraduate students and graduate students in informatics or computing engineer-
ing, who are interested in the principles and algorithmic foundations of fault-tolerant distributed
computing.

e Practitioners and engineers who want to be aware of the state-of-the-art concepts, basic princi-
ples, mechanisms, and techniques encountered in fault-tolerant distributed computing.

Prerequisites for this book include undergraduate courses on algorithms, basic knowledge on operat-
ing systems, and notions on concurrency in failure-free distributed computing. One-semester courses,
based on this book, are suggested in the section titled “How to Use This Book” in the Afterword.

Origin of the book and acknowledgments This book has two complementary origins:

e The first is a set of lectures for undergraduate and graduate courses on distributed computing I
gave at the University of Rennes (France), the Hong Kong Polytechnic University, and, as an
invited professor, at several universities all over the world.

Hence, I want to thank the numerous students for their questions that, in one way or another,
contributed to this book.

e The second is the two monographs I wrote in 2010, on fault-tolerant distributed computing,
titled “Communication and agreement abstractions for fault-tolerant asynchronous distributed
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systems”, and “Fault-tolerant agreement in synchronous distributed systems”. Parts of them
appear in this book, after having been revised, corrected, and improved.

Hence, I want to thank Morgan & Claypool, and more particularly Diane Cerra, for their per-
mission to reuse parts of this work.

I also want to thank my colleagues (in no particular order) A. Mostéfaoui, D. Imbs, S. Rajsbaum,
V. Gramoli, C. Delporte, H. Fauconnier, F. Taiani, M. Perrin, A. Castafieda, M. Larrea, and Z. Bouzid,
with whom I collaborated in the recent past years. I also thank the Polytechnic University of Hong
Kong (PolyU), and more particularly Professor Jiannong Cao, for hosting me while I was writing parts
of this book. My thanks also to Ronan Nugent (Springer) for his support and his help in putting it all
together.

Last but not least (and maybe most importantly), I thank all the researchers whose results are pre-
sented in this book. Without their work, this book would not exist. (Finally, since I typeset the entire
text myself — IATEX 2, for the text and zfig for figures — any typesetting or technical errors that remain
are my responsibility.)

Professor Michel Raynal

Academia Europaea

Institut Universitaire de France

Professor IRISA-ISTIC, Université de Rennes 1, France
Chair Professor, Hong Kong Polytechnic University

June-December 2017
Rennes, Saint-Grégoire, Douelle, Saint-Philibert, Hong Kong,
Vienna (DISC’17), Washington D.C. (PODC’17), Mexico City (UNAM)
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Notation

Symbols
skip, no-op empty statement
process program in action
n number of processes

correct (or non-faulty) process

process that does not fail during an execution

faulty process

process that fails during an execution

t upper bound on the number of faulty of processes
f actual number of faulty of processes
i process whose index (or identity) is ¢
id; identity of process p; (very often id; = 1)
T time instant (from an external observer point of view)
[1..m] set {1,...,m}
AA[L..m)] array with m entries (vector)
equal(a, I) occurrence number of a in the vector (or multiset) [
(a,b) pair with elements a and b
(a,b,c) triple with elements a, b, and ¢
XX small capital letters: message type (message tag)
TT; italics lower-case letters: local variable of process p;
Tx; U assignment of value v to zz;
XX abstract variable known only by an external observer
zay, XX values of xx;, X X at the end of round r
(mq;...;mg) sequence of messages
a;[l..s] array of size s (local to process p;)

for each i € {1,..., m} do statements end for

order irrelevant

for each i from 1 to m do statements end for

order relevant

wait (P) while —P do no-op end while
return (v) returns v and terminates the operation invocation
% blablabla % comments
; sequentiality operator between two statements
52 concatenation
€ empty sequence (list)
lo| size of the sequence o

The notation broadcast TYPE(m), where TYPE is a message type and m a message content, is used

as a shortcut for “for each j € {1,--- ,n} do send TYPE(m) to p; end for”. Hence, if it is not faulty
during its execution, p; sends the message TYPE(m) to each process, including itself. Otherwise there
is no guarantee on the reception of TYPE(m).

(In Chap. 1 only, j € {1,--- ,n} is replaced by j € neighbors;.)

xXXi



XXii

Notation

Acronyms (1)

SWMR

single-writer/multi-reader register

MWSR

multi-writer/single-reader register

SWMR

single-writer/multi-reader register

CAMP

Crash asynchronous message-passing

CSMP

Crash synchronous message-passing

BAMP

Byzantine asynchronous message-passing

BSMP

Byzantine synchronous message-passing

EIG

Exponential information gathering

RB

Reliable broadcast

URB

Uniform reliable broadcast

ND

No-duplicity broadcast

BRB

Byzantine reliable broadcast

BV

Byzantine binary value broadcast

VBB

Validated Byzantine broadcast

CcC

Consensus in the process crash model

BC

Consensus in the Byzantine process model

SA

Set-agreement

BBC

Byzantine binary consensus

ICC

Interactive consistency (vector consensus), crash model

SC

Simultaneous (synchronous) consensus

CORE

CORE-broadcast

CC-property

Crash consensus property

BC-property

Byzantine consensus property




Notation

XXiii

Acronyms (2)

CO Causal order
FIFO First in first out
TO Total order
SCD Set-constrained delivery
FC Fair channel
CRDT Conflict-free replicated data type
MS_PAT Message pattern
ADV Adversary
FD Failure detector
HB Heartbeat
MS_PAT Message pattern
SO Send omission
GO General omission
MS Message scheduling assumption
LC Local coin
CC Common coin
BCCB Binary common coin with bias

GST

Global stabilization time
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Chapter 1 )

Check for
updates

A Few Definitions
and Two Introductory Examples

This chapter introduces basic definitions and basic computing models associated with fault-tolerant
message-passing distributed systems. It also presents two simple distributed computing problems,
whose aim is to give a first intuition of what can be done and what cannot be done in message-passing
systems prone to failures. Consequently, this chapter must be considered as an introductory warm-up
chapter.

Keywords Algorithm, Automaton, Asynchronous system, Byzantine process, Communication graph,
Distributed algorithm, Distributed computing model, Distributed computing problem, Fair communi-
cation channel, Liveness property, Message adversary, Message loss, Non-determinism, Process crash
failure, Process mobility, Safety property, Spanning tree, Synchronous system.

1.1 A Few Definitions Related to Distributed Computing

Distributed computing “Distributed computing was born in the late 1970s when researchers and
practitioners started taking into account the intrinsic characteristic of physically distributed systems.
The field then emerged as a specialized research area distinct from networking, operating systems, and
parallel computing.

Distributed computing arises when one has to solve a problem in terms of distributed entities
(usually called processors, nodes, processes, actors, agents, sensors, peers, etc.) such that each entity
has only a partial knowledge of the many parameters involved in the problem that has to be solved.”

The fact the computing entities and their individual inputs are distributed is not under the control
of the programmers but is imposed on them. From an architectural point of view, this is expressed
in Fig. 1.1, where a pair (p;, in;) denotes a computing entity p; and its associated input in; (this is
formalized with the notion of a distributed task introduced in Section 1.3, page 12).

The concept of a sequential process A sequential algorithm is a formal description of the behavior
of a sequential state machine: the text of the algorithm states the transitions that have to be sequentially
executed. When written in a specific programming language, an algorithm is called a program.

The concept of a process was introduced to highlight the difference between an algorithm as a text
and its execution on a processor. While an algorithm is a text that describes statements that have to
be executed (such a text can also be analyzed, translated, etc.), a process is a “text in action”, namely
the dynamic entity generated by the execution of an algorithm (program) on a processor (computing
device). At any time, a process is characterized by its state (which comprises, among other things, the
current value of its program counter). A sequential process is a process defined by a single control
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4 1.1. A Few Definitions Related to Distributed Computing

Communication medium

Figure 1.1: Basic structure of distributed computing

flow: its behavior is managed by a single program counter, which means it executes a single step at a
time.

Distributed system As depicted in Fig. 1.1, a distributed system is made up of a collection of dis-
tributed computing units, each one abstracted through the notion of a process, interconnected by a
communication medium. As already said, the distribution of the processes (computing units) is not
under the control of the programmers, it is imposed on them.

In this book we assume that the set of processes is static. Composed of n processes, it is denoted
I = {p1, ..., pn}, Where each p;, 1 < i < n, represents a distinct process. The integer ¢ denotes the
index of process p;, i.e., the way an external observer can distinguish processes. It is nearly always
assumed that each process p; has its own identity, which is denoted id;. In a lot of cases id; = i.

The processes are assumed to cooperate on a common goal, which means that they exchange
information in one way or another. This book considers that the processes communicate by exchanging
messages on top of a communication network (see for example Fig. 1.2). Hence, the automaton
associated with each process provides it with basic point-to-point send and receive operations.

Communication medium The processes communicate by sending and receiving messages through
channels. A channel can be reliable (neither message loss, creation, modification, nor duplication), or
unreliable. Moreover, a channel can be synchronous or asynchronous. Synchronous means that there
is an upper bound on message transfer delays, while asynchronous means there is no such bound.
In any case, an algorithm must specify the properties it assumes for channels. As an example, an
asynchronous reliable channel guarantees that each message takes a finite time to travel from its sender
to its receiver. Let us notice that this does not guarantee that messages are received in their sending
order. A channel satisfying this last property is called a first in first out (FIFO) channel.

Each channel is assumed (a) to be bidirectional (it can carry messages in both directions) and (b)
to have an infinite capacity (it can contain any number of messages, each of any size).

Each process p; has a set of neighbors, denoted neighbors;. According to the context, this set con-
tains either the local identities of the channels connecting p; to its neighbor processes or the identities
of these processes.

Structural view It follows from the previous definitions that, from a structural point of view, a
distributed system can be represented by a connected undirected graph G = (11, C) (where C denotes
the set of channels). Three types of graphs are of particular interest (Fig. 1.2):

e A ring is a graph in which each process has exactly two neighbors with which it can communi-
cate directly, a left neighbor and a right neighbor.
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e A tree is a graph that has two noteworthy properties: it is acyclic and connected (which means
that adding a new channel would create a cycle, while suppressing a channel would disconnect
it).

o A fully connected graph is a graph in which each process is directly connected to every other
process. (In graph terminology, such a graph is called a clique.)

Ring Tree Clique

Figure 1.2: Three graph types of particular interest

Distributed algorithm A distributed algorithm is a collection of n automata, one per process. An
automaton describes the sequence of steps executed by the corresponding process.

In addition to the power of a Turing machine, an automaton is enriched with two communication
operations which allows it to send a message on a channel or receive a message on any channel. The
operations are denoted “send()” and “receive()”.

Synchronous algorithm A distributed synchronous algorithm is an algorithm designed to be exe-
cuted on a synchronous distributed system. The progress of such a system is governed by an external
global clock, denoted R, whose domain is the sequence of increasing integers. The processes collec-
tively execute a sequence of rounds, each round corresponding to a value of the global clock.

During a round, a process sends a message to a subset of its neighbors. The fundamental property
of a synchronous system is that a message sent by a process during a round 7 is received by its desti-
nation process during the very same round r. Hence, when a process proceeds to the round (r + 1),
it has received (and processed) all the messages that have been sent to it during round r, and it knows
the same holds for any process.

Space/time diagram A distributed execution can be graphically represented by a space/time di-
agram. Each sequential progress is represented by an arrow from left to right, and a message is
represented by an arrow from the sending process to the destination process.

The space/time diagram on the left of Fig. 1.3 represents a synchronous execution. The vertical
lines are used to separate the successive rounds. During the first round, p; sends a message to p3, and
p2 sends a message to p, etc.

r=1 r=2 r=3

AT =
\ /A s

Ps p3

Figure 1.3: Synchronous execution (left) vs. asynchronous execution (right)
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Asynchronous algorithm A distributed asynchronous algorithm is an algorithm designed to be ex-
ecuted on an asynchronous distributed system. In such a system, there is no notion of an external time,
which is why asynchronous systems are sometimes called time-free systems.

In an asynchronous algorithm, the progress of a process is ensured by its own computation and the
messages it receives. When a process receives a message, it processes the message and, according to
its local algorithm, possibly sends messages to its neighbors.

A process processes one message at a time. This means that the processing of a message cannot be
interrupted by the arrival of another message. When a message arrives, it is added to the input buffer
of the destination process p;, and remains in it until an invocation of receive() by p; returns it.

The space/time diagram of a simple asynchronous execution is depicted on the right of Fig. 1.3.
One can see that, in this example, the messages from p; to ps are not received in their sending order.
Hence, the channel from p; to po is not a FIFO (first in first out) channel. It is easy to see from
the figure that a synchronous execution is more structured (i.e., synchronized) than an asynchronous
execution.

Synchronous round vs asynchronous round In the synchronous model, the rounds, and their
progress, belong to the model. In the asynchronous model, rounds are not given for free, but can
be built by the processes. Nevertheless, when a process terminates a round r, it cannot conclude
that the other processes are simultaneously doing the same. When there are failures, it cannot even
conclude that all other processes will attain the round r it is executing.

Event and execution An event models the execution of a step issued by a process, where a step
is either a local step (communication-free local computation), or a communication step (the sending
of a message, or the reception of a message). An execution E is a partial order on the set of events
produced by the processes.

e In the context of a synchronous system, F is the partial order on the set of events produced by
the processes, such that all the events occurring in a round r precede all the events of the round
(r 4+ 1), and, inside every round, all sending events, precede all reception events, which in turn
precede all local events executed in this round.

e In the context of an asynchronous system, F is the partial order on the events produced by
the processes such that, for each process, E respects the total order on its events, and, for
any message m sent by a process p; to a process p;, the sending of m event occurs before its
reception event by p;.

Process failure models Two main process failures models are considered in this book:

e (Crash failures. A process commits a crash failure when it prematurely stops its execution. Until
it crashes (if it ever crashes), a process correctly executes its local algorithm.

e Byzantine failures. A process commits a Byzantine failure when it does not follow the behav-
ior assigned to it by its local algorithm. This kind of failure is also called arbitrary failure
(sometimes known as malicious when the failure is intentional). Let us notice that crash failures
(which are an unexpected definitive halt) are a proper subset of Byzantine failures.

A simple example of a Byzantine failure is the the following: while it is assumed to send the
same value to all processes, a process sends different values to different subsets of processes,
and no value at all to other processes. This is a typical Byzantine behavior. Moreover, Byzantine
processes can collude to foil the processes that are not Byzantine.

From a terminology point of view, let us consider an execution F (an execution is also called a
run). The processes that commit failures are said to be faulty in E. The other processes are said to
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be correct or non-faulty in E. It is not known in advance if a given process is correct or faulty, this is
specific to each execution.

Given a process failure model, the model parameter ¢ is used to denote the maximal number of
processes that can be faulty in an execution.

Channel failure model Thanks to error-detecting/correcting codes, corrupted messages can be cor-
rected, and received correctly. If a corrupted message cannot be corrected, it can be discarded, and
then appears as a lost message. This means that, in practice, the important channel failure is the pos-
sibility to lose messages. These notions will be investigated in depth in Chapter 3, under the name
fair channel assumption. Intuitively, fair channels experiences uncontrolled transient periods during
which messages are lost.

Solving a problem A problem is defined by a set of properties (see examples in the two next sec-
tions). One of these properties (usually called liveness or termination) states that “something happens”,
i.e., a result is computed. The other properties are safety properties (according to what they state, they
are called validity, agreement, integrity, etc.). The safety properties state that “nothing bad happens”,
consequently they describe properties that must never be violated (invariants). The decomposition of
the definition of a problem into several properties facilitates both its understanding (as a problem) and
the correctness proof of the algorithms that claim to solve it.

An algorithm solves a problem in a given computing model M if, assuming the inputs are correct,
there is a proof showing that any run of the algorithm in M satisfies all the properties defining the
problem. (Observe that an algorithm designed for a model M is not required to work when executed
in a model M’ which does not satisfy the requirements of M)

1.2 Example 1: Common Decision Despite Message Losses

This section and the next one present two simple distributed computing problems in systems where no
process is faulty, but messages can be lost. Their aim is to make the readers familiar with basic issues
of fault-tolerant distributed computing, and, given a distributed computing model, help them to have
a first intuition of what can be done in this model, and what cannot be done. Let us remember that a
model defines an abstraction level. It has to be accurate enough to capture the important phenomena
that do really occur, and abstract enough to allow reasoning on the runs of the algorithms executed on
top of it.

1.2.1 The Problem

This problem concerns an irrevocable decision-making by two processes. It seems to have its origin
in the design of communication protocols, as presented by E.A. Akkoyunlu, E. Ekanadham, and R.V.
Huber (1975). It then appeared in databases, where it was formalized by J. Gray (1978) under the
name The two generals problem (there are variants of this problem, e.g., in synchronous systems).

A metaphor The name of the problem comes from the following analogy. Let us consider two
hilltops T'1 and T'2 separated by a valley V. There are two armies A and B. The army A is composed
of two divisions A1 and A2, each with a general, the general-in-chief being located in division A1l.
Moreover, A1 is camping on 7'1, while A2 is camping on 7'2. Army B is in between, camping in the
valley V. The only way Al and A2 can communicate is by sending messengers who need to traverse
the valley V. But messengers can be captured by army B, and never arrive. It is nevertheless assumed
that not all messengers sent by Al and A2 can be captured.
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The generals of army A previously agreed on two possible battle plans bp1 and bp2, but, according
to his analysis of the situation, it is up to the general-in-chief to decide which plan must be adopted.
To this end, the general-in-chief must communicate his decision to the general of A2 so that they both
adopt the same battle plan (and win).

The problem consists in designing a distributed algorithm (a sequence of message exchanges ini-
tiated by the general-in-chief in A1), at the end of which (a) A2 knows the battle plan selected by A1,
and (b) both A1 and A2 know they no longer have to send or receive messages.

System model Let p; and p2 be two processes representing A1 and A2, respectively, connected by
a bi-directional asynchronous channel controlled by the army B. The processes are assumed to never
fail. While no message can be modified (corrupted), the channel is asynchronous and unreliable in the
sense that messages can be lost (a message loss represents a messenger captured by army B). It is
nevertheless assumed that not all messages sent by p; to p2 (and by p2 to p;) can be lost (otherwise,
there is a possible run in which the processes could not communicate, making the problem impossible
to solve). As mentioned previously, a channel can experience unexpected transient periods during
which messages are lost.

Formalizing the problem As the general-in-chief of army A is in Al, process p; activates the
sequence of message exchanges by sending the message DECIDE (bp) to pa, where bp is the number of
the chosen battle plan.

For i € {1,2}, let done; be a local variable of p; initialized to no (for the corresponding process,
no decision has been made). Hence, representing a global state by the pair (done;, dones), the initial
global state is the pair (no, no). At the end of its execution, the distributed algorithm must stop in
the global state (yes, yes). When done; = yes, process p; knows (a) that each process knows the
selected battle plan, and (b) there is no need for messages to be exchanged, namely each process
terminates its local algorithm (see Fig. 1.4). This is captured by the following properties:

e Validity. A final global state cannot contain both yes and no.

e Liveness. If p; activates the algorithm, it eventually and permanently enters the local state
done; = yes.

The validity property states which are the correct outputs of the algorithm: in no case p; and po are
allowed to disagree. The liveness property states that, if p; starts the algorithm, it must eventually

progress. (Let us notice that, it then follows from the validity property that both processes must
progress.)

) doneq + yes
1 First message sent S J
1 AN
y N

p1

done| = no the algorithm
Initially: messages exchange between p; and p, .

dones = no has terminated

P2
-
-
-
P
-

doney <+ yes

Figure 1.4: Algorithm structure of a common decision-making process
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A practical instance of the problem Let us consider two processes p; and pp communicating
through an unreliable fair channel. Let us assume that, after some time, they want to close their
working session; this disconnection being initiated by p;. Hence, in the previous parlance, they are
both in the local state done; = no, and they have to progress to the global state (yes, yes).

As the reader can see, the closing session problem is nothing other than an instance of the previous
“common decision-making in the presence of message losses” problem.

1.2.2 Trying to Solve the Problem: Attempt 1

Starting with p;  Let us try to design an algorithm for p;. As messages (but not all) sent by p; to p2
can be lost, a simple idea is to require p; to repeatedly send a message denoted DECIDE(bp) to p until
it has received an acknowledgment (bp is the — dynamically defined by p; — number of the selected
battle plan):

doney < no;

bp < selected battle plan € {1,2};

repeat send DECIDE(bp) to py until ACK(DECIDE) received from p, end repeat;
done; < yes.

Continuing with p»  While in the state dones = no, py receives the message DECIDE(bp), it sends
back to p; the acknowledgment message ACK(DECIDE), but this acknowledgment message can be lost.
Hence ps must resend ACK(DECIDE) until it knows a copy of it has been received by p;. Consequently,
the local algorithm of p; must be enriched with a statement sending an acknowledgment message back
to po that we denote ACK*(DECIDE). We then obtain the following local algorithms for py:

dones < no;

wait(message DECIDE(bp) from p1);

repeat send ACK(DECIDE) to p; until ACK*(DECIDE) received from p; end repeat;
doney «+— yes.

Returning to p;  As p; is required to send the message ACK?(DECIDE) to p», and this message must
be received by pa, p1 needs to resend it until it knows that a copy of it has been received by ps. As we
have seen, the only way for p; to know if py received ACK?(DECIDE) is to receive an acknowledgment
message ACK>(DECIDE) from py. We then have the following enriched algorithm for p :

doney < no;

bp < selected battle plan number € {1,2};

repeat send DECIDE(bp) to ps until ACK(DECIDE) received from p; end repeat;
repeat send ACK?(DECIDE) to p until ACK?(DECIDE) received from ps end repeat;
doney + yes.

And so on forever As the reader can see, this approach does not work. An infinity of distinct
acknowledgment messages is needed, each acknowledging the previous one.

1.2.3 Trying to Solve the Problem: Attempt 2

Trying to modify both local algorithms In order to prevent the sending of an infinite sequence of
different acknowledgment messages, let us consider the same algorithm as before for p;, namely, p;
sends DECIDE(bp) until it knows that ps has received it. When this occurs, p; knows that “py knows
the number of the decided battle plan”, and p; terminates this local algorithm:
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donej < no;

bp < selected battle plan € {1,2};

repeat send DECIDE(bp) to p2 until ACK(DECIDE) received from p, end repeat;
done; < yes.

Let us now modify the algorithm of py according to the previous modification of p;:

dones < no;

wait(message DECIDE(bp) from p1);

repeat send ACK(DECIDE) to p; each time DECIDE(bp) received from p; end repeat;
doney +— yes.

When it receives a copy of the message DECIDE(bp), pa knows that “both p; and py know the number
of the battle plan”, but it cannot be allowed to proceed to the local state dones = yes. This is because,
as p1 needs to know that “both p; and py know the number of the battle plan”, ps needs to send an
acknowledgment ACK(DECIDE) each time it receives a copy of the message DECIDE(bp). As not all
messages are lost, this ensures that p; will know that “both p; and py know the battle plan™ despite
message losses. Even if p; sends a finite number of copies of DECIDE(bp), and none of them are lost,
the “repeat” statement inside py cannot be bounded. This is because p2 can never know how many
copies of the message DECIDE(bp) it will receive. Due to the fact that not all messages are lost, it
knows only that this number is finite, but never knows its value. This depends on the channel, and the
behavior of the channel is not under the control of the processes. Hence, this tentative version does
not ensure that both processes terminate their algorithm.

Which raises the fundamental question: is there another approach that can successfully solve the
problem, or is the problem unsolvable?

A sequence of messages instead of a common decision Before answering the question, let us
consider a similar problem, in which p; wants to send to po an infinite sequence of messages mj,
ma, ..., Mg, ... (€ach message m,, carrying its sequence number z). In this case, starting from = = 1,
process p; repeatedly sends m, to po, until it receives an acknowledgment message ACK(z) from po.
When it receives such a message, p; proceeds to the message mg 1.

This algorithm is well-known in communication protocols, where, in addition, the acknowledg-
ments from p to p; are actually replaced by a sequence of messages m/, mj, ..., m., ... that p» wants
to send to p;. As we can see, in addition to carrying its own data value, the message m/, acts as an
acknowledgment message ACK(z) (and m,1 acts as an acknowledgment message for m,).

1.2.4 An Impossibility Result

While it is possible to design a simple algorithm transmitting an infinite sequence of messages on top
of a channel which can experience transient message losses (an unreliable fair channel), it appears that
it is impossible to design an algorithm ensuring common decision-making on top of such an unreliable
channel.

Theorem 1. There is no algorithm solving the common decision-making problem between two pro-
cesses, if the underlying communication channel is prone to arbitrary message losses.

Proof Let us first observe that any algorithm solving the problem is equivalent to an algorithm A in
which p; and p2 execute successive phases of message exchanges, where, in each phase, a process
sends a message to the other process.

The proof is by contradiction. Let us assume that there are phase-based algorithms that solve the
problem, and, among them, let us consider the algorithm A that uses the fewest communication phases.
As A terminates, there is a last phase during which a message is sent. Without loss of generality, let
us assume this message m is sent by p;. Moreover, assume m is not lost.
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o The last statement executed by p; cannot depend on whether or not m is received by ps. This is
because, as m is the last message sent, the fact that it has been lost or received by py cannot be
known by p;. Hence, the last statement executed by p; cannot depend on m.

e Similarly, the last statement executed by ps cannot depend on m. This is because, as m could
be lost and this is not known by p1, the last statement of p; must be as if m was lost, and cannot
consequently depend on m.

As the last statements of both p; and py cannot depend on m, this message is useless. Hence, we
obtain a terminating execution in which one less message is sent. This execution can be produced by
an algorithm A’ which is the same as A without the sending of the message m. Hence, A’ contradicts
the fact that A solves the problem with the fewest number of communication phases. O7heorem 1

The notion of indistinguishability Considering the tentative algorithm outlined in Section 1.2.2, let
us assume that no messages are lost (but remember that neither p; nor ps can know this). Even in such
a run, the tentative algorithm never terminates.

As the reader can check, the difficulty for a process is its inability to distinguish what actually
happened (in this case no message loss) from what could have happened (message losses). Designing
distributed algorithms able to cope with this type of uncertainty is one of the main difficulties of
distributed computing in the presence communication failures.

1.2.5 A Coordination Problem

Let us consider the following coordination problem. Two processes are connected by a bidirectional
communication channel. As previously, the processes are assumed not to fail, but the channel is prone
to transient failures during which messages are lost. Each process can execute two actions, AC'1 and
AC2, which both processes know in advance.

The problem consists in designing a distributed algorithm satisfying the following properties:

o Integrity. Each process executes at most one action.
o Agreement. The processes do not execute different actions.

e Liveness. Each process executes at least one action.

Integrity prevents a process from executing both actions. Combined with liveness, it follows that each
process executes exactly one action.

Integrity and agreement are safety properties: they state what must never be violated by an al-
gorithm solving the problem. Let us observe that the safety properties are trivially satisfied by an
algorithm doing nothing. Hence, the necessity of the liveness property which states that the algorithm
must force the processes to progress.

Despite the fact that both processes never fail, this problem is impossible to solve. Its impossibility
proof is Exercise 2 (see Section 1.8).

1.3 Example 2:
Computing a Global Function Despite a Message Adversary

1.3.1 The Problem

Let us assume that each process p; has an input ¢n;, initially known only by the process. Moreover, it
is assumed that each process knows n, the total number of processes. Each process p; must compute
its own output out; such that out; = f;(iny,...,in,). According to what must be computed, the
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IN = [inq, ...,inp] OUT = [outy, ..., outp]
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Figure 1.5: A simple distributed computing framework

functions f;() can be the same function or different functions. A structural view is illustrated in
Fig. 1.5.

The important point here is that we consider a distributed system context. The fact that there
are n processes is not a design choice but a fact imposed on the designer of the algorithm: there
are nm computing entities, geographically distributed. (As a simple example, suppose that each p;
is a temperature sensor, and some sensors must compute the highest temperature, other sensors the
lowest temperature, and the rest of the sensors the average temperature.) The case n = 1 is a very
particular case for which the problem boils down to the writing of a sequential algorithm computing
outy = f1(iny).

In the distributed parlance, such a problem is sometimes called a distributed task, defined by a
relation T'() associating a set of possible output vectors T(IN) with each possible input vector IN,
namely, OUT € T(IN).

Defining the problem with properties Given a set of functions f;(), let in; be the input of p;. Any
algorithm solving the problem must satisfy the following properties:

e Validity. If process p; returns out;, then out; = f;(inq,...,iny,).
e Liveness. Each process p; returns a result out;.

As previously explained, the validity property states that, if a process returns a result, this result is
correct, while the liveness property states that the computation terminates.

1.3.2 The Notion of a Message Adversary

Reliable synchronous model Let SMP,[0] be the synchronous message-passing system model in
which no process is faulty, each process p; has a set of neighbors (neighbor;), and the communication
graph is connected (there is a path from any process to any other process). In this model the processes
execute a sequence of rounds, and each round r comprises three phases that follow the pattern “send;
receive; compute’:

e First each process sends a message to its neighbors.
e Then, each process waits for the messages that have been sent to it during the current round.

e Finally, according to its current local state and the messages it received during the current round,
each process computes its new local state.
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As already indicated, the fundamental property of this model is its synchrony: each message is
received in the round in which it was sent. Moreover, the progress from a round r to the next round
r + 1 is automatic, i.e., it is not under the control of the processes, but provided to them for free by
the model. From an operational point of view, there is a global round variable R that any process can
read, and whose progress is managed by the system (see left part of Fig. 1.3).

The notion of a message adversary A message adversary is a daemon that, at every round, is
allowed to suppress a subset of channels (i.e., it withdraws and discards the messages sent on these
channels).

To put it differently, the message adversary defines the actual communication graph associated
with every round. Let G(r) be the undirected communication graph associated with round r by the
adversary. This means that, at any round r, the message adversary is allowed to drop the messages
sent on any channel that does not belong to G(r). Hence, from the point of view of the processes
these messages are lost. Given any pair of distinct rounds r and v/, G(r) and G(r’) are not necessarily
related one to the other. Moreover, the adversary is not prevented from being “omniscient”, namely
it can define dynamically the graphs G(1), ..., G(r), G(r + 1), etc. For example, nothing prevents it
from knowing the local states of the processes at the end of a round r, and using this information to
define G(r + 1). Finally, Vr, no process ever knows G(7). Given an unconstrained message adversary
AD, and a system involving four processes, an example of three possible consecutive communication
graphs is depicted in Fig. 1.6.

Oo—0

G G(2) G(@3)
Figure 1.6: Examples of graphs produced by a message adversary

If the message adversary can suppress all messages at every round, no non-trivial problem can
be solved, whatever the individual computational power of each process. At the other extreme if,
at any round, the message adversary cannot suppress messages, it has no power (we have then the
reliable synchronous model SMP,,[()]). Hence, the question: How can we restrict the power of a
message adversary, so that, while it can suppress plenty of messages, it cannot prevent each process
from learning the inputs of the other processes? As we are about to see, the answer to this question is
a matter of graph connectivity, every round being taken individually.

The reliable synchronous model SMP,,[(], weakened by an adversary AD, is denoted SMP,,[AD].

1.3.3 The TREE-AD Message Adversary

The TREE-AD message adversary At every round, this message adversary can suppress the mes-
sages on all the channels, except on the channels defining a spanning tree involving all the processes.
As an example, when considering Fig. 1.6, which involves four processes, G(1) and G(3) define span-
ning trees including all the processes, while G(2) does not (it includes two disconnected spanning
trees, one involving three processes, the other one being a singleton tree).

A TREE-AD-tolerant algorithm Fig. 1.7 describes an algorithm that works in the weakened syn-
chronous model SMP,,[TREE-AD]. Each process p; has an input in; known only by itself, and man-
ages an array known;[1..n], initialized to [ L, ..., L], such that known;[j] will contain the input value
of pj.
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Let us assume that 1 < 4n; for any j € {1, n} (this is only to simplify the writing of the algo-
rithm). The operation “broadcast MSG-TYPE(val)” issued by p;, where MSG-TYPE is a message type
and val the data carried by the message, is a simple macro-operation for “for each k € neighbors; do
send MSG-TYPE(val) to pj, end for”. Let us remember that R is the model-provided round generator,
which automatically ensures the progress of the computation.

(1)  known; < [L, ..., L]; known;[i] < ing;
(2) whenR=1,2, ..,(n—1)do
(3) begin synchronous round

“) broadcast KNOWN(known;);

Q) for each j € 1..n such that KNOWN(known;) received from p; do

(6) for each k € {1,...,n} do known;[k] < max(known;[k], known,[k]) end for
(7) end for

(8) end synchronous round;
9)  out; + fi(known;); return(out;).

Figure 1.7: Distributed computation in SMP,,[TREE-AD] (code for p;)

A process p; first initializes known;[1..n] (line 1). Then, simultaneously with all processes, it
enters a sequence of synchronous rounds (lines 2-8), at the end of which it will know the input values
of all the processes, and consequently will be able to return its local result (line 9).

As already stated, the global variable R is provided by the synchronous model, and each message
is either suppressed by the message adversary or received in the round in which it was sent. During
around, a process p; first sends its current knowledge on the process inputs to its neighbors, which is
currently saved in its local array known; (line 4). Then it updates its local array known; according
to what it learns from the messages it receives during the current round (lines 5-7). The sequence of
rounds is made up of (n — 1) rounds.

Theorem 2. Each process p; returns a result out; (liveness), and this result is equal to f;(inq, ...,in,)
(validity).

Proof Let us first prove the liveness property. This is a direct consequence of the synchrony as-
sumption. The fact that the current round number R progresses from 1 to n is ensured by the model
(together with the property that a message that is not suppressed by the message adversary is received
in the same round by its destination process).

As far as the validity property is concerned, let us consider the input value in; of a process p;.
At the beginning of any round r, let us partition the processes into two sets: the set they_know;
which contains all the processes that know in;, and the set they_do_not_know; which contains the
processes that do not know in;. Initially (beginning of round R = 1), we have they_know; = {i},
and they_do_not_know; = {1, ...,n} \ they_know;.

they_know; they_do_not_know;

Figure 1.8: The property limiting the power of a TREE-AD message adversary
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Due to the fact that, at every round r, there is a spanning tree on which the message adversary does
not suppress the messages, this tree includes a channel connecting a process belonging to they_know;
to a process belonging to they_do_not_know; (Fig. 1.8). It follows that, if [they_know;| < n, there
is at least one process pj, that moves from the set they_do_not_know; to the set they_know; during
round r. (“p, knows in;” means knowny[i] = in;.) As there are (n — 1) rounds, it follows that, by
the end of the last round, we have |they_know;| = n. As this is true for any process p;, it follows
that any process p; is such that in; is known by all processes by the end of the round (n — 1), which
concludes the proof of the theorem. OT heorem 2

Cost of the algorithm For the time complexity, assuming each round costs one time unit, the algo-
rithm requires (n — 1) time units.

Let d the number of bits needed to represent any process input or L. (Note that d does not depend
on the algorithm, but on the application that uses it.) Each message requires nd bits. Moreover, as
there are (n — 1) rounds, and (assuming a process does not send a message to itself) the number
of messages per round is upper bounded by (n — 1)n, which means that the bit complexity of the
algorithm is upper bounded by n3d bits.

On the meaning of the TREE-AD message adversary It is easy to see that, if, at any round,
the adversary can partition the set of n processes into two sets that can never communicate, as out;
depends on all the inputs, no process p; can compute its output. In this sense, TREE-AD states that the
system is never partitioned by messages losses that would prevent a process from learning the inputs
of the other processes.

It is possible to define a “stronger” adversary than TREE-AD, denoted TREE-AD®, which allows
the problem to be solved. “Stronger” means a message adversary that, at some rounds, can disconnect
the processes, and hence discard more messages than TREE-AD. Let ¢ > n — 1 be a constant known
by each process, and let us modify line 2 of the algorithm in Fig. 1.7 so that now each process executes
crounds. TREE-AD¢ is defined by the following constraint:

[{r: 1 <r <c¢: G(r)contains a spanning tree }| > n — 1.

TREE-AD® allows ¢ — (n — 1) rounds where the subsets of processes are disconnected. It is easy to
see that the previous proof is still valid: eliminating a set of ¢ — (n — 1) rounds r including all the
rounds in which G(r) does not contain a spanning tree, we obtain an execution that could have been
produced by the algorithm in Fig. 1.7. As this is obtained by the same algorithm at the price of more
rounds, this exhibits a compromise between “the power of the message adversary” and “the number
of rounds that have to be executed”.

1.3.4 From Message Adversary to Process Mobility

In a very interesting way, the notion of a message adversary allows the capture of the mobility of pro-
cesses in the reliable round-based synchronous system model SMP,[0]. The movement of a process
from a location L1 to a location L2 translates as the suppression of some channels and the creation of
new channels when the system progresses from one round to the next.

As an example, let us consider Fig. 1.9. There are six processes, and the first three rounds are
represented. For r = 1,2, 3, G(r) describes the communication graph during round r. The move of a
process is indicated by a dashed red arrow.

After it has processed the message it received during round » = 1, the movement of ps entails
the suppression of the channel linking p3 to po, and the creation of a new channel linking p3 to p4.
We then obtain the communication graph G/(2). Then, the simultaneous motion of ps and ps connects
them to p3, without disconnecting them, which produces G(3).



1.4. Main Distributed Computing Models Used in This Book

2 P4 2 b . by
¢ P o/. / P o/.
.7 1 1

p1 - -

3 D3 p3
. 2 ///7

! P5 Pe
6 Po
G(1) G(2) G(3)

Figure 1.9: Process mobility can be captured by a message adversary in synchronous systems

1.4 Main Distributed Computing Models Used in This Book

Let us remember that 7 denotes the total number of processes, and ¢ is an upper bound on the number
of processes that can be faulty. In all cases it will be assumed that processing times are negligible
with respect to message transfer delays; they are consequently considered as having a zero duration.
Moreover, in the models defined in this section, the underlying communication network is assumed to
be fully connected (the associated communication graph is a clique).

According to the process failure model and the synchrony/asynchrony model, we have four main
distributed computing models, denoted as depicted in Table 1.1 (C stands for crash, B stands for
Byzantine, and MP stands for full graph message-passing). [()] means there are neither additional
assumptions enriching the model, nor restrictions weakening it. Given a specific model, additional
assumptions allow for the definition of stronger models, while restrictions allow for the definition of
weaker models.

‘ H Crash failure model ‘ Byzantine failure model ‘
CAMP,, +[0] BAMP,, ,[0)]

Asynchronous model
Synchronous model

Table 1.1: Four classic fault-prone distributed computing models

Let us observe that, in these four basic models, the underlying network is reliable; hence, the main
difficulty in solving a problem in any of them will come from the net effect of the synchrony/asyn-
chrony of the network and the process failure model.

To summarize the reading of a model definition:

e The first letter states the process failure model (crash vs Byzantine).

e The second letter states the timing model (synchronous or asynchronous).

e The processes send and receive messages on a reliable complete communication graph.

e [(] means that this is the basic model considered. There are no other assumptions, and hence ¢

can be any value in [1..(n — 1)]) (it is always assumed that at least one process does not crash).

Variants of the four previous basic models will be introduced in some chapters to address specific
issues related to fault-tolerance. These variants concern two dimensions:

e Enriched model. As an example, the model CAMP,, ;[t < n/2] is the model CAMP,, ;]
enriched with the assumption ¢ < n/2, which means that there is always a majority of correct
processes. Hence, CAMP,, 4[t < n/2] is a stronger model than CAMP,, ;[(], where “stronger”
means “more constrained in the sense it provides us with more assumptions”.
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e Weakened Model. As an example, the model CAMP,, ;|- FC] is the model CAMP,, ;[()] weak-
ened by the assumption FC (with states that the communication channels are no longer reliable
but are only fair, see Chap. 3). A weakening assumption is prefixed by the sign “-” (to stress the
fact the fact it weakens the model to which it is applied).

e Model with both enrichment and weakening. As an example, the model CAMP,, ;- FC, t <

n/2] is the model CAMP,, ;[)] weakened by fair channels, and enriched by the assumption there
is always a majority of correct processes.

Failure detectors (such as the one introduced in Chap. 3) are a classic way to enrich a system.
A failure detector is an oracle that provides each process with additional computability power.
As an example, CAMP,, ;[- FC,FD1,FD2]| denotes the model CAMP,, ;[)] weakened by fair
channels, and enriched with the computability power provided by the failure detectors of the
classes FD1 and FD2.

All these notions will be explicited in Chap. 3, where they will be used for the first time.

1.5 Distributed Computing Versus Parallel Computing

r——s 70 ———> = /(@)

Figure 1.10: Sequential or parallel computing

Parallel computing When considering Fig. 1.10, a function f(), and an input parameter z, parallel
computing addresses concepts, methods, and strategies which allow us to benefit from parallelism (si-
multaneous execution of distinct threads or processes) when one has to implement f(z). The essence
of parallel computing lies in the decomposition of the computation of f(x) in independent computa-
tion units and exploit their independence to execute as many of them as possible in parallel (simulta-
neously) so that the resulting execution is time-efficient. Hence, the aim of parallelism is to produce
efficient computations. This is a non-trivial activity which (among other issues) involves special-
ized programming languages, specific compilation-time program analysis, and appropriate run-time
scheduling techniques.

Distributed computing As we have seen, the essence of distributed computing is different. It is
on the coordination in the presence of “adversaries” (globally called environment) such as asyn-
chrony, failures, locality, mobility, heterogeneity, limited bandwidth, restricted energy, etc. From the
local point of view of each computing entity, these adversaries create uncertainty generating non-
determinism, which (when possible) has to be solved by an appropriate algorithm.

A synoptic view In a few words, parallel computing focuses on the decomposition of a problem
in independent parts (to benefit from the existence of many processors), while distributed computing
focuses on the cooperation of pre-existing imposed entities (in a given environment). Parallel comput-
ing is an extension of sequential computing in the sense any problem that can be solved by a parallel
algorithm can be solved — generally very inefficiently — by a sequential algorithm. Differently, as we
will see in the rest of this book, there are many distributed computing problems (distributed tasks) that
have neither a counterpart, nor a meaning, in parallel (or sequential) computing.
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1.6 Summary

A first aim of this chapter was to introduce basic definitions related to distributed computing, and
associated notions such as timing models (synchrony/asynchrony) and failure models. A second aim
was to introduce a few important notions associated with fault-tolerant distributed computing, such
as an impossibility result, and a non-trivial problem (computation of a distributed function) in the
presence of channels experiencing transient message losses.

An important point of distributed computing lies in the fact that the computing entities and their
inputs are distributed. This attribute, which is imposed on the algorithm designer, directs the processes
to coordinate in one way or another, according to the problem they have to solve. It is fundamental to
note that this feature makes distributed computing and parallel computing different. In parallel com-
puting, the inputs are initially centralized, and it is up to the algorithm designer to make the inputs
as independent as possible so that they can be processed “in parallel” to obtain efficient executions.
Whereas in many distributed computing problems, the inputs are inherently distributed (see Fig. 1.5).
It follows that the heart of distributed computing consists in mastering of the uncertainty created by
the environment, which is defined by the distribution of the computing entities, asynchrony, process
failures, communication failures, mobility, non-determinism, etc. (everything that can affect the com-
putation and is not under its control).

1.7 Bibliographic Notes

e There are many books on message-passing distributed computing in the presence of failures
(e.g., [43, 88, 250, 271, 366, 367]). Whereas [368] is an introductory book addressing basic
distributed computing problems encountered in failure-free synchronous and asynchronous dis-
tributed systems (e.g., mutual exclusion, global state computation, termination and deadlock
detection, logical clocks, scalar and vector time, distributed checkpointing and distributed prop-
erties detection, graph algorithms, etc.).

e Both the notion of a sequential process and the notion of concurrent computing were introduced
by E.W. Dijkstra in his seminal papers [129, 130].

e A recent (practical) introduction to distributed systems can be found in [402]. An introduction
to the notion of a system model, and its relevance, appeared in [389].

e The representation of a distributed execution as a partial order on a set of events is due to L.
Lamport [255].

e The notion of a Byzantine failure was introduced in the early 1980s, in the context of syn-
chronous systems [263, 342].

e The common decision-making problem seems to have been first introduced by E. A. Akkoyunlu,
E. Ekanadham K., and R.V. Huber in [26]. It was addressed in the late 1970s by J. Gray in
the context of databases [192]. The effect of message losses on the termination of distributed
algorithms is addressed in [248].

e A choice coordination problem, where the processes are anonymous and must collectively select
one among k& > 2 possible alternatives, was introduced by M. Rabin in [353]. As they are
anonymous, all processes have the same code. Moreover, a given alternative A (possible choice)
can have the name alt; at p; and the name alt; # alt; at another process p;. To break symmetry
and cope with non-determinism, the proposed solution is a randomized algorithm. A simple and
pleasant presentation of this algorithm can be found in [405].

o The readers interested in impossibility results in distributed computing should consult the mono-
graph [39].

e The notions of safety and liveness were made explicit and formalized by L. Lamport in [254].
Liveness is also discussed in [28].



Chapter 1. A Few Definitions and Two Introductory Examples 19

1.8

The impossibility proof of the common decision-making problem is from [389], where the coor-
dination problem introduced in Section 1.2.5 is also presented. The most famous impossibility
result of distributed computing concerns the consensus problem in the context of asynchronous
systems prone to (even) a single process crash [162]. This impossibility will be studied in Part
IV of the book.

The computation of a global function whose inputs are distributed is a basic problem of dis-
tributed computing. Its formalization (under the name distributed task) and its investigation in
the presence of one process crash was addressed for the first time in [65, 296]. Since then, this
problem has received a lot of attention (see e.g., [217]).

The notion of a message adversary was introduced in the context of synchronous systems by N.
Santoro and P. Widmayer (in the late eighties) under the name “mobile fault” [385]. It has since
received a lot of attention (see e.g., [376, 386, 387]).

The TREE-AD message adversary is from [251]. This paper considers the problem in a more
involved context where n is not known by the processes.

The connection between message adversaries and dynamic synchronous systems (where “dy-
namic” refers to the motion of processes) is from [251]. An introduction of graphs (called time-
varying graphs) able to capture dynamic networks is presented in [100]. This graph formalism
is particularly well-suited to these types of network. A survey on dynamic network models is
presented in [252]. Theoretical foundations of dynamic networks are represented in [44].

In several places in this chapter (and also in the book) we used the terms “process p; learns” or
“process p; knows that ...”. These notions have been formalized since the late eighties, as shown
in [103, 208, 298]. The corresponding knowledge theory is pretty powerful for explaining and
understanding distributed computing [152, 297].

This book does not address robot-oriented distributed computing. Interested readers should
consult [163, 164, 349].

The interested reader will find a synoptic view of distributed computing versus parallel comput-
ing in [371].

Exercises and Problems

. Show that the common decision-making problem cannot be solved even if the system is syn-

chronous (there is a bound on message transfer delays, and this bound is known by the processes:
the system model is SMP,,[()] weakened by message losses).

. Prove that the two-process coordination problem stated in Section 1.2.5 is impossible to solve.

. Let us consider the following message adversary TREE-AD(x), where x > 1 is an integer con-

stant initially known by the processes. TREE-AD(z) is TREE-AD with an additional constraint
limiting its power. Let us remember that G(r) denotes the communication graph on which the
message adversary does not suppress messages during round 7.

TREE-AD(z) is such that, for any v, G(r) N G(r + 1)--- N G(r + = — 1) contains the same
spanning tree. This means that any sequence of = consecutive communication graphs defined by
the adversary contains the same spanning tree. It is easy to see that TREE-AD(1) is TREE-AD.
Moreover, TREE-AD(n — 1) states that the same communication spanning tree (not known by
the processes) exists during the whole computation (made up of (n — 1) rounds).

Does the replacement of the message adversary TREE-AD by the message adversary TREE-
AD(z) allow the design of a more efficient algorithm?

Solution in [251].



20

1.8. Exercises and Problems

4. Is it possible to modify the algorithm in Fig. 1.7 so that no process needs to know n?

Solution in [251].



Part I1

The Reliable Broadcast
Communication Abstraction

This part of the book is devoted to the implementation of reliable broadcast abstractions on top of
asynchronous message-passing systems prone to failures. Each of these abstractions is defined by a
set of properties, and any algorithm (that claims to implement it) must satisfy these propertiers. This
abstraction-oriented approach allows us to (a) know when these broadcast abstractions can be imple-
mented and when they cannot, and (b) reason on the algorithms that use them, in a precise way. This
part of the book is composed of three chapters:

e Chapter 2 defines the reliable broadcast communication abstraction, and presents algorithms
implementing it in the presence of process crash failures (system model CAMP,, +[()]). These
algorithms differ in the abstraction level they implement, namely in the additional quality of
service (basic, FIFO, and causal order) they provide.

e Chapter 3 extends the results of the previous chapter, namely, it considers that channels may lose
messages. To this end, it introduces the notion of a fair channel and the notion of an unreliable
channel.

e Chapter 4 considers the case where some processes (not known in advance) can commit Byzan-
tine failures (model BAMP,, ;[(}]), and presents algorithms suited to this model.

Let us remember that the model parameter ¢ denotes the maximum number of processes that can
be faulty (crash or Byzantine failures according to the failure model). While, in a crash failure model
with reliable asynchronous channels, a reliable broadcast communication abstraction can be built for
any value of ¢, this is no longer true in a crash failure model with fair asynchronous channels, and in
a Byzantine failure model. Chapter 3 and Chapter 4 present corresponding computability bounds, and
algorithms which are optimal with respect to these bounds.
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Chapter 2 )

Check for
updates

Reliable Broadcast in the Presence of
Process Crash Failures

This chapter focuses on the uniform reliable broadcast (URB) communication abstraction and its
implementation in an asynchronous message-passing system prone to process crashes. This commu-
nication abstraction is central in the design and implementation of fault-tolerant distributed systems,
as many non-trivial fault-tolerant distributed applications require communication with provable guar-
antees on message deliveries.

After defining the URB abstraction, the chapter presents a construction of it in an asynchronous
message passing system prone to process crashes but with reliable channels (i.e., in the system model
CAMP,, +[0]). The chapter then considers two properties (related to the quality of service) that can be
added to URB without requiring enrichment of the system model with additional assumptions. These
properties concern the message delivery order, namely “first in first out” (FIFO) message delivery and
“causal order” (CO) message delivery.

Keywords Asynchronous system, Causal message delivery, Communication abstraction, Distributed
algorithm, Distributed computing model, FIFO message delivery, Message causal past, Process crash
failure, Reliable broadcast, Total order broadcast, Uniform reliable broadcast.

2.1 Uniform Reliable Broadcast

2.1.1 From Best Effort to Guaranteed Reliability

The broadcast operation “broadcast (m)”, introduced in the previous chapter, was a simple macro-
operation which expands in the statement

for each j € {1,...,n} do send m to p; end for.

In the system model CAMP,, ;[()], this operation has bes effort semantics in the following sense.
If the sender p; is correct, a copy of the message m is sent to every process, and, as the channels
are reliable, every process (that has not crashed) receives a copy of the message. As the channels
are asynchronous, these copies can be received at distinct independent time instants. Whereas if the
sender crashes while executing broadcast m, an arbitrary subset of the processes receives the message
m. Hence, in the presence of process crash failures, the specification of “broadcast m” provides no
indication which processes will actually receive the message m. The aim of this section is to introduce
a broadcast operation that provides the processes with stronger message delivery guarantees.
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2.1.2 Uniform Reliable Broadcast (URB-broadcast)

The URB-broadcast communication abstraction provides the processes with two operations, denoted
“URB_broadcast (m)” and “URB_deliver (). The first allows a process p; to send a message m to all
the processes (including itself), while the second one allows a process to deliver a message that has
been broadcast. In order to prevent ambiguities, when a process invokes “URB_broadcast m” we say
that it “urb-broadcasts the message m”, and when it returns from “URB_deliver () we say that it “urb-
delivers a message” (sometimes we also suppress the prefix “URB” when it is clear from the context).
Whereas the primitives “send() to” and “receive()” are used for the messages sent and received at the
underlying network level.

The specification of the URB-broadcast assumes that every message that is broadcast is unique.
This is easy to implement by associating a unique identity with each message m. The identity is
made up of a pair (m.sender, m.seq_nb) where m.sender is the identity of the sender process, and
m.seq_nb is a sequence number locally generated by p,, sender- The sequence numbers associated
with the messages broadcast by a process are the natural integers 1, 2, etc.

Definition The URB-broadcast is defined by the following four properties (as we have seen on page 7
— at the end of Section 1.1 — this means that, to be correct, any URB-broadcast algorithm must satisfy
these properties):

e URB-validity. If a process urb-delivers a message m, then m has been previously urb-broadcast
(by pm4sender)~

e URB-integrity. A process urb-delivers a message m at most once.

e URB-termination-1. If a non-faulty process urb-broadcasts a message m, it urb-delivers the
message m.

e URB-termination-2. If a process urb-delivers a message m, then each non-faulty process urb-
delivers the message m.

The URB-validity property relates an output (here a message that is delivered) with an input (a
message that has been broadcast), i.e., there is neither creation nor alteration of messages. The URB-
integrity property states that there is no message duplication. Taken together, these two properties
define the safety property of URB-broadcast. Let us observe that they are satisfied even if no message
is ever delivered, whatever the messages that have been sent. So, for the specification to be complete,
a liveness property is needed, namely, not all the messages can be lost. This is the aim of the URB-
termination properties: if the process that urb-broadcasts a message is non-faulty, or if at least one
process (be it faulty or non-faulty, this is why the abstraction is called uniform) urb-delivers a message
m, then m is urb-delivered (at least) by the non-faulty processes. (Hence, these termination properties
belong to the family of “all or none/nothing” properties.)

A property on message deliveries It is easy to see from the previous specification that during each
execution (1) the non-faulty processes deliver the same set of messages, (2) this set includes all the
messages broadcast by the non-faulty processes, and (3) each faulty process delivers a subset of the
messages delivered by the non-faulty processes. Let us observe that two distinct faulty processes may
deliver different subsets of messages.

It is important to note that a message m urb-broadcast by a faulty process may or not be urb-
delivered. It is not possible to place a strong requirement on it delivery, which will depend on the
execution.
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Figure 2.1: An example of the uniform reliable broadcast delivery guarantees

A simple example A simple example appears in Fig. 2.1. There are four processes that urb-broadcast
5 messages. Processes p; and py are non-faulty while p3 and p4 crash (shown by the crosses in the
figure). The message deliveries are indicated with vertical top to bottom arrows on the process axes.
Both p; and po urb-deliver the same set of messages M = {mg, ms2, m1,m4}, while each faulty
process delivers a subset of M. Moreover, not only is the message mgs;, urb-broadcast by a faulty
process, never urb-delivered, but the faulty process p3 delivers neither of the messages (1mg; and ms2)
it has urb-broadcast. In addition, the message msa, which is sent by ps3 after mg;, is delivered by the
non-faulty processes, while ms3; is not. This is due to the net effect of asynchrony and process crashes.
It is easy to see that the message deliveries in Fig. 2.1 respect the specification of the uniform reliable
broadcast.

URB is a paradigm The uniform reliable broadcast problem is a paradigm that captures a family
of distributed coordination problems. As an example, “URB_broadcast (m)” and “URB_deliver ()”
can be given the meanings “this is an order” and “I execute it”, respectively. It follows that non-faulty
processes will execute the same set of orders (actions), including all the orders issued by the non-faulty
processes, plus a subset of orders issued by faulty processes.

Let us notice that URB-broadcast is a one-shot problem. The specification applies to each message
that is urb-broadcast separately from the other messages that are urb-broadcast.

Reliable broadcast The reliable broadcast communication abstraction is a weakened form of URB.
It is defined by the same validity and integrity properties (no message loss, corruption or duplication)
and the following weaker termination property:
e Termination. If a non-faulty process (1) urb-broadcasts a message m, or (2) urb-delivers a
message m, then each non-faulty process urb-delivers the message m.

This means that a faulty process can deliver messages not delivered by the non-faulty processes, i.e.,
it is the URB termination property without its uniformity requirement.

Let us observe that the termination property of the reliable broadcast abstraction does not state that
the set of messages urb-delivered by a faulty process must be a subset of the messages urb-delivered
by the non-faulty processes. Hence, reliable broadcast satisfies less properties, and consequently is a
weaker abstraction than uniform reliable broadcast.

In the following we do not consider the reliable broadcast abstraction because it is not useful for
practical applications. As it is not known in advance whether a process will crash or not, it is sensible
to require a process to behave as if it was non-faulty until it possibly crashes.

2.1.3 Building the URB-broadcast Abstraction in CAMP,, ,[0]

There is a very simple construction of the URB-broadcast in the system model CAMP,, ,[(]. This
is due to the fact that the point-to-point communication channels are reliable. The structure of the
corresponding algorithm is given in Fig. 2.2.
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Application layer
URB_broadcast (m) J] [% URB_deliver ()

‘ Middleware
send m to p, J]

je{l,....n} Network layer
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Figure 2.2: URB-broadcast: architectural view

A simple construction The algorithms implementing URB_broadcast (m) and URB_deliver () are
described in Fig. 2.3. On its client side, when a process p; invokes URB_broadcast (m) it sends m to
itself (line 1).

On its server side, when a process p; receives a message, it discards it if it has already received a
copy (line 2). Thanks to the unique identity (m.sender, m.seq_nb) carried by each message m, it is
easy for p; to check if m has already been received. If it is the first time it has received m, p; forwards
it to the other processes, except for itself and the message sender, (line 3), and only then urb-delivers
m to itself at the application layer (line 4).

It is important to observe that the statement associated with the reception of MSG (m) is not
required to be atomic. A process p; can interleave the execution of several such statements.

Notation Let us notice that a tag MSG is added to each message (this tag will be used in the next
sections). A message m is called an application message, while a message carrying a tag defined by
the construction algorithm (e.g., MSG (m)) is called a protocol message.

operation URB_broadcast (m) is
(1) send MSG(m) to p;.

when MSG (m) is received from p;. do

(2) if (first reception of m) then

(3) foreachj € {1,...,n}\ {i,k} dosend MSG (m) to p; end for;
“4) URB_deliver (m) % deliver m to the upper application layer %
(5) endif.

Figure 2.3: Uniform reliable broadcast in CAMP,, ;)] (code for p;)

Theorem 3. The algorithm described in Fig. 2.3 builds the URB-broadcast communication abstraction
in CAMP,,4[0).

Proof The proof of the validity property follows directly from the text of the algorithm that forwards
only messages that have been received. The proof of the integrity property follows directly from the
fact that a message m is delivered only when it is received for the first time.

The termination properties are a direct consequence of the “first forward and then deliver” strategy.
Let us first consider a message m urb-broadcast by a non-faulty process p;. As p; is non-faulty, it
forwards the protocol message MSG (m) to every other process and delivers it to itself. As channels
are reliable, each process will eventually receive a copy of MSG (m) and urb-deliver m (the first time
it receives MSG (m)).

Let us now consider the case where a (faulty or non-faulty) process p; urb-delivers a message m.
Before urb-delivering m, p; forwarded MSG (m) to all, and the same reasoning as before applies,
which completes the proof of the termination properties. Orheorem 3
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2.2 Adding Quality of Service

Uniform reliable broadcast provides guarantees on which messages are delivered to processes. As we
have seen, non-faulty processes urb-deliver the same set of messages M, and each faulty process p;
delivers a subset M; C M.

FIFO and CO message delivery Some applications are easier to design when processes are pro-
vided with stronger guarantees on message delivery. These guarantees concern the order in which
messages are delivered to the upper layer application. We consider here two types of such guaran-
tees: the First In, First Out (FIFO) property, and the Causal Order (CO) property. (A third delivery
property, called Total Order (TO) will be studied in Chap. 16.)

A modular view of the FIFO and CO uniform reliable constructions presented in this section is

given in Fig. 2.4. Each arrow corresponds to a construction: A IL“ B means that Fig.  describes
an algorithm building B on top of a solution to A. It is important to note that these constructions
can be built in any system where the URB-broadcast abstraction can be built. When compared to
URB, neither FIFO-URB nor CO-URB requires additional computability-related assumptions (such
as restrictions on the model on top of which URB is built, or failure detector-like additional objects).

Fig. 2.7 Fig. 2.10
URB £ FIFO-URB £ CO-URB

Fig. 2.12

Figure 2.4: From URB to FIFO-URB and CO-URB in CAMP,, ;[0]

Terminology When it is clear from the context, we sometimes use the terms “FIFO-broadcast” and
“CO-broadcast” instead of “FIFO-URB-broadcast” and “CO-URB-broadcast”, and similarly we also
use the terms “FIFO-delivered” and “CO-delivered” (sometimes abbreviated to “delivered”).

One-shot vs multi-shot problems As we have seen, URB-broadcast is a one-shot problem. It con-
siders each message independently from the other messages. Whereas both FIFO-URB and CO-URB
are not one-shot problems. This is because (as we are about to see) their specifications involve all the
messages that are broadcast on the same channel or on all the channels.

2.2.1 “First In, First Out” (FIFO) Message Delivery

Definition The FIFO-URB abstraction is made up of two operations denoted “FIFO _broadcast m”
and “FIFO_deliver ()”. It is the URB-broadcast abstraction (defined by the validity, integrity and
termination properties stated in Section 2.1.2) enriched with the following additional property:

e FIFO-URB message delivery. If a process fifo-broadcasts a message m and later fifo-broadcasts
a message m’, no process fifo-delivers m’ unless it has previously fifo-delivered m.

This property states that the messages fifo-broadcast by each process (taken separately) are deliv-
ered according to their sending order. There is no delivery constraint placed on messages broadcast
by different processes. It is important to notice that the FIFO-URB delivery property prevents a faulty
process from fifo-delivering m’ while never fifo-delivering m. Given any process p;, a faulty process
fifo-delivers a prefix of the messages fifo-broadcast by p;.
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Figure 2.5: An example of FIFO-URB message delivery

An example A simple example is depicted in Fig. 2.5 where the transfer of each message is explicitly
indicated. Process p; fifo-urb-broadcasts m;1, then mj2, and finally m13. Process p4 fifo-broadcasts
my1 and then my42. The FIFO-URB message delivery property states that m;j; has to be fifo-urb-
delivered before m 9, which in turn has to be fifo-urb-delivered before m;y3. Similarly, with respect
to process p4, no process is allowed to fifo-urb-deliver mys before my4;. In this example, py crashes
before fifo-urb-delivering its own message m.42.

As the FIFO-URB specification imposes no constraint on the messages broadcast by distinct pro-
cesses, we can easily see that the FIFO-URB delivery of the messages from p; and the ones from py
can be interleaved differently at distinct receivers.

A simple construction The construction assumes that the underlying communication layer provides
processes with a uniform reliable broadcast abstraction as depicted in Fig. 2.6.

Application layer

FIFO_broadcast (m Q7 % FIFO_deliver ()
‘ Middleware
URB_broadcast (m) A URB_deliver ()
|
‘ Middleware
send m to p é] % receive
jefl,... f”} Network layer 0

Figure 2.6: FIFO-URB uniform reliable broadcast: architecture view

An easy way to implement the FIFO message delivery property consists in associating an appro-
priate predicate with message delivery. While the predicate remains false, the message remains in the
input buffer of the corresponding process, and is delivered as soon as the predicate becomes true. The
construction for FIFO-URB-broadcast is described in Fig. 2.7.

Each process p; manages two local variables. The set msg_set; (initialized to 0) is used to keep
the messages that have been urb-delivered but not yet FIFO-delivered by p; (lines 7 and 12). The array
next;[1..n] (initialized to [1,...,1] and used at lines 4, 6, and 12) is such that next;[j] denotes the
sequence number of the next message that p; will fifo-deliver from p; (the sequence number of the first
message fifo-broadcast by a process p; is 1, the sequence number of the second message is 2, etc.).

The operation “FIFO_broadcast (m)” consists of a simple invocation of “URB_broadcast (m)”
(line 2). When a message m is urb-delivered by the underlying communication layer, p; deposits it
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operation FIFO_broadcast (m) is
(1) m.sender < i; m.seq-nb < p;’s next seq. number (starting from 1);
(2) URB_broadcast MSG(m).

when MSG(m) is urb-delivered do % m carries its identity (m.sender, m.seq-nb) %
(3) letj = m.sender;

4) if (next;[j] = m.seqnb)

5) then FIFO_deliver (m);

6) next;[j] < next;[j] + 1;

7 while (3m’ € msg_set; : (m/.sender = j) A (next;[j] = m'.seqnb) )
(8) do FIFO_deliver (m’);

) next;[j] < next;[j] + 1;

(10) msg-set; < msg_set; \ {m'}

(11) end while

(12)  else msg-set; < msg-set; U {m}

(13) end if.

Figure 2.7: FIFO-URB message delivery in AS,, ;[0] (code for p;)

in the set msg_set; if m arrives too early with respect to its fifo-delivery order. Otherwise, p; fifo-
delivers m (lines 5-6). After delivering m, p; fifo-delivers the messages from the same sender (if any)
whose sequence numbers agree with the delivery order (lines 7-11). The processing associated with
the urb-delivery of a message m is assumed to be atomic, i.e., a process p; executes one urb-delivery
code at a time.

Theorem 4. The algorithm described in Fig. 2.7 constructs the FIFO-URB-broadcast communication
abstraction in any system in which URB-broadcast can be built.

Proof The proof is an immediate consequence of the properties of the underlying URB-broadcast
abstraction (Theorem 3) and the use of sequence numbers. OTheorem 4

2.2.2 “Causal Order” (CO) Message Delivery

A partial order on messages Let M be the set of messages that are urb-broadcast during an execu-
tion, and M = (M, — ;) be the relation where — ; is defined on M as follows. Given m, m’ € M,
m —; m’ (and we say that “m causally precedes m/”) if:

e m and m/’ are co-broadcast by the same process and m is co-broadcast before m/, or
e m has been co-delivered by a process p; before p; co-broadcasts m’, or

e There is message m” € M such that m —p; m” and m” —p; m’.

Let us notice that, as a message cannot be co-delivered before being co-broadcast, M is a partial order.

Causal message delivery The CO-URB communication abstraction is made up of two operations
denoted “CO_broadcast m” and “CO_deliver ()”. It is URB-broadcast (defined by the validity, in-
tegrity and termination properties stated in Section 2.1.2) enriched with the following additional prop-
erty:
e CO-URB message delivery. If m —j; m/, no process co-delivers m/ unless it has previously
co-delivered m.

FIFO delivery is a weakening of CO delivery applied to each channel. This means that CO delivery
generalizes FIFO delivery to all the messages whose broadcasts are related by the “message happened
before” relation (— ), whatever their senders are.
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An example An example of CO-broadcast is depicted in Fig. 2.8. We have mj; —as my2 and
ma1 —p ma2. As the messages my1 and my; are not “— p,”-related, it follows that every process can
deliver them in any order. Whereas mys has to be delivered at any process after m4; (FIFO order is
included in CO order), and my42 has to be delivered at any process after m;; (because py delivers mi;
before broadcasting m,42). So, despite the fact that p; and py deliver mq; and my; in different order,
these messages delivery orders are correct. The message delivery order is also correct at p3 if my2 is
delivered according to the plain arrow, but it is not if my42 is delivered according to the dashed arrow
(i.e., before m1).

mp
pl I~

L /
TNz,

7 ~ N7
my m4yo T——

Figure 2.8: An example of CO message delivery

The local order property The definition of this property is motivated by Theorem 5, which gives a
characterization of causal order, namely, CO is FIFO + local order:

e Local order. If a process delivers a message m before broadcasting a message m’, no process
delivers m/ unless it has previously delivered m.

Theorem 5. Causal order is equivalent to the combination of FIFO order and local order.

Proof It follows from its very definition that the causal order property implies the FIFO property and
the local order property. Let us show the other direction.

Assuming the FIFO order property and the local order property are satisfied, let m and m’ be two
messages such that m —y; m’, and p be a process that delivers m/. The proof consists in showing that
p delivers m before m/.

As m — )y m/, there is a finite sequence of messages m = mqy, ma, ..., Mp_1, mp = m/,
with & > 2, that have been broadcast by the processes q1, go, . - ., gk, respectively, and are such that,
Ve : 1 < ax <k, we have my; —p; mg4q (this follows from the first or the second item of the CO
delivery definition, i.e., not taking into account the third item on transitivity). For any z such that
1 < z < k we have one of the following cases:

o If ¢ = gz4+1: My and My are broadcast by the same process. It follows from the FIFO order
property that p delivers m,, before mg.1.

e If g, # gu+1: m, and m, are broadcast by different processes, and ¢, delivers m,, before
broadcasting m1. It follows from the local order property that p delivers m,, before m,1.

It follows that when p delivers my = m/, it has previously delivered my_1. Similarly, when it
delivers my,_1, it has previously delivered my_o, etc. until mq = m. It follows that if p delivers n’, it
has previously delivered m. OTheorem 5

Remark Theorem 5 is important, from a proof modularity point of view, when one has to prove
that an algorithm satisfies the CO delivery property. Namely, one only has to show that the algorithm
satisfies both the FIFO property and the local order property. It then follows from Theorem 5 that the
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algorithm satisfies the CO delivery property. We will proceed this way in the proof of Theorem 6. (A
direct proof of the CO delivery property would require a long and tedious induction on the length of
the “message causality chains” defined by the relation “—j;”.)

2.2.3 From FIFO-broadcast to CO-broadcast

A simple CO-broadcast construction from URB-broadcast Before presenting a CO-broadcast
construction based on the FIFO-broadcast abstraction, this paragraph presents a very simple (but very
inefficient) construction of CO-broadcast on top of the URB-broadcast (Fig. 2.9). Given an application
message m, this construction, due to K. Birman and T. Joseph (1987), consists in building a protocol
message that carries m plus a copy of all the messages that causally precede it.

To this end, each process p; manages a local variable, denoted causal_pred;, that contains the
sequence of all the messages m/’ such that m’ —); m, where m is the next message that p; will co-
broadcast. The variable causal_pred; is initialized to the empty sequence (denoted €). The operator
@ denotes the concatenation of a message at the end of causal_pred,;.

operation CO_broadcast (m) is
(1) URB_broadcast MSG (causal_past; & m);
(2) causal_past; < causal_past; & m.

when MSG ((m1, ..., m¢)) is urb-delivered do
(3) for x from 1 to / do

“4) if (m, not yet CO-delivered) then

5) CO_deliver (mgz);

(6) causal_past; < causal_past; & my
7 end if
(8) end for.

Figure 2.9: A simple URB-based CO-broadcast construction in CAMP, +[(] (code for p;)

When a process p; co-broadcasts m (lines 1-2), it urb-broadcasts the protocol message MSG
(causal_past; & m), and then updates causal_past; to causal_past; &m as, from now on, the appli-
cation message m belongs to the causal past of the next application messages that p; will co-broadcast.

When it urb-delivers MSG ({my, ..., my)), p; considers, one after the other (lines 3-8), each ap-
plication message m, of the received sequence. If it has already co-delivered m,, it discards it.
Otherwise, it co-delivers it, and adds it at the end of causal _past; (line 6).

Both the code associated with the urb-delivery of a message and the code associated with the op-
eration CO_broadcast () are assumed to be executed atomically. This construction is highly inefficient
as the size of protocol messages increases forever.

From FIFO-broadcast to CO-broadcast: construction A more efficient FIFO-broadcast-based
construction of CO-broadcast is described in Fig. 2.10. Its underlying principle is based on the
following observation. FIFO-broadcast has a “memory” of the message already delivered between
each pair of processes. This property allows for a resetting of causal_past; (which increases with-
out bound) to the empty sequence of messages (denoted €) when a new message is co-broadcast
by process p; (lines 1-2). Hence, the local variable causal_past; is replaced by a suffix of it, de-
noted im_causal_past;, which contains only the messages that p; co-delivered since its previous co-
broadcast (lines 2 and 6). This construction is due to V. Hadzilacos and S. Toueg (1994).

To illustrate this idea, let us consider Fig. 2.11, where the process p; co-broadcasts two messages,
first m; and then my. Between these two co-broadcasts, p; has co-delivered the messages m, m’
and m”, in this order. Hence, when p; co-broadcasts my, it actually fifo-broadcasts the sequence
(m,m/,m"”, my), thereby indicating that, if not yet co-delivered, the messages m, m’ and m” have
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operation CO_broadcast (m) is
(1) FIFO_broadcast MSG (im_causal_past; & m);
(2) im_causal_past; < e.

when MSG ((m1, ..., my)) is FIFO-delivered do
(3) for x from 1 to £ do
“4) if (m, not yet CO-delivered) then

(5) CO_deliver (mgz);

(6) im_causal _past; < im_causal_past; ® my
(7 end if

(8) end for.

Figure 2.10: From FIFO-URB to CO-URB message delivery in AS,, ¢[0] (code for p;)
to be co-delivered before my. Hence, we have im_causal_past; = (m,m/,m”) just before p; co-

broadcasts ms.

"
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im_causal_past; = (m,m’,m")

Figure 2.11: How the sequence of messages im _causal_past; is built

As before, both the code associated with the FIFO-delivery of a message and the code associated
with the CO-broadcast operation are assumed to be executed atomically.

Let us remember that, due to Theorem 4, it is possible to build a FIFO reliable broadcast abstraction
in any system in which URB can be built. So, the construction of the CO reliable broadcast abstraction
on top of the URB-broadcast abstraction does not require additional computational assumptions.

Remark The processing associated with the FIFO-delivery of a protocol message is “fast” in the
sense that, when a sequence of application messages is fifo-delivered, each application message con-
tained in this sequence is co-delivered (if not yet done). The price that has to be paid to obtain this
delivery efficiency property is that the underlying FIFO-broadcast communication abstraction has to
handle “possibly big” protocol messages, which are unbounded sequences of application messages.
Moreover, the FIFO-broadcast abstraction cannot enjoy this “fast delivery” property (each process has
to manage a local “waiting room” msg_set; in which messages can be momentarily delayed).

Theorem 6. The algorithm described in Fig. 2.10 builds the CO-URB-broadcast communication ab-
straction in any system in which FIFO-URB-broadcast can be built.

Proof Proof of the validity and integrity properties. Let us first observe that, as “CO_broadcast (m)”
is implemented on top of FIFO-broadcast, it directly inherits its validity property (neither creation nor
alteration of protocol messages), and its integrity property (a protocol message is fifo-delivered at most
once). It follows that no application message m can be lost or modified. It is also clear from the test
done before co-delivering an application message that no message can be co-delivered more than once.

Proof of the termination property. When a process co-broadcasts an application message m, it fifo-
broadcasts a protocol message MSG(seq & m). Moreover, when a sequence of application mes-
sages MSG({m1,...,my)) is fifo-delivered, if not yet co-delivered, each application message m.,
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1 <z < /{, is co-delivered without being delayed. Consequently, the co-broadcast algorithm inherits
the termination property of the underlying fifo-broadcast, from which it follows that each application
message that has been co-broadcast is co-delivered.

Proof of the CO-delivery property. We have to prove that, for any two messages m and m’ such
that m —); m’ (as defined in Section 2.2.2), no process co-delivers m/’ unless it has previously co-
delivered m,. This proof is based on three claims.

Claim C1. Let us suppose that a process p; FIFO-broadcasts MSG(seq’ ©m’) (where seq’ is a sequence
of application messages), and either m € seq’ or p; previously fifo-broadcast MSG(seq @ m). Then,
no process co-delivers m’ unless it previously co-delivered m.
Proof of claim C1. The proof is by contradiction. Let us assume that, while the assumption of the
claim is satisfied, some process co-delivers m’ before m. Let 7 be the first time instant at which a
process co-delivers m’ without having previously co-delivered m, and let p; be such a process. We
consider two cases, according to what caused p; to co-deliver m':
e Case 1. p; fifo-delivered MSG(seq’ & m’). There are two sub-cases (due to the assumption in
the claim).
— Sub-case 1: m € seq'.
— Sub-case 2: p; fifo-broadcast MSG(seq @ m) before MSG(seq’ & m'). It then follows from
the FIFO-delivery property that p; fifo-delivered MSG(seq & m) before MSG(seq’ ® m/).

It is easy to conclude from the text of the algorithm that, whatever the sub-case, p; co-delivers
m before m’, which contradicts the assumption that p; co-delivers m’ before m.

e Case 2. p; fifo-delivered a protocol message MSG(seq” & m'") such that m’ € seq” and m is
not before m’ in seq”. Let pj, be the sender of MSG(seq” @ m”). Process pj, co-delivered m/
before fifo-broadcasting MSG(seq” & m”).

Due to the FIFO order property, p; fifo-delivered all the previous protocol messages fifo-broadcast
by pk. Since, by assumption, p; does not co-deliver m before m’, the application message m
was not included in any of these co-broadcasts, and m does not appear before m’ in seq”. Hence,
when py, co-delivered m’, it has not previously co-delivered m. Moreover, py, co-delivered m/
before p; co-delivered it. We consequently have 7/ < 7, where 7’ is the time instant at which py,
co-delivered m/. This contradicts the definition of 7, which states that “7 is the first time instant
at which a process co-delivers m’ without having previously co-delivered m”.

As both cases lead to a contradiction, the claim C1 follows.

The proof of the CO-delivery property follows from two further claims C2 and C3. C2 establishes
that the algorithm satisfies the FIFO message delivery property, while C3 establishes that it satisfies
the local order property. Once these claims are proved, the CO-delivery property is obtained as an im-
mediate consequence of Theorem 5 that states: FIFO message delivery + local order = CO message
delivery.

Claim C2. The algorithm satisfies the FIFO (application) message delivery property.

Proof of claim C2. Let us suppose that p; co-broadcasts m before m/'. It follows that p; fifo-broadcasts
MSG(seq @ m) before MSG(seq’ @ m/). Let us consider the channel from p; to p;. It follows from
the claim C1 that p; cannot co-deliver m/ unless it has previously co-delivered m, which proves the
claim.

Claim C3. The algorithm satisfies the local order property (for application messages).
Proof of claim C3. Let p; be a process that co-delivers m before co-broadcasting a message m/, and
p; aprocess that co-delivers m’. We must show that p; co-delivers m before m/’.
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Let m” be the first message that p; co-broadcasts after it co-delivered m (notice that m” could be
m’). When it co-broadcasts m”, p; fifo-broadcasts MsG(seq” @ m”) (for some seq”). Due to the text
of the algorithm and the definition of m”, it follows that m € seq”. From claim C1, we know that
p; co-delivers m before m”. If m” = m/, the claim follows. Otherwise, p; co-broadcasts m” before
m/, and then due to claim C2, p; co-delivers m” before m/, which concludes the proof of claim C3.

UTheorem 6

2.2.4 From URB-broadcast to CO-broadcast: Capturing Causal Past in a Vector

Delivery condition Unlike from the previous one, this construction of the CO-broadcast abstraction
is built directly on top of the uniform reliable broadcast abstraction (so the layer structure is the same
as the one in Fig. 2.6 where, at its top, FIFO is replaced by CO). It is an extension to crash-prone
systems of a CO-broadcast algorithm introduced by M. Raynal, A. Schiper, and S. Toueg (1991) in the
context of failure-free systems.

Each process p; manages a local vector clock denoted causal_past;[1..n]. Initialized to [0, . . ., 0],
this vector is such that causal_past;[k] contains the number of messages co-broadcast by pj that
have been co-delivered by p;. (As CO-broadcast includes FIFO-broadcast, this number is actually the
sequence number of the last message co-broadcast by p and co-delivered by p;.) Thanks to this control
data, each application message m can piggyback a vector of integers denoted m.causal_past[1..n
such that

m.causal_past[k] = number of messages m/ co-broadcast by p, such that m’ — 7 m.

Let m be a message that is urb-delivered to p;. Its co-delivery condition can be easily stated: m
can be co-delivered if all the messages m’ such that m’ — ; m have already been locally co-delivered
by p;. Operationally, this is locally captured by the following delivery condition:

DCi(m) = (Vk: causal_past;[k] > m.causal_past[k]).

Let us notice that, when a process co-broadcasts a message m, it can immediately co-deliver it.
This is because, due to the very definition of the causal precedence relation “—,”, all the messages
m’ such that m’ —; m are already co-delivered, and consequently DC;(m) is satisfied.

The construction The construction is described in Fig. 2.12. In addition to the identity of its sender,
each message m co-broadcast by a process p;, carries the array m.causal_past, which is a copy of the
local array causal_past; (which encodes the causal past of m from the co-broadcast point of view).
As already indicated, m.causal_past[k] is the number of messages m’ co-broadcast by py. such that
m — M M.

To co-broadcast a message m, a process p; first updates the control fields of m, and then urb-
broadcasts m and waits until it locally co-delivers m. The Boolean done; is used to ensure that if m
is co-broadcast by p; before m/, the broadcast of m is correctly encoded in m’.causal_past[1..n].

When a process p; co-broadcasts a message m, the algorithm presented in Fig. 2.12 co-delivers m
only when MSG(m) is urb-delivered (and not in the code of the operation CO_broadcast (m)). This
allows it to benefit from the properties of the underlying URB-broadcast abstraction, namely, if p; urb-
delivers m, we know from the termination property of urb-broadcast that all the non-faulty processes
eventually urb-deliver m.

When a process p; urb-delivers a message m it checks the delivery condition DC;(m) (this condi-
tion is always true if p; co-broadcast m). If it is false, there are messages m’ co-broadcast by processes
different from p;, which have not yet been co-delivered by p;, such that m’ —); m. Consequently, m
is deposited in the waiting set msg_set;. If DC;(m) is true, p; updates causal_past;|m.sender] to
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operation CO_broadcast (m) is

(1) done; «+ false;

(2) m.causal_past[l..n] < causal_past;[1..n];
(3) m.sender < i

(4) URB_broadcast MSG (m);

(5) wait (done;).

when MSG (m) is urb-delivered do
6) if DC;(m)
(7)  then CO_deliver (m);

8) let j = m.sender;

) causal_past;[j] < m.causal_past;[j] + 1;
(10) done; < (m.sender = i);

(11) while ( Im’ € msg_set; : DCi(m’) )

(12) do CO_deliver (m');

(13) let j = m’.sender;

(14) causal_past;[j] < m'.causal_past;[j] + 1;
(15) msg_set; + msg_set; \ {m'}
(16) end while

(17)  else msg_set; < msg_set; U {m}

(18) end if.

Figure 2.12: From URB to CO message delivery in AS,, ;[(] (code for p;)

its next value (this is where the array causal_past; is updated with the sequence numbers of the last
messages that are co-delivered), and sets done; to true if m.sender = i.

After it has co-delivered a message m, process p; checks if messages in the waiting room msg_set;
can be co-delivered. If there are such messages, it co-delivers them, suppresses them from msg_set;,
and updates causal_past; accordingly.

Except for the wait statement at the end of the operation “CO_broadcast (m)”, the first three lines
of “CO_broadcast (m)”, on one side, and all the statements associated with the urb-delivery of a
message are executed atomically.

Example A simple example of the vector-based CO-broadcast construction is described in Fig. 2.13.
Messages m1, mo and mg are such that mj.sender = 1, ma.sender = 2, and mg.sender = 3.
Messages m1 and ms have no messages in their causal past (i.e., there is no message m’ such that
m' —p my or m’ — s ma, respectively), so we have m.causal_past = mg.causal_past =
[0,0,0]. As their broadcast is not co-related, these messages can be co-delivered in a different order at
different processes. However, message ms is such that m; —y; ms; so, ms.causal_past = [1,0,0]
encoding the fact that the first message co-broadcast by p; (namely m;) has been co-delivered by p3
before it co-broadcast mg.

Consequently, as shown in the figure, while mg is urb-delivered at p before mj, its co-delivery
condition forces it to remain in po’s input buffer msg_sets until m; has been co-delivered at ps (this
is indicated by a dashed arrow in the figure).

Lemma 1. Let m and m’ be any two (distinct) application messages.
(m =y m') = (Vk (m.causal_past[k] < m’.causal_past[k])) A (3 k : m.causal_past[k] <
m/.causal _past[k))).

Proof Let us first consider the case where the messages m and m’ are co-broadcast by the same
process p;. Due to the management of the Boolean done; (lines 1, 5, and 10), and the fact that p; in-
creases causal_past;|[i] each time it co-delivers a message it co-broadcast (line 9), any two consecutive
invocations of co-broadcast by p; are separated by an update causal_past;[i] < causal_past;[i] + 1
(line 9). It follows that we have m.causal_past[i] < m’.causal_past[i]. As far the entries k # i are
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Figure 2.13: How vectors are used to construct the CO-broadcast abstraction

concerned, let us observe that the successive values contained in causal _past;[k] never decrease, from
which we conclude V & : m.causal_past[k] < m’.causal_past[k], which completes the proof for this
case.

Let us now consider the case where m and m/’ are co-broadcast by different processes. As m — s
m/, there is a finite chain of messages such that m = mg —y m1 —u -0 —p m, = m/,
and for each message m,, 1 < x < z, the process that co-broadcast m, previously co-delivered
my—1. We claim that (V k (m.causal_past[k] < mq.causal_past[k])) A (3 k : m.causal_past[k] <
mi.causal_past[k]). Then the proof of the lemma follows directly by a simple induction on the length
of the message chain.

Proof of the claim. Let p; be the process that co-broadcast m, and p; (i # j) the process that co-
delivered m before co-broadcasting m;. It follows from the definition of m — s my, the co-delivery
of m by p;, and the CO-delivery condition DCj(m) that V k : m.causal_past[k] < causal_past;[k]
just after m is co-delivered by p;. On the other side, when p; co-delivered m, it executed the statement
causal_past;[i] < causal_past;[i] + 1 (line 9 or line 14). Hence, after p; co-delivered m, we
have m.causal_past[i] < m.causal_past[i] + 1 = causal_past;[i], and more generally we have
(V k : m.causal_past[k] < causal_pastj[k]) A (3 k : m.causal_past[k] < causal_past;j[k].
Finally, as m;.causal_past[1..n] = causal_past;[1..n] when p; co-broadcasts m; (line 2), and this
occurs after the co-delivery of m by pj, it follows that we then have (V k : m.causal_past[k] <
miy.causal_pastlk]) A (3 k : m.causal_past[k] < mi.causal_past[k]), and the claim follows.

ULemma 1

Theorem 7. The algorithm described in Fig. 2.10 builds the CO-URB-broadcast communication ab-
straction in any system in which URB-broadcast can be built.

Proof Proof of the validity and integrity properties. The validity property follows directly from the
validity of the underlying URB-broadcast abstraction, and the text of the algorithm (which does not
create application messages). The integrity property of the underlying URB-broadcast guarantees that,
for every application message m that is co-broadcast, a process p; co-delivers at most one protocol
message MSG (m). If DC;(m) is satisfied, the message m is immediately co-delivered. Otherwise,
it is deposited in msg_set;, and is suppressed from this set when it is co-delivered. It follows that no
message m can be co-delivered more than once by each process.

Proof of the termination property. The termination property of the underlying URB-broadcast guar-
antees that (a) if a non-faulty process co-broadcasts a message m (as in this case it urb-broadcasts
MSG (m)), or (b) if any process urb-delivers MSG (m), then each non-faulty process urb-delivers
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MSG (m). It follows that if (a) or (b) occurs, then every non-faulty process p; either co-delivers m
or deposits m in msg_set;. Hence, to prove the termination property of CO-broadcast we have to
show that any non-faulty process p; eventually co-delivers all the messages that are deposited in its
set msg_set;. Let us observe that any two different application messages m and m’ are such that
m.causal_past # m'.causal_past.

Let us assume by contradiction that some messages remain forever in a set msg_set;. Let us
denote this set of messages blocked;, and let us order its messages according to the lexicographical
order <j, defined from their vectors m.causal_past. (v = [a,b,c] and v' = [d, V', ] being two
vectors, v <jep V' if (a < @) V (a=d ANb<V) V (a=d Nb=V Ac <))

Let m be the first message of msg_set; according to this lexicographical order, and p, be the
process that issued CO_broadcast (m). As m remains forever in msg_set;, DC;(m) remains forever
false, and consequently there is at least one process identity & such that 0 < causal_past;[k] <
m.causal_past[k]. As m.causal_past[k] = « is a constant, so is the last value of causal_past;[k].
Let 8 < « be this last value.

m/last_snlk] =a —1
CO_broadcast (m/)

m.last_snlk] = last_sn,[k] = «
CO _broadcast (m)
Pz
\ CO_deliver (m’) \
Di

URB._deliver (m’) URB._deliver (m)

m € msg_set; \
last_sn;[k] = B < m.dast_sn[k] = «

Pk

Figure 2.14: Proof of the CO-delivery property (second construction)

Moreover, as causal_pastz[k] = m.causal_past[k] = a > 1, p, co-delivered an application
message m’ from py such that m’.causal_past[k] = o — 1. This is depicted in Fig. 2.14. As p,
co-delivered m/, it previously urb-delivered MSG (m/). It then follows from the termination property
of URB-broadcast that any non-faulty process (hence p;) eventually urb-delivers MSG (m’). When p;
urb-delivers MSG (m/), there are two cases:

e Case 1. DC;(m/) is false and remains false forever. In this case, as m’ —j; m, we have
m'.causal_past <j.; m.causal_past (Lemma 1). It follows that m is not the first message of
msg-set; according to lexicographical order. A contradiction.

e Case 2. m/ is eventually co-delivered by p;. In this case, causal_past;[k] becomes equal to
[ + 1, which contradicts the fact that the last value taken by causal_past;[k] is S.

In both cases, we obtain a contradiction, which completes the proof of the CO-broadcast Termination
property.

Proof of the CO-delivery property. Let us consider a message m co-broadcast by a process p;. Thanks
to the initialization of causal_past;[1..n] to [0,...,0] and its management at lines 9 and 14, it follows
that m.causal_past[1..n] encodes the message causal past of m and no more, i.e., the set M of all
the messages m/’ such that m’ —,; m.

For a process p; that urb-delivered MSG (m), let us consider the time at which DCj;(m) becomes
satisfied. When this occurs, the local array causal_past;[1..n] encodes the current message causal
past of p;, i.e., the set M of all the messages m' such that m’ —y; m” if p; was about to co-broadcast
the message m”.
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The proof follows from the observation that DC;(m) states that m can be co-delivered only if
My C Ms. OTheorem 7

2.2.5 The Total Order Broadcast Abstraction Requires More

From FIFO/CO to the total order broadcast abstraction It is very important to notice that the
message delivery constraints imposed by the previous FIFO and CO communication abstractions are
defined from a message partial order, extracted from the execution itself. The delivery constraints are
on local variables and control values piggybacked by the messages. As we have seen, among other
features, a message that has been co-broadcast can be co-delivered by its sender immediately after it
has been broadcast.

This is because the constraints on the delivery order of the messages are defined only from their
causal past (which messages have been broadcast “before” by the same process for FIFO order, and
by any process for CO order). As we will see, this is no longer the case when one has to implement
the Total Order (TO) delivery property. In this case, any pair of messages has to be delivered in the
same order at any process, even if the broadcast of these messages is neither FIFO, nor CO-related.

p1 - /\l =

P2 /
Figure 2.15: Total order message delivery requires cooperation

To be more explicit, let us consider the messages m and mg broadcast in Fig. 2.15. Neither of
these broadcasts is related to the other (i.e., there is neither a FIFO nor a CO relation linking them).
Hence, ensuring the Total Order message delivery property cannot rely only on control information
piggybacked by the messages that are broadcast by the application. The processes have to cooperate
(exchange additional control messages) to establish a common delivery order. This order has to be
defined by both p; and pa, and if m; is delivered first at p;, p2 cannot deliver msg just after it broadcast
it.

Actually, as we will see in Chap. 16, it is impossible to construct a total order broadcast abstrac-
tion in CAMP,, ;[0]. This is a fundamental result of fault-tolerant distributed computing. It is impor-
tant to notice that, unlike the impossibility of the “common decision-making” problem (presented in
Chap. 1), which is due to messages losses in a system without process crashes, the total order broad-
cast impossibility is due to the net effect of asynchrony and process crashes even in a system model in
which no message is lost. This communication abstraction requires a system model strictly stronger
than CAMP,, ;)] from a computability point of view. There is a computability gap separating TO-
broadcast, and FIFO and CO-broadcast: the latter can be implemented in a weaker system model than
the one needed to implement the TO-broadcast abstraction; TO-broadcast cannot be solved with the
mastering of message causality only.

The FIFO and CO constructions are very general It is important to stress the fact that, as shown
in this chapter, the FIFO and CO reliable broadcast abstractions can be implemented in any system
where URB-broadcast can be built. They can consequently be used on top of the URB constructions
described in the next chapter, which addresses the case where, in addition to process crashes, the
channels are not reliable, i.e., in systems weaker than CAMP,, [0].
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2.3 Summary

This chapter was devoted to one of the most important communication abstractions encountered in
asynchronous message-passing systems prone to process crash failures, namely, Uniform Reliable
Broadcast. This communication abstraction guarantees that any message urb-delivered by a process
(be it correct or faulty), is urb-delivered by any correct process. It follows that all correct processes
urb-deliver the same set of messages S’ (which includes at least the messages urb-broadcast by these
processes), while a faulty process urb-delivers a subset of .S.

After presenting a simple URB-broadcast algorithm, which tolerates any number of process crashes,
the chapter presented two enhancements which provide higher communication levels, namely, FIFO-
URB-broadcast and CO-URB-broadcast.

2.4 Bibliographic Notes

e The problem of broadcasting messages in a reliable way in asynchronous systems prone to
process failures has given rise to a large amount of literature. Early seminal works can be found
in [68, 104, 117, 181, 348]. Surveys can be found in [48, 119].

A nice and very comprehensive presentation of fault-tolerant broadcast problems, their specifi-
cations and algorithms that solve them is given by V. Hadzilacos and S. Toueg in [207].

e An early paper on constraints on message order delivery is [348].

The causal message delivery property was introduced by K. Birman and T. Joseph [68]. The
construction from FIFO to CO-broadcast is due to V. Hadzilacos and S. Toueg [207]. The
presentation we followed is theirs.

The second CO-broadcast construction is a variant of an algorithm proposed by M. Raynal, A.
Schiper and S. Toueg that was designed for asynchronous failure-free systems [374].

The notion of causal message delivery has been extended to messages that carry data whose
delivery is constrained by real-time requirements [50] and to mobile environments [351].

o The total order broadcast is strongly related to the state machine replication paradigm [87, 255,
388]. Its impossibility in asynchronous systems prone to process crashes is related to the con-
sensus impossibility in these systems [162].

o Different types of broadcast operations are studied in [67, 150]. The books [66, 88, 271, 366]
present distributed programming approaches based on reliable broadcast.

2.5 Exercises and Problems
1. Consider a synchronous model in which

e there is a global clock CLOCK accessible to all processes,

e ¢ is an upper bound (known by the processes) on message transfer delays,
e processing times have zero duration,

e uptot < n processes may crash.

Design a uniform reliable broadcast algorithm which, in addition to the validity, integrity, and
termination properties, satisfies the following time-related property:

e Timeliness delivery. There is a known constant A such that if the URB-broadcast of an
application message m is initiated at real-time 7, no process urb-delivers m after real-time
T+ A.

Solution in [207].



40 2.5. Exercises and Problems

2. Let us consider an asynchronous system model stronger than CAMP,, ;[()], namely no process
crashes (i.e., t = 0) and the processes can access a global clock CLOCK. Each application
message m has a lifetime defined as the physical time duration during which, after m has been
broadcast, its content is meaningful and can consequently be used by its destination processes.
A message that arrives at its destination process after its lifetime has elapsed becomes useless
and must be discarded (for the destination process, it is as if the message has been lost). A
message that arrives at a destination process before its lifetime has elapsed must be delivered by
the expiration of its lifetime.
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m is meaningful at p; m is obsolete at p;,
it is co-delivered by p; itis discarded by p;,

Figure 2.16: Broadcast of lifetime-constrained messages

It is assumed that all the messages have the same lifetime denoted \. Let 7 be the sending time
of a message m. The physical date 7 + \ is consequently the deadline after which the message
m is useless for the processes that have not yet received it. This is illustrated in Fig. 2.16. If m
arrives by its deadline at p;, it must be processed by its deadline by p;. Alternatively, if m arrives
after its deadline at p; it must be discarded by p;. (In practice, a great percentage of messages
arrive by their deadlines, as is usually the case in distributed multimedia applications.)

Design an algorithm implementing a CO-URB-broadcast abstraction defined by the following
properties:
e Validity. If a process co-delivers a message m, then m was previously co-broadcast.
o Integrity. A process co-delivers a message m at most once.
e CO-delivery. For any pair of messages m and m’ such that m —»; m/, which arrive at a
process p; by their deadlines, p; co-delivers m before m’.
e Expiry constraint. No message can be co-delivered by a process after its deadline.

e Termination. Any message that arrives by its deadline at a process p; is co-delivered by p;.

Solutions in [49]. (This message causality-related broadcast problem was introduced in [50].)
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Reliable Broadcast in the Presence of
Process Crashes and Unreliable Channels

The previous chapter presented several constructions for the uniform reliable broadcast (URB) abstrac-
tion. These constructions considered the asynchronous underlying system model CAMP[()] in which
processes may crash and channels are reliable. These constructions differ in the quality of service they
provide to the application processes, this quality being defined with respect to the order in which the
messages are delivered (namely, FIFO or CO order). This order restricts message asynchrony.

This chapter introduces constructions of URB-broadcast suited to asynchronous systems prone to
process crashes and unreliable channels, i.e., asynchronous system models weaker than CAMP,, ,[0].

Keywords Asynchronous system, Communication abstraction, Distributed algorithm, Fair channel,
Fair lossy channel, Failure detector, Heartbeat failure detector, Impossibility result, Process crash
failure, Quiescence property, Reliable broadcast, Uniform reliable broadcast, Theta failure detector,
Unreliable channel.

3.1 A System Model with Unreliable Channels

3.1.1 Fairness Notions for Channels

Restrict the type of failures Trivially, if a channel can lose all the messages it has to transmit from
a sender to a receiver, no communication abstraction with provable guarantees can be defined and
implemented. So, in order to be able to compute on top of unreliable channels, we need to restrict the
type of failures a channel is allowed to exhibit. This is exactly what is addressed by the concept of
channel fairness.

All the messages transmitted over a channel are protocol messages (remember that the transmission
of an application message gives rise to protocol messages that are sent at the underlying abstraction
layer). Several types of protocol messages can co-exist at this underlying layer, e.g., protocol messages
that carry application messages, and protocol messages that carry acknowledgments. In the following,
we consider that each protocol message has a type denoted ;.. Moreover, when there is no ambiguity,
the word “message” is used as a shortcut for “protocol message”, and “p-message” is used as a shortcut
for “protocol message of type p”.

Fairness with respect to ;i-messages Considering a uni-directional channel that allows a process p;
to send messages to a process pj, let us observe that, at the network level, process p; can send the same
message several times to p; (for example, message re-transmission is needed to overcome message
losses). This channel is fair with respect to the message type v if it satisfies the three following
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properties (all the messages that appear in these properties are messages carried by the channel from
p; to pj):
e p-validity. If the process p; receives a p-message (on this channel), then this message has been
previously sent by p; to p;.

e u-integrity. If p; receives an infinite number of ;i-messages from p;, then p; has sent an infinite
number of y-messages to p;.

e p-termination. If p; sends an infinite number of y-messages to p;, and p; infinitely often exe-
cutes “receive () from p;”, it receives an infinite number of p-messages from p;.

As they capture similar meanings, these properties have been given the same names as for URB-
broadcast introduced in the previous chapter. The validity property means that there is neither message
creation, nor message alteration. The integrity property states that, if a finite number of messages of
type j are sent, the channel is not allowed to duplicate them an infinite number of times (it can
nevertheless duplicate them an unknown but finite number of times). Intuitively, this means that the
network performs only the re-transmissions issued by the sender.

Finally, the termination property states the condition under which the channel from p; to p; has to
eventually transmit messages of type , i.e., the condition under which a p-message msg cannot be
lost. This is the liveness property associated with the channel. From an intuitive point of view, this
property states that if the sender sends “enough” p-messages, some of these messages will be received.
In order to be as unrestrictive as possible, “enough” is formally stated as “an infinite number”. This is
much weaker than a specification such as “for every 10 consecutive sendings of ;-messages, at least
one message is received”, as this kind of specification would restrict unnecessarily the bad behavior
that a channel is allowed to exhibit.

3.1.2 Fair Channel (FC) and Fair Lossy Channel

Fair channel The notion of a “fair channel” encountered in the literature corresponds to the case
where (1) each protocol message msg defines a specific message type u, and (2) the channel is fair
with respect to all the message types. Hence, the specification of a fair channel is defined by the
following properties:

e FC-validity. If p; receives a message msg from p;, then msg has been previously sent by p; to
Pj-

e FC-integrity. For any message msg, if p; receives msg from p; an infinite number of times, then
p; has sent msg to p; an infinite number of times.

e FC-termination. For any message msg, if p; sends msg an infinite number of times to p;, and
pj executes “receive () from p;” infinitely often, it receives msg from p; an infinite number of
times.

As described by the FC-termination property, the only reception guarantee is that each message
msg that is sent infinitely often cannot be lost. This means that if a message msg is sent an arbitrary
but finite number of times, there is no guarantee on its reception. Let us observe that the requirement
“msg sent an infinite number of times” for a message to be received, does not prevent any number
of consecutive copies of msg from being lost, even an infinite number of copies from being lost (for
example, this is the case when all the even sendings of msg are lost, while all the odd sendings are
received).

Fair lossy channel The notion of a “fair lossy channel” encountered in the literature corresponds to
the case where all the protocol messages have the same message type. Hence, the specification of a
fair lossy channel is defined by the following properties.
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e FLL-validity. If p; receives a message from p;, this message has been previously sent by p; to
pj-

e FLL-integrity. If p; receives an infinite number of messages from p;, then p; has sent an infinite
number of messages to p;.

e FLL-termination. If p; sends an infinite number of messages to p;, and p; is non-faulty and
executes “receive () from p;” infinitely often, it receives an infinite number of messages from
Pi.

While the FLL-termination property states that the channel transmits messages, it gives no information
on which messages are received.

Comparing fair channel and fair lossy channel As we are about to see, given an infinite sequence
of protocol messages, the notions of a fair channel and a fair lossy channel are different, none of them
includes the other one.

To this end, let us consider that the given infinite sequence of protocol messages is the infinite
sequence of the consecutive positive integers 1, 2, etc. Hence, no two messages sent by p; are the
same. If the channel from p; to p; is fair lossy, the termination property guarantees that p; will receive
an infinite sequence of integers (but it is possible that an infinite number of different integers will
never be received). Whereas if the channel is fair, it is possible that no integer is ever received (this is
because no integer is sent an infinite number of times).

Let us now consider that the sequence of protocol messages that is sent by p; is the alternating
sequence of 1, 2, 1, 2, 1, etc. If the channel from p; to p; is fair, both 1 and 2 are received infinitely
often (this is because both integers are sent an infinite number of times). Differently, if the channel is
fair lossy, it is possible that p; receives the integer 1 an infinite number of times and never receives the
integer 2 (or receives 2 and never receives 1).

This means that when one has to prove a construction based on unreliable channels, one has to be
very careful regarding the type of unreliable channels, namely, fair or fair lossy.

From fair lossy channel to a fair channel Given an infinite sequence of protocol messages msg,
msgy, Msgs, etc., which p; wants to send to py, it is possible to construct new protocol messages (the
ones that are really sent over the channel) such that each message msg, is eventually received by p;
(if it is non-faulty) under the assumption that the channel is fair lossy.

Let msg, be the first protocol message that p; wants to send to p;. It actually sends instead the
“real” protocol message (msg;). When it wants to sends the second protocol message msg,, it actu-
ally sends the “real” protocol message made up of the sequence (msg;, msgy). Similarly, p; sends the
sequence (msgy, msg,, msgs) when it wants to send its third protocol message msgs, etc. Hence, the
sequence of protocol messages successively sent by p; to p; is the sequence (msg,), (msg;, msga),
(msgq, msge, msgs), etc. It follows that, in the infinite sequence of “real” protocol messages sent by
pi, all “real” protocol messages sent by p; are different (each being a sequence whose prefix is the
sequence that constitutes the previous message). If p; is non-faulty and the channel is fair lossy, this
simple construction ensures that every msg,, is received infinitely often by p;. Hence, considering the
infinite sequence of protocol messages msg,, msgs, etc., which p; wants to send to p;, this construc-
tion simulates a fair channel on top of a fair lossy channel. The price of this construction is the size of
the “fair lossy” protocol messages that increases without bound.

3.1.3 Reliable Channel in the Presence of Process Crashes

An abstraction for the application layer A reliable channel is a communication abstraction that
neither creates, nor duplicates, nor loses messages. Its definition is at the same abstraction level as
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the definition of URB-broadcast. It is an abstraction offered to the application layer, and consequently
considers application messages, each of them being unique.
The formal definition of a reliable channel from p; to p; is given by the following three properties:

e RC-validity. If p; receives a message m from p;, then m was previously sent by p; to p;.
e RC-integrity. Process p; receives a message m at most once.

e RC-termination. If p; completes the sending of k& messages to p;, then, if p; is non-faulty and
executes k times “receive () from p;”, p; receives k messages from p;.

This definition captures the fact that each message m sent by p; to p; is received exactly once by
pj. The words “p; completes the sending of m” mean that, if p; does not crash before returning from
the invocation of the send operation, the “underlying network” (i.e., the implementation of the reliable
channel abstraction) guarantees that m will arrive at p;. Whereas if p; crashes during the sending of
its kth message to p;, p; eventually receives the previous (k — 1) messages sent by p;, while there is
no guarantee on the reception of the kth message sent by p; to p; (this message may or not be received

by pj).

Remark Let us notice that the termination property considers that p; is non-faulty. This is because,
if p; crashes, due to process and message asynchrony, it is not possible to state a property on which
messages must be received by p;.

Let us also notice that it is not possible to conclude from the previous specification that a reliable
channel ensures that the messages are received in their sending order (FIFO reception order). This is
because, once messages have been given to the “underlying network”, nothing prevents the network
from reordering messages sent by p;.

Reliable channel vs uniform reliable broadcast As we have seen in the previous chapter, URB-
broadcast is a one-shot problem defined with respect to the broadcast of a single application message.
This means that the URB-broadcast of a message m; and the URB-broadcast of a message msy consti-
tute two distinct instances of the URB problem.

Whereas the reliable channel abstraction is not a one-shot problem. Its specification involves
all the messages sent by a process p; to a process pj. The difference in the specification of both
communication abstractions appears clearly in their termination properties.

3.1.4 System Model

In the rest of this chapter we consider an asynchronous system made up of n processes prone to process
crashes and where each pair of processes is connected by two unreliable but fair channels (one in each
direction). This system model is denoted CAMP,, ;[- FC], namely it is CAMP,, ;[0)], weakened by
- FC (the fair channel assumption).

3.2 URB-broadcast in CAMP,, ;|- FC]

This section first presents an URB-broadcast construction suited to the system model CAMP,, ;[- FC]
constrained by the condition ¢ < n/2, i.e., any execution of an algorithm in this model assumes
that there is a majority of processes — not known in advance — which never crash. This constrained
model is consequently denoted CAMP,, ;[- FC, ¢t < n/2]. It is then shown that this additional model
assumption is a necessary requirement for the construction when processes are not provided with
information on the actual failure pattern.



Chapter 3. Reliable Broadcast in the Presence of Process Crashes and Unreliable Channels 45

3.2.1 URB-broadcastin CAMP,,,[- FC, t < n/2]

Principle Designing an algorithm that implements URB-broadcast in CAMP,, ;[- FC, t < n/2] is
pretty simple. The construction relies on two simple basic techniques:

e First, use the classical re-transmission technique in order to build a reliable channel on top of a
fair channel.

e Second, locally urb-deliver an application message m to the upper application layer only when
this message has been received by at least one non-faulty process. As there are at least (n —
t) non-faulty processes and n — ¢ > t (model assumption), this means that, without risking
remaining blocked forever, a process p; may urb-deliver m as soon as it knows that at least
(t + 1) processes have received a copy of m.

As a message that is urb-delivered by a process is in the hands of at least one correct process, that
correct process can transmit it safely to the other processes (by repeated sendings) thanks to the fair
channels that connect it to the other processes.

The construction The construction is described in Figure 3.1. When a process p; wants to urb-
broadcast a message m, it sends the protocol message MSG (m) to itself (to simplify and without loss
of generality we assume there is reliable channel from a process to itself).

The central data structure used in the construction is an array of sets, denoted rec_by;, where the
set rec_by;[m] is associated with the application message m. This set contains the identities of all the
processes that, to p;’s knowledge, received a copy of MSG (m).

operation URB_broadcast (m) is send MSG (m) to p;.

when MSG (m) is received from p;, do
(1)  if (first reception of m)

(2) then allocate rec_by; [m]; rec_by;[m] + {i, k};
3) activate task Diffuse,(m)

4) else rec_by;[m] < rec_by;[m] U {k}

(5) endif.

when (|rec_by;[m]| >t + 1) A (p; has not yet urb-delivered m) do
(6)  URB-_deliver (m).

task Diffuse;(m) is

(7)  repeat forever

(8) for each j € {1,...,n} do send MSG (m) to p; end for
(9) end repeat.

Figure 3.1: Uniform reliable broadcast in CAMP,, ,[- FC, t < n/2] (code for p;)

When it receives MSG (m) for the first time (line 1), p; creates the set rec_by;[m] and updates
it to {4, k} where pj, is the process that sent MSG (m) (line 2). Then p; activates a task, denoted
Diffuse;(m) (line 3). If it is not the first time that MSG (m) has been received, p; only adds k to
rec_by;[m] (line 4). Diffuse;(m) is the local task that is in charge of re-transmitting the protocol
message MSG (m) to the other processes in order to ensure the eventual URB-delivery of m, namely
pi repeatedly forwards the protocol message MSG (m) to each other process p;.

Finally, when it has received MSG (m) from at least one non-faulty process (this is operationally
controlled by the predicate |rec_by;[m]| > t + 1), p; urb-delivers m, if not yet done (line 6).

Let us remember that, as in the previous chapter, the processing associated with the reception of
a protocol message is atomic, which means here that the processing of any two messages MSG (m1)
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and MSG (m2) are never interleaved, they are executed one after the other. This atomicity assumption,
which is on any protocol message reception (i.e., whatever its MSG or ACK type) is valid through-
out this chapter (ACK protocol messages will be used in Section 3.5). However, several local tasks
Diffuse;(m1), Diffuse;(m2), etc., are allowed to run concurrently.

Remark acknowledgment messages It is important to note that the task Diffuse;(m) forever sends
protocol messages (and consequently never terminates). The use of acknowledgments (which would
be used to fill in the set rec_by;[m] to prevent useless re-transmissions) cannot prevent this infinite
sending of protocol messages, as shown by the following scenario. Let p; be a process that has crashed
before a process p; issues URB_broadcast (m). In this case p; will never acknowledge MSG (m),
and consequently p; will forever execute MSG (m) to pj. To prevent these infinite re-transmissions,
processes must be provided with appropriate information on failures. This is the topic addressed in
Section 3.5 of this chapter.

Theorem 8. The algorithm described in Fig. 3.1 implements the URB-broadcast abstraction in the
system model CAMP,, ;- FC, t < n/2].

Proof (The proof of this construction is a simplified version of the proof of the more general con-
struction given in Section 3.5.) The validity property (neither creation nor alteration of application
messages) and the integrity property (an application message is received at most once) of the URB
abstraction follow directly from the text of the construction. So, we focus here on the proof of the
termination property of the URB-broadcast abstraction. There are two cases:

e Let us first consider a non-faulty process p; that urb-broadcasts a message m. We have to show
that each non-faulty process urb-delivers m. As p; is non-faulty, it activates the task Diffuse;(m)
and forever sends MSG (m) to every other process p;. As the channels are fair, it follows that
each non-faulty process p, eventually receives MSG (m). The first time this occurs, p, activates
the task Diffuse,(m). Hence, each non-faulty process infinitely often sends MSG (m) to every
process. Due to termination property of the fair channels, and the assumption that there is a
majority of non-faulty processes, it follows that the set rec_by;[m] eventually contains (¢ + 1)
process identities (lines 2 and 4). Hence, the URB-delivery condition of m eventually becomes
true at every non-faulty process, which proves the theorem for the case of a non-faulty process
that urb-broadcasts an application message.

e We have now to prove the second case of the URB-broadcast termination property, namely, if a
(non-faulty or faulty) process p, urb-delivers a message m, then every non-faulty process urb-
delivers m. If p,, urb-delivers a message m, we have |rec_by,[m]| > t + 1, which means that at
least one non-faulty process p; received the protocol message MSG (m). When this non-faulty
process p; received MSG (m) for the first time, it activated the task Diffuse;(m). The rest of the
proof is then the same as the previous case.

UTheorem 8

3.2.2 An Impossibility Result

This section shows that the assumption ¢ < n/2 is a necessary requirement on the maximal number
of process crashes when one wants to construct URB-broadcast in the system model CAMP,, ,[- FC].
The proof of this impossibility is based on an “indistinguishability”” argument.

Theorem 9. There is no algorithm implementing URB-broadcast in CAMP,, 4[- FC, t > n/2].

Proof The proof is by contradiction. Let us assume that there is an algorithm A that constructs the
URB-broadcast abstraction in CAMP,, ;[- FC, ¢t > n/2]. Givent > n/2, let us partition the processes
into two subsets P1 and P2 (i.e., PN P2 = and P1UP2 = {py,...,p,}) such that | P1]| = [n/2]
and | P2| = |n/2]. Let us consider the following executions F; and Es:
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e Execution Ej. In this execution, the processes of P2 crash initially, and the processes in P1 are
non-faulty. Moreover, a process p,, € P1 issues URB_broadcast (m). Due to the very existence
of the algorithm A, every process of P1 urb-delivers m.

e Execution F». In this execution, the processes of P2 are non-faulty, and no process of P2 ever
issues URB_broadcast (). The processes of P1 behave as in E'1: p, issues URB_broadcast (m),
and they all urb-deliver m. Moreover, after they urb-deliver m, each process of P1 crashes, and
all the protocol messages ever sent by a process of P1 are lost (and consequently are never
received by the processes of P2). It is easy to see that this is possible as no process of P1 can
distinguish this run from Ej.

Let us observe that the fact that no message sent by a process of P1 is ever received by any
process of P2 is possible because the termination property associated with the fair channels
that connect the processes of P1 to the processes of P2 requires that the sender of a protocol
message must be non-faulty in order to have the certainty that this message is ever received.
(There is no reception guarantee for a message that is sent an arbitrary, but finite, number of
times.)

As, in the execution FE», no process of P2 ever receives a message from a process of P1, none
of these processes can urb-deliver m, which completes the proof of the theorem.
Urheorem 9

Impossibility vs uniformity requirement Let us observe that the previous impossibility result is
due to the uniformity requirement stated in the Termination property of the URB abstraction. More
precisely, this property states that, if a process p; urb-delivers a message m, then every non-faulty
process has to urb-deliver m. The fact that the process p; can be a faulty or a non-faulty process
defines the uniformity requirement.

If this property is weakened to “if a non-faulty process p; urb-delivers a message m, then all the
non-faulty processes urb-deliver m”, then we have the simple (non-uniform) reliable broadcast, and
the impossibility result no longer holds. When we look at the construction in Fig. 3.1, the predicate
|rec_by;[m]| > ¢ + 1 is used to ensure the uniformity requirement. It ensures that, when a message is
urb-delivered, at least one non-faulty process has a copy of it.

3.3 Failure Detectors: an Approach to Circumvent Impossibilities

3.3.1 The Concept of a Failure Detector

The concept of a failure detector is one of the main approaches that have been proposed to circumvent
impossibility results in fault-tolerant asynchronous distributed computing models. It is due to T. Chan-
dra and S. Toueg (1996). From an operational point of view, a failure detector can be seen as an oracle
made up of several modules, each associated with a process. The module attached to process p; pro-
vides it with hints concerning which processes have failed. Failure detectors are divided into classes
based on the particular type of information they provide on failures. Different problems may require
different classes of failure detectors in order to be solved in an otherwise fault-prone asynchronous
distributed system model.

There are two main characteristics of the failure detector approach, one associated with its software
engineering feature, and the other associated with its computability dimension.

The software engineering dimension of failure detectors A failure detector class is defined by a
set of abstract properties. This way, a failure detector-based distributed algorithm relies only on the
properties that define the failure detector class, regardless of the way they are implemented in a given
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system (in the following we sometimes say “failure detector FD” for “any failure detector of the class
FD”). This software engineering dimension of the failure detector approach favors algorithm design,
algorithm proof, modularity, and portability.

Similarly to a stack and a queue that are defined by their specification, and can have many different
implementations, a failure detector of a given class can have many different implementations each
taking into account appropriate features of a particular underlying system (such as its topology, local
clocks, distribution of message delays, timers, etc.). Due to the fact that a failure detector is defined
by abstract properties and not in terms of a particular implementation, an algorithm that uses it does
not need to be rewritten when the underlying system is modified.

It is important to notice that, in order for a failure detector to be implementable, the underlying
system has to satisfy additional behavioral properties (which in some sense restrict its asynchrony).
(If not, the impossibility result — that the considered failure detector allows us to circumvent — would
no longer hold.)

Let A be an abstraction (object, problem) that can be solved in a system model enriched with a
failure detector FD. The failure detector concept favors separation of concerns as follows:

e Design and prove correct a distributed algorithm that implements (solves) A in a system model

enriched with FD.

e Independently from the previous item, investigate the system behavioral properties that have to
be satisfied for FD to be implementable, and provide an implementation of FD for these systems.

The computability dimension of failure detectors Given a problem Pb that cannot be solved in an
asynchronous system prone to failures (e.g., build URB-broadcast in CAMP,, ,[- FC, t > n/2]), the
failure detector approach allows us to investigate and state the minimal assumptions on failures the
processes have to be provided with, in order for the problem Pb to be solved. This is the computability
dimension of the failure detector approach.

An interesting side of this computability dimension lies in the ranking of problems according to
the weakest failure detectors that these problems require to be solved. (The notion of “weakest” failure
detector for the register problem will be discussed later in the book, e.g., in Chap. 7 and Chap. 17.) This
provides us with a failure detector-based method to establish a hierarchy among distributed computing
problems.

3.3.2 Formal Definitions

Failure pattern A failure pattern defines a possible set of failures, along with their occurrence times,
that can occur during an execution. Formally, a failure pattern is a function F' : N — 2!, where
N is the set of natural numbers (time domain), and 2! is the power-set of II (the set of all sets of
process identities). The time domain has to be understood as the time of an external observer, which
is inaccessible to the processes.

Considering the models with process crash failures (e.g., CAMP,, ;[0]), F(7) denotes the set of
processes that have crashed up to time 7. As a crashed process does not recover, we have F'(1) C
F(r 4+ 1). Let Faulty(F) be a set of processes that crash in an execution with failure pattern F.
Let 7Tynae denote the end of that execution. We then have Faulty(F) = F(Tymaz). AS Tmag 1S nOt
known and depends on the execution, and we want to be as general as possible (and not tied to a
time-specific class of executions), we (conceptually) consider that an execution never ends, i.e., we
consider that 7,4, = +00. We have accordingly Faulty(F) = Ui<rctooF (T) = lim, 400 F(7).
Let Non-faulty(F) = 11 — Faulty(F') (the set of processes that do not crash in F). Correct(F) is
used as a synonym of Non-faulty(F).

It is important to notice that the notions of faulty process and correct process are defined with
respect to a failure pattern, i.e., to the failure pattern that occurs in a given execution. Different
executions might have different failure patterns.



Chapter 3. Reliable Broadcast in the Presence of Process Crashes and Unreliable Channels 49

Failure detector history with range R A failure detector history with range R describes the behav-
ior of a failure detector during an execution. R defines the type of information on failures provided to
the processes. Here we consider failure detectors whose range is the set of process identities, or arrays
of natural integers, whose dimension 7 is the number of processes.

A failure detector history is a function H : IIXIN — R, where H (p;, 7) is the value of the failure
detector module of process p; at time 7. This means that each process p; is provided with a read-only
local variable that contains the current value of H (p;, 7).

Failure detector class FD with range R A failure detector class FD with range R is a function that
maps each failure pattern ' to a set of failure detector histories with range R. This means that FD(F)
represents the whole set of possible behaviors that the failure detector FD can exhibit when the actual
failure pattern is £

Environment It is important to notice that the output of a failure detector does not depend on the
computation produced by an algorithm; it depends only on the actual failure pattern, and is a feature
of what is called the environment. More generally, the notion of an environment captures everything
that is not under the control of the algorithm (failures, speed of processes, message transit times,
non-determinism, etc.).

Moreover, a given failure detector might associate several histories with each failure pattern. Each
history represents a possible sequence of outputs for the same failure pattern; this feature captures the
inherent non-determinism of a failure detector.

Remark The failure detector classes presented in this book do not appear in their historical order (the
order in which they have been chronologically introduced in research articles). They are introduced
according to the order in which this book presents the problems that they allow us to solve.

3.4 URB-broadcast in CAMP, ;[- FC] Enriched with a Failure Detector

The previous impossibility result (Theorem 9) states that there is no algorithm implementing the URB-
broadcast abstraction in CAMP,, +[- FC, t > n/2]. Whereas if we know in advance that there is a
predefined process p, that never crashes, URB-broadcast can be solved (the other processes can use
it as centralized server). Hence the following natural question: Which information on failures do the
processes have to be provided with in order for the URB abstraction to be built whatever the value
of t?

This section first presents the failure detector class, denoted © (the weakest failure detector class
that answers the previous question), and then an algorithm building URB-broadcast in the system
model CAMP,, +[- FC, O].

3.4.1 Definition of the Failure Detector Class ©

The failure detector class © was introduced by M. Aguilera, S. Toueg, and B. Deianov (1999). A
failure detector of this class provides each process p; with a read-only local variable, a set denoted
trusted;. Let trusted] denote the value of trusted; at time 7. Remember that this notion of time is
with respect to an external observer: no process has access to it. Let us also remember that Correct (F)
denotes the set of processes that are non-faulty in that run. Given a run with the failure pattern F', ©
is defined by the following properties (using the formal notation introduced in Section 3.3.2, we have
trusted] = H(i,7)):
e Accuracy. Vi € I V7 €N: (trusted] N Correct(F)) # 0.

e Liveness. 3r €N: V7' > 7: Vi € Correct(F) : trusted] C Correct(F).



50 3.4. URB-broadcast in CAMP,, +[- FC] Enriched with a Failure Detector

The accuracy property is a perpetual property stating that, at any time, any set ¢rusted; contains
at least one non-faulty process. Let us notice that this process is not required to always be the same,
it can change with time. The liveness property states that, after some time, the set trusted; of any
non-faulty process p; contains only non-faulty processes.

3.4.2 Solving URB-broadcast in CAMP,, ;|- FC, O]

Constructing an URB abstraction in the system model CAMP,, +[- FC] enriched with a failure detec-
tor of the class © is particularly easy. The only modification of the construction described in Fig. 3.1
consists in replacing the urb-delivery predicate (just before line 6), namely, replacing

(Irec-byi[m]| >t + 1) A (p; has not yet urb-delivered m),
with
(trusted; C rec_by;[m]) A (p; has not yet urb-delivered m).

The accuracy property of © guarantees that, when p; urb-delivers an application message m, at
least one non-faulty process has a copy of m. As we have seen in the construction of Fig. 3.1, this
guarantees that the application message m that is urb-delivered can no longer be lost. The liveness
property of O guarantees that eventually m can be locally urb-delivered (let us observe that, if a faulty
process could remain forever in trusted;, it could prevent the predicate trusted; C rec_by;[m]) from
becoming true).

3.4.3 Building a Failure Detector © in CAMP,, ,;[- FC, t < n/2]

As urb-broadcast can be implemented in CAMP,, ,[- FC, ¢t < n/2], and in the more general system
model CAMP,,,[- FC, ©)] (i.e., whatever the value of t), it follows that © can be implemented in
CAMP,,[-FC, t <n/2].

The corresponding construction is described in Fig. 3.2. Each process p; manages a queue queue;,
which initially contains all the processes in any order. Process p; repeatedly broadcasts the message
ALIVE(), and, when it receives a message ALIVE() from py, it moves py, at the head of the queue, and
sets trusted; to the [ 1] processes at the head of the queue.

nt1
-1 processes.

initialization: ¢trusted; < any set of [
background task: repeat forever broadcast ALIVE() end repeat.

when ALIVE () is received from p;. do
(1) suppress py from queue;; add py, at the head of queue;;

(2) trusted; + the [2F1] processes at the head of queue;.

Figure 3.2: Building © in CAMP,, ;|- FC, t < n/2] (code for p;)

Theorem 10. The algorithm described in Fig. 3.2 implements a failure detector © in the system model
CAMP,4[-FC, t < n/2].

Proof The accuracy property follows from the fact that ¢rusted; always contains a majority of pro-
cesses, and, as t < n/2, there is always a correct process in the first ("JQFI] processes at the head of
any queue queue;.

The liveness property follows from the following observation. After some time the faulty processes
no longer send messages ALIVE(), while, as the channels are fair, each correct process receives an
infinite number of messages from each correct process. It follows that, after some finite time, each
correct process repeatedly appears at the head of any queue, and faulty processes are shifted to the
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end of the queue. As there is a majority of correct processes, there is a finite time after which the
first (”T“] processes at the head of the queue queue; of any correct process p; are correct processes.
Urheorem 10

3.4.4 The Fundamental Added Value Supplied by a Failure Detector

When considering a failure detector, here ©, the fundamental added value with respect to the assump-
tion ¢ < n/2 lies in the fact that a failure detector allows us to know which is the weakest information
on failures the processes have to be provided with for a problem to be solved. The condition ¢ < n/2is
a model assumption, it is not the weakest information on failures that allows the construction of URB-
broadcast in an asynchronous system whose communication channels are fair. Even when ¢ > n/2,
the “oracle” © allows URB-broadcast to be built.

3.5 Quiescent Uniform Reliable Broadcast

After introducing the quiescence property, this section introduces three failure detector classes that
can be used to obtain quiescent URB-broadcast algorithms. The first one is the class of perfect failure
detectors (denoted P), the second one the class of eventually perfect failure detectors (denoted < P),
and the third one the class of heartbeat failure detectors (denoted HB).

It is shown that P ensures more than the quiescence property (namely, it also ensures termina-
tion which means that there is a time after which a process knows it will never have to send more
messages). The class &P is the weakest class of failure detectors (with bounded outputs) that allows
for the construction of quiescent uniform reliable broadcast. Unfortunately, no failure detector of the
classes P and <P can be implemented in a pure asynchronous system. Finally, the class HB allows
quiescent uniform reliable broadcast to be implemented. The failure detectors of this class have un-
bounded outputs, but can be implemented in pure asynchronous systems (their implementations are
not quiescent).

3.5.1 The Quiescence Property

Prevent an infinity of protocol messages In the previous URB-broadcast constructions, a correct
process is required to send protocol messages forever. This is highly undesirable. The use of acknowl-
edgment messages can easily solve this problem in asynchronous systems where every channel is fair
and no process ever crashes. Each time a process pj, receives a protocol message MSG (m) from a
process p;, it sends back ACK (m) to p;, and when p; receives this acknowledgment message it adds
k to rec_by;[m]. Moreover, a process p; keeps on sending MSG (m) only to the processes that are
not in rec_by;[m]. Due to the fairness of the channels and the fact that no process crashes, eventually
rec_by;[m] contains all the process identities, and consequently p; will stop sending MSG (m).

Unfortunately (as indicated in Section 3.2.1), this classic “re-transmission + acknowledgment”
technique does not work when processes may crash. This is due to the trivial observation that a crashed
process cannot send acknowledgments, and (due to asynchrony) a process p; cannot distinguish a
crashed process from a very slow process or a process with which the communication is very slow.

The previous problem is known as guiescence problem, and solving it requires appropriate failure
detectors.

Quiescence property: definition An algorithm that implements a communication abstraction is
quiescent (or “satisfies the quiescence property”) if each application message it has to transfer to its
destination processes gives rise to a finite number of protocol messages.
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It is important to see that the quiescence property is not a property of a communication abstraction
(it does not belong to its definition); it is a property of its construction (the algorithm that implements
it). Hence, among all the constructions that correctly implement a communication abstraction, some
are quiescent while others are not.

3.5.2 Quiescent URB-broadcast Based on a Perfect Failure Detector

This section introduces the class of perfect failure detectors, denoted P, and shows how it can be used
to design a quiescent URB construction.

The class P of perfect failure detectors This failure detector class, introduced by T. Chandra and
S. Toueg (1996), provides each process p; with a local variable suspected;, which is a set that p; can
only read. The range of this failure detector class is the set of process identities. Intuitively, at any
time, suspected; contains the identities of the processes that p; considers to have crashed.

More formally (as defined in Section 3.3.2), a failure detector of the class P satisfies the following
properties. Let us remember that, given a failure pattern F', F'(7) denotes the set of processes that
have crashed at time 7, Correct(F) the set of processes that are non-faulty in the failure pattern F' and
Faulty(F) the set of processes that are faulty in F'. Observe that Correct(F') and Faulty(F’) define a
partition of IT = {1,...,n}. Moreover, let Alive(r) = II \ F'(7) (the set of processes not crashed at
time 7). Finally, suspected; denotes the value of suspected; at time 7.

e Completeness. 37 € N: V 7/ > 1: Vi € Correct(F),V j € Faulty(F): j € suspected{l.

e Strong accuracy. V7 € IN: Vi, j € Alive(T): j ¢ suspected].

The completeness property is an eventual property that states that there is a finite but unknown
time (7) after which any faulty process is definitely suspected by any non-faulty process. The strong
accuracy property is a perpetual property that states that no process is suspected before it crashes.

It is trivial to implement a failure detector satisfying either the completeness or the strong accu-
racy property. Defining permanently suspected; = {1,...,n} satisfies completeness, while always
defining suspected; = () satisfies strong accuracy. The fact that, due to the asynchrony of processes
and messages, a process cannot distinguish if another process has crashed or is very slow, makes it
impossible to implement a failure detector of the class P without enriching the underlying unreliable
asynchronous system with synchrony-related assumptions (this issue will be addressed in Chap. 18).

P with respect to © A failure detector of the class O can easily be built in CAMP,, ;[P] (system
model CAMP,, ;[0] enriched with a perfect failure detector P). This can be done by defining trusted;
as being always equal to the current value of {1,...,n} \ suspected;.

Whereas a failure detector of the class P cannot be built in CAMP,, ;[©], from which it follows
that P is a failure detector class strictly stronger than ©. This means that CAMP,, ;[©, P] is not
computationally stronger than CAMP,, ;[P]. Nevertheless, even if © can be built in CAMP,, ;[P]
we still use the model notation CAMP,, +[©, P| which provides us with © for free. This favors an
incremental design (on top of the algorithm described in Fig. 3.1), whose modularity (separation of
concerns) facilitates the understanding and the proof.

A quiescent URB construction in CAMP,,;[©, P] In this model, each process p; has read-only
access to both the failure detector-provided local variables: trusted; and suspected,;.

e As we have already seen, © is used to ensure the second part of the termination property,
namely, if a process urb-delivers an application message m, any non-faulty process urb-delivers
it. Hence, the “uniformity” of the reliable broadcast is obtained thanks to ©.

e P is used to obtain the quiescence property. In later sections, P will be replaced by a weaker
failure detector class.
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operation URB_broadcast (m) is send MSG (m) to p;.

when MSG (m) is received from p;, do
(1) if (first reception of m)

) then allocate rec_by;[m]; rec_by;[m] < {i, k};
3) activate task Diffuse,(m)

(€)) else rec_by;[m] < rec_by;[m] U {k}

(5) endif;

(6) send ACK (m) to pk.

when ACK (m) is received from p; do
(7)  recbyi[m] + rec_by;[m] U {k}.

when (trusted; C rec_byi[m]) A (p: has not yet urb-delivered m) do
(8) URB_deliver (m).

task Diffuse;(m) is

(9) repeat

(10)  foreach j € {1,...,n} \ rec_by;[m| do

(11) if (j ¢ suspected;) then send MSG (m) to p; end if
(12)  end for

(13) until (rec_by;[m] U suspected;) = {1,...,n} end repeat.

Figure 3.3: Quiescent uniform reliable broadcast in CAMP,, +[- FC, ©, P] (code for p;)

The quiescent URB construction for CAMP,, ;[©, P] is described in Fig. 3.3. It is the same as
the one described in Fig. 3.1 (where the predicate |rec_by;[m]| > t + 1 is replaced by trusted; C
rec_by;[m] to benefit from ©) enriched with the following additional statements:

e Each time a process p; receives a protocol message MSG (m), it systematically sends back to its
sender an acknowledgment message denoted ACK (m) (line 6). Moreover, when a process p;
receives ACK (m) from a process py, it knows that py, has a copy of the application message m
and it consequently adds k to rec_by;[m] (line 7). (Let us observe that this would be sufficient
to obtain a quiescent URB construction if no process ever crashes.)

o In order to prevent a process p; from forever sending protocol messages to a crashed process p;,
the task Diffuse;(m) is appropriately modified. A process p; repeatedly sends the protocol mes-
sage MSG (m) to a process p; only if j ¢ (rec_by;[m] U suspected;) (lines 10-11). Due to the
completeness property of the failure detector class P, p; will eventually appear in suspected; if
it crashes. Moreover, due to the strong accuracy property of the failure detector class P, p; will
not appear in suspected; before p; crashes (if it ever crashes).

The proof that this algorithm is a quiescent construction of the URB abstraction is similar to the
proof (given below) of the construction shown in Fig. 3.4 for the system model CAMP,, ;- FC, ©, HB].
It is consequently left to the reader.

Terminating construction Let us observe that the construction in Fig. 3.3 is not only quiescent but
also ferminating. Termination is a stronger property than quiescence.

More precisely, for each application message m, the task Diffuse;(m) not only stops sending
messages, but eventually terminates. This means that there is a finite time after which the predicate
(rec_by;[m)Ususpected;) = {1, ...,n}, which controls the exit of the repeat loop, becomes satisfied.
When this occurs, the task Diffuse;(m) no longer has to send protocol messages and can consequently
terminate.

This is due to the properties of the failure detector class P, from which we can conclude that
(1) the predicate rec_by;[m| U suspected; = {1,...,n} eventually becomes true, and (2) when the
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set suspected; becomes true it contains only crashed processes (no non-faulty process is mistakenly
considered as crashed by the failure detector).

As we are about to see below, the termination property can no longer be guaranteed when a failure
detector of the class &GP or HB (defined below) is used instead of a failure detector of the class P.

The class OP of eventually perfect failure detectors Like the class P, the class of eventually
perfect failure detectors, denoted < P, was introduced by T. Chandra and S. Toueg (1996). It provides
each process p; with a set suspected; that satisfies the following property: the sets suspected; can
arbitrarily output values during a finite but unknown period of time, after which their outputs are the
same as the ones of a perfect failure detector. More formally, < P includes all the failure detectors that
satisfy the following properties:

e Completeness. 37 € N:V 7' > 7: Vi € Correct(F),V j € Faulty(F): j € suspected{’.

e Eventual strong accuracy. 37 € N:V 7/ > 7: Vi, j € Alive(7'): j ¢ suspected;/.

The completeness property is the same as for P: every process that crashes is eventually suspected
by every non-faulty process. The accuracy property is weaker than the accuracy property of P. It
requires only that there is a time after which no correct process is suspected. Hence, the set suspected;
of a non-faulty process eventually contains all the crashed processes (completeness), and only them
(eventual strong accuracy).

As we can see, both properties are eventual properties. There is a finite anarchy period during
which the values read from the sets {suspectedi}lgign can be arbitrary (e.g., a non-faulty process
can be mistakenly suspected, in a permanent or intermittent manner, during that arbitrarily long period
of time). The class P is strictly stronger than the class O P. It is easy to see that the classes P and
O cannot be compared (see Exercise 3 in Section 3.8).

< P-based quiescent (but not terminating) URB A quiescent URB construction that works in the
model CAMP,, ,[- FC, ©, < P] is obtained by replacing the predicate that controls the termination of
the task Diffuse;(m) (line 13 in Fig. 3.3), by the following weaker predicate rec_by;[m] = {1,...,n}.
This modification is due to the fact that a set suspected; no longer permanently guarantees that all the
processes it contains have crashed. As previously mentioned, during a finite but unknown anarchy
period, these sets can contain arbitrary values. But, interestingly, despite the possible bad behavior
of the sets suspected;, the test j ¢ suspected; (that controls the sending of a protocol message to
pj in the task Diffuse(m)) is still meaningful. This is due to the fact that we know that, after some
finite time, suspected; will contain only crashed processes and will eventually contain all the crashed
processes. It follows from the previous observation that the construction for CAMP,, ;|- FC, ©, O P]
is quiescent but not necessarily terminating (according to the failure pattern, it is possible that the
termination predicate rec_by;[m] = {1,...,n} is never satisfied).

3.5.3 The Class HB of Heartbeat Failure Detectors

The weakest class of failure detectors for quiescent communication The range of the failure
detector classes P and OP is 21 (the value of suspected; is a set of process identities); so, their
outputs are bounded. It has been shown that & P is the weakest class of failure detectors with bounded
outputs that can be used to implement quiescent reliable communication in asynchronous systems
prone to process crashes and where the channels are unreliable but fair. Unfortunately, it is impossible
to implement a failure detector of the class &P in CAMP,, 4[] and consequently it is also impossible
in CAMP), ;|- FC] (such an implementation would need additional synchrony assumptions).



Chapter 3. Reliable Broadcast in the Presence of Process Crashes and Unreliable Channels 55

How can uniformity and quiescence be obtained These properties can be obtained in CAMP,, ;[0)]
as soon as this system is enriched with:

1. Uniformity. This part of the termination property states that if a message is urb-delivered by a
(correct or faulty) process, it will be urb-delivered by any correct process. This can be obtained
thanks to assumption ¢ < n,/2 or a failure detector of the class ©.

2. Quiescence. This property can be obtained by the use of a failure detector of the class denoted
HB (defined below), which has a simple implementation with unbounded outputs.

The class HB of heartbeat failure detectors This class of failure detectors was introduced by M.
Aguilera, W. Chen, and S. Toueg (1999). Formally, a failure detector of the class HB provides each
process with a read-only array HB;[1..n] (heartbeat), whose entries contain natural integers, defined
by the following two properties (where HB] [j] is the value of HB;[j] at time 7):

e Completeness. Vi € Correct(F),Vl j € Faulty(F): 3K: V7 € N: HB][j] < K.
e Liveness.

1. Vi, j €I V7 eN: HB[j] < HB]"'[j], and

2. Vi,j € Correct(F): VK: 37 € N: HB][j] > K.

The range of each entry of the array HB is the set of positive integers. Unlike from < P, this range
is not bounded. The Completeness property states that the heartbeat counter at p; of a crashed process
pj (i.e., HB;[j]) stops increasing, while the liveness property states that the heartbeat counter HB;[j]
(1) never decreases and (2) increases without bound if both p; and p; are non-faulty.

Let us observe that the counter of a faulty process increases during a finite but unknown period,
while the speed at which the counter of a non-faulty process increases is arbitrary (this speed is “asyn-
chronous™). Moreover, the values of two local counters HB;[j] and HBy[j] are not related.

Implementing B There is a trivial implementation of a failure detector of the class HB in the
system CAMP,, ;[- FC]. Each process p; manages its array HB;[1..n] (initialized to [0,...,0]) as
follows. On the one side, p; repeatedly sends the message HEARTBEAT (4) to each other process. On
the other side, when it receives HEARTBEAT (), p; increases HB;[j]. This very simple implementation
is not quiescent; it requires correct processes to sends messages forever.

This means that B has to be considered as a “black box” (i.e., we do not look at the way it is im-
plemented) when we say that quiescent communication can be realized in CAMP,, ;[- FC, ©, HB]. In
fact, a failure detector of a class such as P, &P, or © provides a system with additional computational
power. Whereas a failure detector of a class HB constitutes an abstraction that “hides” implementa-
tion details (all of the non-quiescent part is pieced together in a separate module, namely, the heartbeat
failure detector).

A remark on oracles The notion of an oracle was first introduced as a language whose words could
be recognized in one step from a particular state of a Turing machine. The main feature of such oracles
is to hide a sequence of computation steps in a single step, or to guess the result of a non-computable
function. They have been used to define (a) equivalence classes of problems, and (b) hierarchies of
problems, when these problems are considered with respect to the assumptions they require to be
solved.

In our case, failure detectors are oracles that provide the processes with information that depends
only on the failure pattern that affects the execution in which they are used. It is important to remember
that the outputs of a failure detector never depend on the computation produced by the algorithm. They
depend on the environment. According to the previous terminology, we can say that classes such as P,
O P, or O, are classes of “guessing” failure detectors, while HB is a class of “hiding” failure detectors.
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3.5.4 Quiescent URB-broadcast in CAMP, ;[- FC, ©, HB]

A URB Construction in CAMP,,[- FC, ©, HB] A quiescent algorithm implementing the URB-
broadcast communication abstraction in CAMP,, ,[- FC, ©, HB] is described in Fig. 3.4. Designed by
M. Aguilera, W. Chen and S. Toueg (2000), it is similar to the one for CAMP,, ,[- FC, ©, P] described
in Fig. 3.3. It differs in the addition of two local variables per application message (prev_hb;[m] and
cur_hb;[m] which contain previous and current heartbeat arrays, line 2), and in the task Diffuse;(m).
Basically, a process p; sends the protocol message MSG (m) to a process p; only if j ¢ rec_by;[m]
(from p;’s point of view, p; has not yet received the application message m), and HB;[j] has increased
since the last test (from p;’s point of view, p; is alive, predicate of line 14). The local variables
prev_hb;[m][j] and cur_hb;[m][j] are used to keep the two last values read from HB;[j].

operation URB_broadcast (m) is send MSG (m) to p;.

when MSG (m) is received from p;, do
(1) if (first reception of m)

(2) then allocate rec_by; [m], prev_hb;[m], cur_hb;[m];
3) rec_by;[m] < {i, k};

4) activate task Diffuse(m)

Q) else rec_by;[m] < rec_by;[m] U {k}

(6) endif;

(7) send ACK (m) to py.

when ACK (m) is received from p; do
(8) recbyi[m] < rec_byi[m| U {k}.

when (trusted; C rec_by;[m]) A (p; has not yet urb-delivered m) do
(9) URB_deliver (m).

task Diffuse;(m) is

(10) prev_hbi[m] < [—-1,...,—1];

(11) repeat

(12)  cwr_hb;[m] < HB;;

(13)  foreachj € {1,...,n} \ rec_by;[m] do

(14) if (prev_hb;[m][j] < cur_hb;[m][j]) then send MSG (m) to p; end if
(15)  end for;

(16)  prev_hb;[m] < cur_hb;[m]

(17) until rec_by;[m] = {1,...,n} end repeat.

Figure 3.4: Quiescent uniform reliable broadcast in CAMP,, +[- FC, ©, HB] (code for p;)

Theorem 11. The algorithm described in Fig. 3.4 is a quiescent construction of the URB-broadcast
communication abstraction in CAMP,, ;[- FC, ©, HB].

Proof The proof of the URB-validity property (no creation of application messages) and the URB-
integrity property (an application message is delivered at most once) follow directly from the text of
the construction. Hence, the rest of the proof addresses the URB-termination property and the quies-
cence property. It is based on two preliminary claims. Let us first observe that, once added, an identity
Jj is never withdrawn from rec_by;[m].

Claim C1. If a non-faulty process p; activates Diffuse;(m), all the non-faulty processes p; activate
Diffuse;(m).
Proof of claim C1. Let us consider a non-faulty process p; that activates Diffuse;(m). It does it when
it receives MSG (m) for the first time. Let p; be a non-faulty process. There are two cases:
e There is a time after which j € rec_by;[m|. The process p; has added j to rec_by;[m] because
it has received MSG (m) or ACK (m) from pj;. It follows that p; received MSG (m). The first
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time it received this protocol message, it activated Diffuse; (m), which proves the claim for this
case.

e The identity j is never added to rec_by;[m]. As p; is non-faulty, it follows from the liveness of
HB that HB;[j] increases forever, from which it follows that the predicate (prev_hb;[m][j] <
cur_hb;[m][j]) is true infinitely often. It then follows that p; sends infinitely often MSG (m) to
p;. Due to the termination property of the fair channel connecting p; to p;, p; receives MSG ()
infinitely often from p;. The first time it was received, p; activated the task Diffuse(m);, which
concludes the proof of claim Cl1.

Claim C2. If all the non-faulty processes activate Diffuse(m), they all eventually execute the operation
URB_deliver (m).
Proof of claim C2. Let p; and p; be any pair of non-faulty processes. As p; executes Diffuse;(m)
and p; is non-faulty, p; sends MSG (m) to p; until j € rec_by;[m]. Let us observe that, due to the
systematic sending of acknowledgments and the termination property of the channels, we eventually
have j € rec_by;[m]. It follows that rec_by;[m] eventually contains all the non-faulty processes.
Moreover, it follows from the liveness property of O that there is a finite time from which trusted;
contains only non-faulty processes.
It follows from the two previous observations that, for any non-faulty process p;, there is a finite
time after which the predicate (trusted; C rec_by;[m]) becomes and remains true forever, and conse-
quently p; eventually urb-delivers m. End of the proof of claim C2.

Proof of the termination property. Let us first show that, if a non-faulty process p; invokes the operation
URB_broadcast (m), all the non-faulty processes urb-deliver the application message m. As p; is
non-faulty, it sends the protocol message MSG (m) to itself and (by assumption) receives it. It then
activates the task Diffuse;(m). It follows from claim C1 that every non-faulty process p; activates
Diffuse ;(m). We conclude then from claim C2 that each correct process urb-delivers m.

Let us now show that if a (faulty or non-faulty) process p; urb-delivers the application m, then all
the non-faulty processes urb-deliver m. As p; urb-delivers m, we have trusted; C rec_by;[m]. Due
to the Accuracy property of the underlying failure detector of the class ©, trusted; always contains a
non-faulty process. Let p; be a non-faulty process such that j € trusted; when the delivery predicate
trusted; C rec-by;[m] becomes true. As j € rec_by;[m], it follows that p; has received MSG ()
(see the first item of the proof of Claim C1). The first time it received such a message, p; activated
Diffuse ;(m). It then follows from claim C1 that every non-faulty p, process activates Diffuse,(m),
and from claim C2 that all the non-faulty processes urb-deliver m.

Proof of the quiescence property. We have to prove here that any application message m gives rise to a
finite number of protocol messages. The proof relies only on the underlying heartbeat failure detector
and the termination property of the underlying fair channels.

Let us first observe that (a) the reception of a protocol message ACK () never entails the sending
of protocol messages, and (b) a protocol message ACK (m) is only sent when a protocol message
MSG (m) is received. So, the proof amounts to showing that the number of protocol messages of the
type MSG (m) is finite. Moreover, a faulty process sends a finite number of protocol messages MSG
(m), so we have only to show that the number of messages MSG (m) sent by each non-faulty process
p; is finite. Such messages are sent only inside the task Diffuse;(m). Let p; be a process to which the
non-faulty process p; sends MSG (m). If there is a time after which j € rec_by;[m] holds, p; stops
sending MSG (m) to p;. So, let us consider that j € rec_by;[m| remains false forever. There are two
cases:

e Case pj is faulty. In this case there is a finite time after which, due to the Completeness property
of HB, HB;[j] no longer increases. It follows that there is a finite time after which the predicate



58 3.7. Bibliographic Notes

(prev_hb;[m][j] < cur_hb;[m][j]) remains false forever. When this occurs, p; stops sending
MSG (m) to pj, which proves the case.

e Case p; is non-faulty. We show a contradiction. In this case, the predicate prev_hb;[m|[j] >
cur_hb;[m][j] is true infinitely often. It follows that p; sends MSG (m) to p; infinitely often.
Due to the termination property of the fair channel from p; to p;, the process p; receives MSG
(m) from p; an infinite number of times. Consequently it sends back ACK (m) to p; an infinite
number of times, and, due to the termination property of the channel from p; to p;, p; receives
this protocol message an infinite number of times. At the first reception of ACK (m), p; adds
J to rec_by;[m]. As no process identity is ever withdrawn from rec_by;[m], the predicate j €
rec_by;[m| remains true forever, contradicting the initial assumption, which concludes the proof

of the quiescence property.
U7 heorem 11

Quiescence vs termination Unlike the quiescent URB construction for CAMP,, ,[- FC, ©, P] (de-
scribed in Fig. 3.3), but similar to the quiescent construction for CAMP,, +[- FC, ©,P), the con-
struction described in Fig. 3.4 for CAMP,, ;[- FC, ©, HB] is not terminating. It is easy to see that it is
possible that the task Diffuse;(m) of a process p; never terminates. In fact, while quiescence concerns
only the activity of the underlying network (due to message transfers), termination is a more general
property that concerns the activity of both message transfers and processes.

This is due to the fact that the properties of both &P and HB are eventual. When HB;[j] does not
change, we do not know if it is because p; crashed or because its next increase is arbitrarily delayed.
This uncertainty is due to the net effect of asynchrony and failures. When the failure detector is perfect
(class P), the “due to failures” part of this uncertainty disappears (because when a process is suspected
we know for sure that it has crashed), and consequently a P-based construction has to cope only with
asynchrony.

3.6 Summary

This chapter addressed uniform reliable broadcast in the context of asynchronous systems where pro-
cesses may crash, and communication channels are unreliable but fair, which intuitively means that,
if a process repeatedly re-transmits the same message, the channel cannot lose all of the copies due to
these re-transmissions.

It has been shown that, in the presence of asynchrony and fair channels, URB-broadcast can be
implemented only if a majority of processes do not crash. This assumption has been captured at a
more abstract level, namely with the concept of a failure detector. The chapter also introduced the
notion of a quiescent implementation, where “quiescent” means that, at the implementation level, an
application message cannot give rise to an infinite number of protocol messages. It has been shown
that URB-broadcast quiescent algorithms require appropriate failure detectors.

3.7 Bibliographic Notes

e The concept of a failure detector was introduced by T. Chandra and S. Toueg in [102] where
they defined, among other failure detector classes, the classes P and & P. The class P has
been shown to be the weakest class of failure detectors to solve some distributed computing
problems [121, 211].

e The oracle notion in sequential computing is presented in numerous textbooks. Among other
books, the reader can consult [182, 222].
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3.8

The weakest failure detector class O that allows the construction of the URB-broadcast abstrac-
tion despite asynchrony, any number of process crashes, and fair channels, was proposed by
M.K. Aguilera, S. Toueg, and B. Deianov [22].

The notion of quiescent communication and the heartbeat failure detector class were introduced
by M.K. Aguilera, W. Chen and S. Toueg in [10, 12]. These notions were investigated in [11] in
the context of partitionable networks.

The very weak communication model and the corresponding quiescent URB-broadcast con-
struction presented in Exercise 4 (Section 3.8) was introduced in [12].

When we consider a system as simple as the one made up of two processes connected by a
bidirectional channel, there are impossibility results related to the effects of process crashes,
channel unreliability, or the constraint to use only bounded sequence numbers. Chapter 22 of N.
Lynch’s book [271] presents an in-depth study of the power and limits of unreliable channels.

The effects of fair lossy channels on problems in general, and in asynchronous systems that are
not enriched with failure detectors, is addressed in [54].

Given two processes that (a) can crash and recover, (b) have access to volatile memory only,
and (c) are connected by a (physical) reliable channel, let us consider the problem that consists
in building a (virtual) reliable channel connecting these two (possibly faulty) processes. Maybe
surprisingly, this problem is impossible to solve [154]. This is mainly due to the absence of
stable storage.

It is also impossible to build a reliable channel when the processes are reliable (they never
crash) and the underlying channel can duplicate and reorder messages (but cannot create or lose
messages), and only bounded sequence numbers can be used [412].

However, if processes do not crash and the underlying channel can lose and reorder messages,
but cannot create or duplicate messages, it is possible to build a reliable channel, but this con-
struction is highly inefficient [5].

Exercises and Problems

. Considering the algorithm in Fig. 3.1, let us replace line 8

for each j € {1,...,n} do send MSG (m) to p; end for,
with
for each j € {1,...,n} \ rec_by;[m] do send MSG (m) to p; end for.

Show that this modification can prevent a correct process p;, which issues URB_broadcast (m),
from urb-delivering the message m.

. Show that no failure detector of the class P can be built in CAMP,, ;[©)].

. Show that failure detector classes &P and © cannot be compared (hint: a set trusted; is never

required to contain the identity of all correct processes).

. A more difficult problem.

The processes are asynchronous and may crash (as before). On the network side each directed
pair of processes is connected by a channel that is either fair or unreliable. An unreliable channel
is similar to a fair channel as far as the validity and integrity properties are concerned but has no
termination property. Whatever the number of times a message is sent (even an infinite number
of times), the channel can lose all its messages. So, if an unreliable channel connects p; to p;,
it is possible that no message sent by p; is ever received by p; on this channel, exactly as if this
channel was missing.
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3.8. Exercises and Problems

An example of such a network is represented in Fig. 3.5. A black or white big dot represents a
process. A simple arrow from a process to another process represents a fair unidirectional chan-
nel. A double arrow indicates that both unidirectional channels connecting the two processes
are fair. All the other channels are unreliable (in order not to overload the figure they are not
represented).

K
Figure 3.5: An example of a network with fair paths

Notion of fair path In order to be able to construct a communication abstraction that, in
any run, allows any pair of non-faulty processes to communicate, basic assumptions on the
connectivity of the non-faulty processes are required. These assumptions are based on the notion
of a fair path. Hence, given an execution, it is assumed that every directed pair of non-faulty
processes is connected by a directed path made up of non-faulty processes and fair channels,
which is known as a fair path.

When considering Fig. 3.5, let the black dots denote the non-faulty processes and the white
dots denote the faulty ones. One can check that every directed pair of non-faulty processes is
connected by a fair path.

What has to be done Considering the previous system mode with very weak connectivity,
design:
e an algorithm implementing a Heartbeat failure detector, and
e an algorithm building URB-broadcast with the help of a Heartbeat failure detector, and a
failure detector of the class ©.

Solution in [12] (original paper) and in Chapter 4 of the monograph [366].
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Reliable Broadcast in the Presence of
Byzantine Processes

This chapter presents two broadcast communication abstractions suited to the asynchronous systems
prone to process Byzantine failures (basic model BAMP,, ,[()] appropriately enriched). The first of
these broadcast abstractions is called no-duplicity broadcast, while the second one is the classic non-
uniform reliable broadcast adapted to Byzantine failures. (Let us notice that, as a Byzantine process
may behave arbitrarily, it is meaningless to force a correct process to deliver a message only because
it was delivered by a Byzantine process.) An algorithm implementing no-duplicity broadcast, and
two algorithms implementing Byzantine reliable broadcast are presented. The no-duplicity broad-
cast algorithm and one of the reliable broadcast algorithms require ¢ < n/3, which is a necessary
requirement (hence they are optimal from a failure resilience point of view, and work in the model
BAMP,, 4|t < n/3]). The second reliable broadcast algorithm requires ¢ < n/5. The two reliable
broadcast algorithms differ in their respective costs both in terms of time and number of messages.

Keywords Asynchronous system, Byzantine process, Fault-tolerance, Message-passing, No-duplicity
property, Reliable broadcast, Signature-free algorithm, Uniformity requirement.

4.1 Byzantine Processes and Properties of the Model BAMP,, ,[t < n/3]

Byzantine behavior A Byzantine process is a process that deviates arbitrarily from its intended
behavior (as defined by the algorithm it is assumed to execute). Examples of a Byzantine behavior
are:

e a process crash,

e omitting to send or receive messages,

e the sending of erroneous values,

e the sending of different values to different subsets of processes, when assumed to broadcast the
same value to all, etc.

It is also possible for several Byzantine processes to collude to pollute the computation and foil correct
processes. They can read the content of the messages sent over the network, delay some of them, but
can neither modify their content, nor discard them.

Properties of the system model BAMP,, [t < n/3] It will be shown in the next section that ¢ <
n/3 is a necessary requirement to implement both the no-duplicity broadcast and the reliable broadcast
communication abstractions. The corresponding model BAMP,, [t < n/3] has the following model-
related properties, which will be used in the correctness proof of algorithms presented in this chapter.
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Lemma 2. Let m, n, and t be positive integers. We have: (m > an) = (m > L”Qij + 1).

Proof
e Direction <=: Asz — 1 < [z], it follows that (m > [ 2| + 1) = (m > 2f).

e Direction =: (m > %) = (m > [ 2| +1).
- Case (n +t) mod 2 = 0. We then have m > 2t = m > 2t + 1 = |

R L
- Case (n+t)mod 2 = 1. We then have o > "% = > " 4 1 = |nH | 4]

2
ULemma 2

Lemma 3. Let n > 3t. We have
o ntt
(@ n—t>"",
(b) any set containing more than "7“ distinct processes, contains at least (t + 1) non-faulty pro-
cesses,

(¢) any two sets of processes Q1 and Q2 of size at least L"THJ + 1 have at least one correct process
in their intersection.

Proof Proofof(a).n>3t¢>2n>n+3t<ﬁ>2n—2t>n+t<ﬁ>n—t>”TH.

Proof of (b). We have "?H > % = 2t + %, from which it follows that any set of more than "7“
distinct processes contains at least 2¢ + 1 processes. The proof then follows from the fact that any set
of 2t + 1 distinct processes contains at least ¢ + 1 non-faulty processes.

Proof of (c). When considering integers, it follows from Lemma 2, that “strictly more than "?“” is
equivalent to “at least | 4% | + 17,
° Q1 U QQ - {pl, .. ,pn}. Hence, Q1 U QQ‘ <n.

o [QiNQa| = Q1] +]Qa| = [Q1UQ2| > [Q1]+]Q2| =1 > 2([ 2| +1) —n > 2(%4) —n = ¢
Hence, |Q1 N Q2| > t + 1, from which it follows that Q1 N Q2 contains at least one correct
process.

ULemma 3

4.2 The No-Duplicity Broadcast Abstraction

4.2.1 Definition

The no-duplicity communication abstraction (in short ND-broadcast) was introduced by G. Bracha
(1983) and S. Toueg (1984) in the context of asynchronous systems prone to Byzantine process fail-
ures. It is defined by two operations denoted ND_broadcast() and ND _deliver(), which provide the
processes with a higher abstraction level than unreliable best effort broadcast.

Considering an instance of ND-broadcast where ND_broadcast() is invoked by a process p;, this
communication abstraction is defined by the following properties:

e ND-validity. If a non-faulty process nd-delivers an application message m from p;, then, if p; is
correct, it nd-broadcast m.

e ND-integrity. No correct process nd-delivers a message more than once.

e ND-no-duplicity. No two non-faulty processes nd-deliver distinct messages from p;.

e ND-termination. If a non-faulty process p; nd-broadcasts an application message m, all the
non-faulty processes eventually nd-deliver m.
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Let us observe that, if the sender p; is faulty, it is possible that some non-faulty processes nd-
deliver a message m from p;, while others do not. Let us also observe that, if processes nd-deliver a
message m from a faulty sender, there is no constraint on the content of m. The no-duplicity property
prevents any two non-faulty processes from nd-delivering different messages m; and mgo from a faulty
sender.

4.2.2 An Impossibility Result

Theorem 12. There is no algorithm implementing ND-broadcast in the system model BAMP,, +[t >

n/3).

Proof Let us partition the n processes into three sets P;, P» and Ps, such that each set contains [%W
or | | processes. Ast > max(|Pi|, |Psl,|P3|), there are executions in which all the processes of the
same partition (either Py, or P», or P3) can be Byzantine.

Let us assume there is an algorithm A that solves the problem. Let us consider an execution F, in
which the processes of P; and Ps are correct, while all the processes of P, are Byzantine. Observe
that, in A, no process can wait for protocol messages from more than (n —t) processes without risking
being blocked forever, which, due to n < 3¢, translates into “a correct process can wait for protocol
messages from at most n — ¢ < 2¢ processes”. Let us also consider that, due to message asynchrony,
the execution F is such that the messages exchanged between the processes of P and the processes
of Ps are delayed for an arbitrarily long period.

The processes of P (which are Byzantine) simulate, with respect to the processes of P, a correct
behavior as if one of them p, invoked ND_broadcast(m). Hence, the processes of P, appear to be
correct to the processes of P;.

Similarly, with respect to the processes of Ps, the processes of P, simulate a correct behavior as if
pz invoked ND_broadcast(m’), where m’ # m. Hence, the processes of P, appear as being correct to
the processes of Ps.

Due to
(a) the assumption that A is correct,
b)yn—t < 2t,
©) |PLUPy| <2t,(d) |P3U Py <2,

(e) the processes of P; do not receive messages from the processes of Ps, and

(f) the processes of P3 do not receive messages from the processes of P,

it follows that eventually the processes of P} nd-deliver m (this is what should occur if the processes
of P U P» were correct and the processes of Ps initially crashed). In a similar way and for the same
reason, the processes of P35 nd-deliver m/. This contradicts the fact that no two correct processes
nd-deliver different values from the same process, which concludes the proof of the theorem. (The
messages — if any — between the processes of P; and the processes of P; that were delayed are received
after the processes of P; and P — 3 have nd-delivered m and m/, respectively). OTheorem 12

4.2.3 A No-Duplicity Broadcast Algorithm

The algorithm described in Fig. 4.1 is due to S. Toueg (1984). It implements the ND-broadcast ab-
straction in BAMP,, [t < n/3]. It follows from the previous impossibility result that this algorithm
is optimal with respect to ¢.

Let us remember that “broadcast MSG(m)” is a shortcut for “for each j € {1,...,n} do send
MSG(m) to p; end for”.

The algorithm considers an instance of ND-broadcast per process, i.e., a correct process invokes
ND-broadcast at most once. Adding sequence numbers would allow processes to ND-broadcast sev-
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operation ND _broadcast (m;) is
(1) broadcast INIT(, m;).

when INIT(j, m) is received do
(2) if (first reception of INIT(j, —)) then broadcast ECHO(j,m) end if.

when ECHO(j, m) is received do

(3) if ( (ECHO(j,m) received from more than “F* different processes)
A ((j,m) not yet ND-delivered))

(4)  then ND_deliver (j,m)

(5) endif.

Figure 4.1: Implementing ND-broadcast in BAMP, 4[t < n/3]

eral messages. In this case, the process identity associated with each message has to be replaced by a
pair made up of a sequence number and a process identity.

When a process p; nd-broadcasts an application message m;, it broadcasts the protocol message
INIT (4, m;) (line 1), whose intuitive meaning is “p; initiated the nd-broadcast of message m;”.

When a process p; receives a protocol message INIT(j, —) for the first time (where “— stands
for any message value), it broadcasts the protocol message ECHO(j, m) where m is the content of the
message INIT(j, —) (line 2). The intuitive meaning of this message is “p; knows that p; initiated the
nd-broadcast of message m”. If the message INIT(j, m) is not the first message INIT(j, —) received by
p;» we can conclude that p; is Byzantine and consequently the message is discarded. Finally, when p;
has received the same message ECHO(j, m) from more than (n +t) /2 processes, it locally nd-delivers
the pair (j,m) (lines 3-4).

Theorem 13. The algorithm described in Fig. 4.1 implements ND-broadcast communication abstrac-
tion in the system model BAMP,, ;[t < n/3].

Proof The proof of the ND-integrity property follows directly from the second part of the ND-delivery
predicate (line 3).

Proof of the ND-termination property. To prove this property, let us consider a non-faulty process p;
that nd-broadcasts the application message m. As p; is non-faulty, the protocol message INIT(j, m)
is received by all the non-faulty processes, which are at least (n — t), and every non-faulty process
broadcasts ECHO(j, m) (line 2). Hence, each non-faulty process receives ECHO(j, m) from at least
(n — t) different processes. Asn —t > ”T“ (item (a) of Lemma 3), it follows that every non-faulty
process eventually nd-delivers (j, m) (lines 3-4).

Proof of the ND-no-duplicity property. Let us assume by contradiction that two non-faulty processes
p; and p; nd-deliver different messages m; and my from some process py, i.e., p; nd-delivers (k, m1)
and p; nd-delivers (k,m2), where m; # my. It follows from the predicate of line 3, that p; received
ECHO(k, m1) from a set of more than ”TH distinct processes, and p; received ECHO(k, m2) from a set
of more than ”T*t distinct processes. Moreover, it follows from item (c) of Lemma 3 that the inter-
section of these two sets contains a non-faulty process p,. But, as it is non-faulty, p, sent the same
protocol message ECHO(k, —) to p; and p; (line 2). It follows that m; = my, which contradicts the
initial assumption.

Proof of the ND-validity property. If Byzantine processes forge and broadcast a message ECHO(%, m)
such that p; is correct and has never invoked ND_broadcast(m), no correct process nd-delivers the
pair (i, m). Let us observe that at most ¢ processes can broadcast the fake message ECHO(i,m). As
< ”;“t, it follows that the predicate of line 3 can never be satisfied at a correct process. Hence, if p;
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is correct, no correct process can nd-deliver from p; a message that has not been nd-broadcast by p;.
Urheorem 13

Cost of an ND-broadcast It is easy to see that this implementation uses two consecutive commu-
nication steps and, counting only the protocol messages sent by correct processes, at most O(n?)
underlying messages ((n — 1) in the first communication step, and at most n(n — 1) in the second
one). Moreover, there are two types of protocol message, and the size of the control information
added to a message is logyn (sender identity).

Remark on the ND-delivery predicate Let us notice that replacing at line 4 “more than % dif-
ferent processes” with “(n — t) different processes” leaves the algorithm correct. As n — ¢ > "7“
(item (a) of Lemma 3), it follows that using “more than ”T” different processes” provides a weaker
ND-delivery condition, and consequently a more efficient algorithm from a ND-delivery point of view.
As a simple numerical example, let us consider n = 21 and ¢ = 2. We have then n — ¢ = 19, which is

much greater than the required value of 12 (> "H = 11.5).

A simple example Fig. 4.2 presents an example of an execution where n = 4, t = 1, and the sender
process p; is Byzantine. Although it has not invoked ND_broadcast(), this process sends the same
message INIT(1, a) to py and p3, and a different message INIT(1,b) to ps. Each of p, ps, and py
broadcasts an echo message carrying the pair it received (only the echos of py and p3 appear on the
figure). Then p; (which is Byzantine) sends a message ECHO(1, @) to p; and po, and ECHO(1, b) to py.
As they receive 3 > ”*’ = 2 messages ECHO(1, a), both ps and p3 nd-delivered a. Whereas, as py
can receive at most two messages ECHO(1,b) (one from p; and one from itself), it cannot nd-deliver
ECHO(L,a)

b.
Byzantine P1
INIT(1, a) CHO La)
ECHO(1 )
ND_deliver (1, a)
correct P2
CHO
M \\ECHO (1,a)
INIT ECHO(1, a)
correct  P3 ND_deliver (T, a)
(1 b) ECHO(1,b)
ECHO(1,a)
p No ND_delivery from p;
4

correct

Figure 4.2: An example of ND-broadcast with a Byzantine sender

The reader can play with the speed of messages and the behavior of p; to produce an example in
which no process nd-delivers a message, or an example in which none of the processes pi, p2, and p3
nd-deliver a message from p; .

4.3 The Byzantine Reliable Broadcast Abstraction

From crash failures to Byzantine failures The definition of the uniform reliable broadcast (URB-
broadcast) communication abstraction presented in Chap. 2 was suited to the process crash failure
model. Its Termination property states that “(1) if a non-faulty process urb-broadcasts a message m,
or (2) if a process urb-delivers a message m, then each non-faulty process URB-delivers the message
m”. Part (2) requires that, as soon as a (correct or faulty) process delivers a message m, all correct
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processes deliver the same message m. This requirement can be ensured in the case of crash failures
because a process that crashes behaved correctly until it crashed.

This is impossible to ensure in the case of a Byzantine process as, by its very definition, the
behavior of a Byzantine process can deviate from the text of the algorithm it is assumed to execute.
It follows that part (2) of the previous definition must be weakened in the presence of Byzantine
processes. In such a context, it is not possible to implement a uniform reliable broadcast; hence, the
following definition is suited to the Byzantine failure model, which is presented as an extension of
ND-broadcast.

Byzantine reliable broadcast (BRB): Definition The BRB-broadcast communication abstraction
was introduced by G. Bracha and S. Toueg (1985). It provides the processes with the operations
BRB_broadcast() and BRB_deliver() defined by the following properties:

e BRB-validity. If a non-faulty process brb-delivers a message m from a correct process p;, then
p; brb-broadcast m.

e BRB-integrity. No correct process brb-delivers a message more than once.
e BRB-no-duplicity. No two non-faulty processes brb-deliver distinct messages from p;.

e BRB-termination-1. If the sender p; is non-faulty, all the non-faulty processes eventually brb-
deliver its message.

e BRB-termination-2. If a non-faulty process brb-delivers a message from p; (possibly faulty)
then all the non-faulty processes eventually brb-deliver a message from p;.

Hence, from an abstraction level and modularity point of view, BRB-broadcast is ND-broadcast
plus the BRB-termination-2 property. As BRB-broadcast extends ND-broadcast, and ¢ < n/3 is a
necessary (and sufficient) requirement on the maximal number of processes which can be Byzantine,
it follows that t < n/3 is also a necessary requirement for BRB-broadcast.

Let us notice that the combination of RB-no-duplicity and BRB-termination-2 implies that if a
non-faulty process brb-delivers a message m from p; (possibly faulty) then all the non-faulty processes
eventually brb-deliver m. These two properties can be pieced together into a single property as follows:
“If a non-faulty process brb-delivers a message m from a process p; (faulty or non-faulty), all the non-
faulty processes eventually brb-deliver the message m”.

4.4 An Optimal Byzantine Reliable Broadcast Algorithm

4.4.1 A Byzantine Reliable Broadcast Algorithm for BAMP,, ,[t < n/3]

The algorithm presented in Fig. 4.3 implements the reliable broadcast abstraction in the system model
BAMPM[t < n/3]. Due to G. Bracha (1984, 1987), it is presented here incrementally as an enrich-
ment of the ND-broadcast algorithm of Fig. 4.1.

First: a simple modification of the ND-broadcast algorithm The first five lines are nearly the
same as the ones of the ND-broadcast algorithm. The main difference lies in the fact that, instead of
nd-delivering a pair (j, m) when it has received enough messages ECHO(j, m), p; broadcasts a new
message denoted READY (7, m). The intuitive meaning of READY (7, m) is the following: “p; is ready
to brb-deliver the pair (j,m) if it receives enough messages READY (j, m) witnessing that the correct
processes are able to brb-deliver the pair (j, m)”.

Let us observe that, due to ND-no-duplicity, it is not possible for any pair of correct processes p;
and p; to be be such that, at line 4, p; broadcasts READY(j, m) while p; broadcasts READY (j, m’)
where m # m/’.
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operation BRB_broadcast (m;) is
(1) broadcast INIT(%, m;).

when INIT(j,m) is received do
(2) if (first reception of INIT(j, —)) then broadcast ECHO(j, m) end if.

when ECHO(j, m) is received do

3) if ( (ECHO(j, m) received from more than
A (READY (j, ) not yet broadcast))

(4)  then broadcast READY(j,m) % replaces ND_deliver (j, m) of Fig. 4.1

(5) endif.

n

£ different processes)

when READY (7, m) is received do

(6) if ( (READY(j,mn) received from (¢ + 1) different processes)
A (READY(j, m) not yet broadcast))

@) then broadcast READY (j, m)

(8) endif;

9) if ( (READY (7, m) received from (2t + 1) different processes)
A ({j, m) not yet brb—de]ivercd))

(10)  then BRB_deliver (j,m)

(11) endif.

Figure 4.3: Implementing BRB-broadcast in BAMP,, ;[t < n/3]

Then: processing the new message READY() The rest of the algorithm (lines 6-11) comprises
two “if”” statements. The first one is to allow each correct process to receive enough messages
READY (j,m) to be able to brb-deliver the pair (j, m). To this end, if not yet done, a process p;
broadcasts the message READY(j, m) as soon as it is received from at least one correct process, i.e.,
from at least (¢ + 1) different processes (as ¢ of them can be Byzantine).

The second “if” statement is to ensure that if a correct process brb-delivers the pair (j, m), no
correct process will brb-deliver a different pair. This is because, despite possible fake messages
READY (j, —) sent by faulty processes, each correct process will receive the pair (j, m) from enough
correct processes, where “enough” means here “at least (¢ + 1)” (which translates as “at least (2¢ + 1)
different processes”, as up to ¢ processes can be Byzantine).

4.4.2 Correctness Proof

Theorem 14. The algorithm described in Fig. 4.3 implements BRB-broadcast communication ab-
straction in the system model BAMP,, [t < n/3].

Proof The proof of the BRB-integrity property follows trivially from the brb-delivery predicate of
line 9.

Proof of the BRB-validity property. We have to show that if p; and p; are correct, and p; brb-delivers
an application message from p;, then p; brb-broadcast m. The proof is similar to the one in Theo-
rem 13, namely, if Byzantine processes forge and broadcast a message ECHO(,m) such that p; is
correct and never invoked BRB_broadcast(m), no correct process brb-delivers the pair (i, m). Let
us observe that at most ¢ processes can broadcast the fake message READY (i, m). Ast < 2t + 1, it
follows that the predicate of line 9 can never be satisfied at a correct process. Hence, if p; is correct,
no correct process can brb-deliver a message it has never brb-broadcast.

Proof of the BRB-no-duplicity property. To prove this property, let us first prove the following claim:
if two non-faulty processes p; and p; broadcast the messages READY (k, m) and READY (k,m'), re-
spectively, we have m = m/. There are two cases:
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e Both p; and p; broadcast READY (k, m) and READY (k, m') at line 4. In this case, we are in the
same scenario as the one of the ND-broadcast algorithm in Fig. 4.1, and the claim follows from
its ND-no-duplicity property.

e At least one of p; or p; (let us call it p,;) broadcast READY (k, v) (where v is m or m'), at line 7.
In this case, due to the predicate of line 6, it received a message READY (k, v) from at least one
correct process, say pg,, which received READY (k, v) from at least one correct process, say py,,
etc. It follows from the text of the algorithm that the seed of this message forwarding is a correct
process that broadcast READY (k, v) at line 4. We are then brought back to the previous item,
from which we conclude that m = m/.

Let us now prove the BRB-no-duplicity property: if two non-faulty processes p; and p; brb-deliver
(j,m) and (j, m'), respectively, we have m = m/.

If p; brb-delivers (j, m), itreceived READY (j, m) from (2¢t+1) different processes, and hence from
at least one non-faulty process. Similarly, if p; brb-delivers (j, m'), it brb-delivered READY (5, m’)
from at least one non-faulty process. It follows from the previous claim that all the non-faulty pro-
cesses broadcast the same message READY (4, v), from which we conclude that m = v and m’ = v.

Proof of the BRB-termination-1 property. This property states that if a non-faulty process p; brb-
broadcasts m, all the non-faulty process brb-deliver (i, m). If a non-faulty process p; brb-broadcasts
m, every non-faulty process receives INIT(i, m), and broadcasts ECHO (i, m) (line 2). Asn—¢ > 2,
it follows from the predicate of line 3 that each correct process broadcasts READY (i, m). Let us notice
that, as t < ”TH even if they collude and broadcast the same message READY (4, m’ ) where m' # m,
the faulty processes cannot prevent a non-faulty process from broadcasting READY (¢, m). Finally, as
n —t > 2t + 1, the predicate of line 9 eventually becomes satisfied, and every non-faulty process

brb-delivers (i, m).

Proof of the BRB-termination-2 property. This property states that if a non-faulty process brb-delivers
(4, m}, any non-faulty process brb-delivers (j, m). If a non-faulty process brb-delivers (j,m), it fol-
lows from the predicate of line 9 that it received the message READY (j, m) from at least (¢ 4+ 1) non-
faulty processes. Hence, each of these correct processes broadcast READY (j, m), and consequently
every non-faulty process receives at least (¢ 4+ 1) copies of READY(j, v). So, every non-faulty process
broadcast READY (j, v) (at the latest at line 7 if not previously done at line 4). As there are at least
n —t > 2t + 1 non-faulty processes, each non-faulty process eventually receives at least 2¢ + 1 copies
of READY (j, v) and brb-delivers the pair (j, m). (lines 9-11). OTheorem 14

Cost of the algorithm This algorithm uses three consecutive communication steps (each with a
distinct message type), and O(n?) underlying messages (n — 1 in the first communication step, and
2n(n — 1) in the second and third steps). Moreover, the size of the control information added to a
message is log, n (sender identity).

4.4.3 Benefiting from Message Asynchrony

Due to message asynchrony, it is possible that a process p; receives a message ECHO(j, m) from
several processes before receiving the initial message INIT(j, m). It can even receive ECHO(j, m) from
more than % processes before receiving INIT(j, m), which is the predicate required to broadcast the
message READY (7, m). It appears that, in this case, p; can broadcast the message ECHO(j, m) even
if it has not yet received the seed message INIT(j, m). Moreover, it can also broadcast the message
ECHO(j, m) if it has received the message READY (j, m) from (¢ + 1) processes (which is the predicate
used in Fig. 4.3 to allow p; to broadcast the message READY (j,m) when it has not received enough

messages ECHO(j, m)). This is illustrated in Fig. 4.4.



Chapter 4. Reliable Broadcast in the Presence of Byzantine Processes 69

INIT(j,m)

pi \
\FCHO(]’, m)

READY(j, m)

ECHO(j, m) received from more than % processes

or READY (7, m) received from (¢ + 1) processes

Figure 4.4: Benefiting from message asynchrony

operation ND _broadcast (m;) is
(€] broadcast INIT(%, m;).

when INIT(j, m) is received do
(M1) if ((first reception of INIT(j, —) A (ECHO(jj, m) not yet broadcast))
2) then broadcast ECHO(j, m) end if.

when ECHO(j, m) is received do

(3) if (ECHO(j, m) received from more than “1* different processes)

(M2)  then if (ECHO(j, m) not yet broadcast) then broadcast ECHO(j, m) end if;
(M3) if (READY (j, m) not yet broadcast) then broadcast READY (j, m) end if
35) end if.

when READY (j, m) is received do

(6)  if (READY(j, m) received from (t + 1) different processes))

(M4) then same as lines M2 and M3

8)  endif;

9) if ( (READY (7, m) received from (2t 4 1) different processes)
A ({4, m) not yet brb—delivered))

(10) then BRB_deliver (j,m)

(11)  endif.

Figure 4.5: Exploiting message asynchrony

It follows that the algorithm presented in Fig. 4.3 can be enriched as described in Fig. 4.5 to benefit
from this possibility of message asynchrony. The lines that are identical in both algorithms are prefixed
with the same number, while the lines that are modified or new are denoted Mz, 1 < x < 4.

4.5 Time and Message-Efficient Byzantine Reliable Broadcast

On the one hand the previous BRB-broadcast algorithm is optimal with respect to the model resilience
parameter ¢ (namely, there is no BRB-broadcast algorithm when ¢ > n/3), and requires just three
communication steps (each associated with a message type (INIT, ECHO, and READY), and 2n? —n+1
messages (not counting the messages that a process sends to itself). On another hand, if ¢ = 0, the
system is reliable, and a broadcast costs a single communication step and (n — 1) messages. Which
raises a natural question on the tradeoff between the model resilience parameter ¢, and the message
cost.

This section presents an algorithm, from D. Imbs and M. Raynal (2016), which weakens the re-
silience parameter ¢ (it assumes ¢ < n/5 instead of ¢ < n/3), but requires only two communication
steps and n? — 1 messages (hence it has the same cost as ND-duplicity broadcast).
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4.5.1 A Message-Efficient Byzantine Reliable Broadcast Algorithm

The algorithm is presented in Fig. 4.6. When a correct process wants to brb-broadcast an application
message m;, it simply broadcasts the algorithm message INIT(é,m;) (line 1). On its server side, a
process can receive two types of messages:

e When it receives a message INIT(j,m) (from process p; as the processes are connected by
bidirectional channels), a process p; broadcasts the message WITNESS(j, m) (line 3) if (a) this
message is the first message INIT(j, —) p; has received from p;, and (b) p; has not yet broadcast
a message WITNESS(j, —) (predicate of line 2).

e When a process p; receives a message WITNESS(j, m) (from any process), it does the following:

— If p; has received the same message from “enough-1” processes (where “enough-1" is
(n — 2t), i.e., at least n — 3t > 2t + 1 correct processes broadcast this message), and
p; has not yet broadcast the same message WITNESS(j, m), it does it. This concludes the
“forwarding phase” of p; as far as a message of p; is concerned.

— If p; has received the same message from “enough-2” processes (where “enough-2” means
“at least (n — t) processes”, i.e., the message was received from at least n — 2¢t > 3t + 1
correct processes), p; locally brb-delivers (j, m) if not yet done. This concludes the brb-
delivering phase of a message from p; as far as p; is concerned.

operation BRB_broadcast (m;) is
(1) broadcast INIT(, m;).

when INIT(j, m) is received from p; do

(2) if ((first reception of INIT(j, —)) A (WITNESS(j, —) not yet broadcast))
3) then broadcast WITNESS(j, m)

(4) endif.

when WITNESS(j, m) is received do
5) if ( (WITNESS(j, m) received from (n — 2t) different processes)

(6) A (WITNESS(j, m) not yet broadcast))
(@) then broadcast WITNESS(j, m)
(8) end if;

(9) if ( (WITNESS(j,m) received from (n — t) different processes)
(10) A ({j, —) not yet brb—delivered))

(11)  then BRB_deliver MSG(j,m)

(12) end if.

Figure 4.6: Communication-efficient Byzantine BRB-broadcast in BAMP,, [t < n/5]

4.5.2 Correctness Proof

Lemma 4. Let INIT(i,m) be a message that is never broadcast by a correct process p;. If Byzantine
processes broadcast the message WITNESS (i, m), no correct process will forward this message at
line 7.

Proof Let us consider the worst case where ¢ processes are Byzantine and each of them broadcasts
the same message WITNESS (4,m). For a correct process p; to forward this message at line 7, the
forwarding predicate of line 5 must be satisfied. But, in order for this predicate to be true at a correct
process pj, this process must receive the message WITNESS (2, m) from (n — 2t) different processes.
As n — 2t > t, this cannot occur. Oremma 4
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Theorem 15. The algorithm described in Fig. 4.6 implements BRB-broadcast communication abstrac-
tion in the system model BAMP,, [t < n/5]. Moreover, the brb-broadcast of an application message
by a correct process requires two communication steps and the correct processes send at most (n? —1)
protocol messages.

Proof Proof of the BRB-validity property. Let p; be a correct process that invokes BRB_broadcast
(m), and consequently broadcasts the message INIT(i,m) at line 1. The fact that no correct pro-
cess brb-delivers a message from p; that is different from m comes from the following observation.
To brb-deliver a message MSG(i,m’), where m’ # m, a correct process must receive the message
WITNESS (4, ) from more than (n — t) different processes (line 9). But if the (at most) ¢ Byzantine
processes forge a fake message WITNESS (i, m’), with m # m’, this message will never be forwarded
by the correct processes (Lemma 4). As n — ¢ > t, it follows from the predicate of line 9 that the pair
brb-delivered from p; by any correct process cannot be different from (i, m).

Proof of the BRB-integrity property. This property follows directly from the brb-delivery predicate of
line 10, namely, at most one pair (j,m) can be delivered by any correct process p;.

Proof of the BRB-no-duplicity property. Let py be a process that sends at least one message INIT(k, —).
If py, is correct, it sends at most one such message. If it is Byzantine, it may send more. Hence, let us
assume that py, sends INIT(k, m; ), INIT(k, mg), ..., INIT(k, my), where m > 1. For any = € [1../], let
Q. be the set of correct processes that receive the message INIT(k, v, ), which directed them to broad-
cast the message WITNESS (k, v;) at line 3. Due to the fact that only pj, can send messages INIT(k, —),
it follows from the reception predicate of line 2 that a correct process can belong to at most one set
Q2. Hence, we have: (z # y) = Q, N Q, = (). We consider two cases according to the size of the
sets Q:

e Let us first consider a set @, such that |Q),;| < n—3t. Let p; be any correct process that does not
belong to @, (hence p; does not process the message INIT(k, m,) at line 3 if it receives it). As
n—t > n—3t, p; does exist. Process p; can receive the message WITNESS (k, my) (a) from each
process of (), and (b) from each of the ¢ Byzantine processes. It follows that p; can receive
WITNESS (k, my;) from at most ¢ + | Q| different processes. As ¢ +|Q,| < n — 2t, the predicate
of line 5 cannot be satisfied at p;, and consequently, p; (i.e., any correct process ¢ Q) will
never send the message WITNESS(k, m,). Hence, the number of messages WITNESS(k, my)
received by any correct process can never attain (n —t), from which we conclude that no correct
process brb-delivers the pair (k, m,,). It follows that, if there is a single set (of correct processes)
Q. (i.e., z = m = 1), and this set is such that |Q,| > n — 3¢, at most one message MSG(k, —)
may be brb-delivered by a correct process, and this message is then MSG(k, m).

e Let us now consider the case where there are at least two different sets of correct processes Q)
and @y, each of size at least (n — 3t). Let us remember that, in the worst case, each of the ¢
Byzantine processes can systematically play a double game by sending both WITNESS(k, m,,)
and WITNESS(k, m,) to each correct process without having received the associated message
INIT(k, —). Moreover, in the worst case, we have exactly (n—t) correct processes. (If, in a given
execution, strictly less than ¢ processes are Byzantine, we consider the equivalent execution in
which exactly ¢ processes are Byzantine, and some of them behave like correct processes.) As
both @ and @, contain only correct processes, and Q, N Q, = 0, it follows that |Q,| + |Q,| +
t < n, which implies 2n — 6t + ¢ < |Q.| + |Qy| +t < n, from which we obtain 5¢ > n, which
contradicts the assumption on ¢ (namely, n > 5t). Consequently, at least one of @, and @ is
composed of less than (n —3t) correct processes. It follows from the previous paragraph that the
corresponding pair (k, —) cannot be brb-delivered by a correct process. As this is true for any
pair of sets (), and @y, it follows that, if p;, sends several messages INIT(k, m1), INIT(k, m2),
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...y INIT(K, m¢), at most one of them can give rise to a set Q, such that |Q,| > n — 3¢, and,
consequently, at most one pair (k, —) can be brb-delivered by any correct process.

Proof of the BRB-termination-1 property. Let p; be a correct process that invokes BRB_broadcast(m;)
and consequently broadcasts the message INIT(i,m;) at line 1. It follows that any correct process p;
receives this message. Let us remember that, due to the network connectivity assumption, there is a
channel connecting p; to p; and consequently the message INIT(z, m;) cannot be a fake message forged
by a Byzantine process. Moreover, due to Lemma 4, no message WITNESS (i, m’), with m’ # m,
forged by Byzantine processes, can be forwarded by a correct process at lines 5-8. Hence, when p;
receives INIT (i, m;), it broadcasts the message WITNESS (7, m;) at line 4. It follows that every correct
process eventually receives this message from (n — t) different processes and consequently locally
brb-delivers the pair (i, v) at line 11, which proves the property.

Proof of the BRB-termination-2 property.

Let p; be a correct process that brb-delivers the pair (k, m). It follows that the brb-delivery predicate
of lines 9-10 is true at p;, and consequently, p; received the message WITNESS(k,m) from at least
(n — t) different processes, i.e., from at least n — 2t > ¢ correct processes.

It follows that at least (n — 2t) correct processes broadcast WITNESS(k, m), and consequently the
predicate of line 5 is eventually true at each correct process. Hence, every correct process eventually
broadcasts the message WITNESS(k, m) at line 7, if not yet done before (at line 3 or line 7). As there
are at least (n — t) correct processes, each of them eventually receives WITNESS (k, m) from (n — t)
different processes, and consequently brb-delivers the pair (k, v) at line 11, which proves the property.

Urheorem 15

Cost of the algorithm The BRB-broadcast of an application message by a correct process gives
rise to (n — 1) protocol messages INIT() (line 1, each of them entailing the simultaneous sending of
(n — 1) protocol messages WITNESS() at line 3 or line 6). Hence, the brb-broadcast of an application
message requires two communication steps, and at most (n2 — 1) protocol messages are sent by correct
processes.

4.6 Summary

This chapter was on reliable broadcast in systems where processes can commit Byzantine failures
(arbitrary deviations — intentional or not — from their intended behavior). It was first shown that
t < n/3is anecessary requirement for implementing such a reliable communication abstraction; then
three reliable broadcast algorithms were presented. Their main features are summarized in Table 4.1.
The “message size” column that appears in this table refers to the size of the control information
carried by protocol messages.

Abstraction Figure | Com. steps | Message size | Protocol msgs | Constraint on ¢
ND-broadcast 4.1 2 logy 1 (n—1)(n+1) t<n/3
BRB-broadcast | 4.3 3 log, n (n—1)(2n+1) t<n/3
BRB-broadcast | 4.6 2 logy 1 (n—1)(n+1) t<n/b

Table 4.1: Comparing the three Byzantine reliable broadcast algorithms

The no-duplicity broadcast prevents correct processes from delivering different messages from the
same sender, but, if the sender is faulty, it is possible that a correct process delivers a message while
another correct process never delivers a message from this sender. Reliable broadcast provides the
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application layer with a higher abstraction level, namely, if the sender is faulty, all the correct processes
or none of them deliver a message from it. The first BRB-broadcast algorithm that was presented is
optimal with respect to the resilience parameter ¢, and requires three communication steps. The second
BRB-broadcast algorithm that was presented assumes a stronger constraint on ¢, (namely, ¢t < n/5),
but requires only two communication steps. Actually its time and message costs are the same as the
ones required by no-duplicity broadcast.

4.7

4.8
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Exercises and Problems

. Prove correct the improved algorithm of Fig. 4.5.

. Extend the algorithm presented in Fig. 4.6 so that a process can brb-broadcast, not a single

message, but a sequence of messages, each one being broadcast in a separate BRB-broadcast
instance.

Solution in Section 9.3.



Part I11

The Read/Write Register
Communication Abstraction

This part of the book is devoted to the implementation of read/write registers on top of asynchronous
message-passing systems prone to failures. Let us remember that the read/write register is the most
basic object in Informatics. It is even the only object of a Turing machine; hence, it is the object
sequential computing rests on. This part of the book is composed of five chapters:

Chapter 5 defines a read/write register in the context of concurrency. It presents three semantics
for such an object: regular register, atomic register, and sequentially consistent register. The
chapter also shows that t < n/2 is a necessary requirement to build a read/write register in the
presence of asynchrony and process crashes.

Chapter 6 is on the implementation of atomic and sequentially consistent read/write registers
in CAMP,, [t < n/2]. Multi-Writer/Multi-Reader (MWMR) atomic registers are built incre-
mentally from regular registers. Two approaches for building MWMR sequentially consistent
registers are presented.

Chapter 7 shows how the ¢ < n/2 requirement can be circumvented by the use of failure
detectors. (Failure detectors have been introduced in Section 3.3. They are “oracles” increasing
the computability power of the underlying system by providing information on failures.)
Chapter 8 presents a specific communication abstraction (called SCD-broadcast), which cap-
tures exactly what is needed to implement atomic or sequentially consistent read/write registers.
It also shows how this communication abstraction can be implemented in CAMP,, [t < n/2].

Chapter 9 presents an implementation of atomic read/write registers in the presence of Byzantine
processes. It also shows that such implementations are possible only if t < n/3.
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Chapter 5 ®)

Check for
updates

The Read/Write Register Abstraction

The read/write register is the most basic object of sequential computing. This chapter introduces it in a
concurrency context, and considers three associated consistency conditions: regularity, atomicity (also
called linearizability), and sequential consistency. Atomicity and sequential consistency define the
family of strong consistency conditions, namely, they require all processes to agree on the same total
order in which they see the read and write operations applied to the registers. After a formalization of
these notions, the chapter shows that atomic read/write registers compose for free while sequentially
consistent registers do not. Then, it shows that the constraint ¢ < n/2 is a necessary condition to
implement a strong consistency condition. It also presents lower bounds on the time needed for a
process to execute a read or a write operation on an atomic or sequentially consistent register. It finally
shows that, for an atomic register, neither the write nor the read operation can be purely local, i.e., each
operation requires some synchronization to terminate. Whereas either the read or the write operation
can be local for sequentially consistent registers.

Keywords Asynchronous system, Atomicity, Composability, Computability bound, Consistency
condition, Linearizability, Linearization point, Necessary condition, Partial order, Process history,
Read/write register, Regular register, Sequential consistency, Total order.

5.1 The Read/Write Register Abstraction

5.1.1 Concurrent Objects and Registers

Concurrent object A concurrent object is an object that can be accessed concurrently by two or
more sequential processes. As it is sequential, a process that invoked an operation on an object must
wait for a corresponding response before invoking another operation on the same (or another) object.
When this occurs, we say that the operation is pending.

While each process can access at most one object at a time, an object can be simultaneously
accessed by several processes. This occurs when two or more processes have pending invocations on
the same object: hence, the name “concurrent object”.

Register object One of the most fundamental concurrent objects is the shared register object (in
short, register). This object abstracts physical objects such as a word, or a set of words, of a shared
memory, a shared disk, etc. A register R provides the processes with an interface made up of two
operations denoted R.read() and R.write(). The first allows the invoking process to obtain the value
of the register R, while the second allows it to assign a new value within the register.
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Type of register According to the value that can be returned by a read operation, several types of
registers can be defined. We consider here two families of registers, in which a read always returns a
value that was written previously:
e The first family is a family of read/write registers that cannot be defined by a sequential speci-
fication. This is the family of regular read/write registers (defined below). The value returned
by a read depends on the concurrency pattern in which is involved the read operation.

e The second family is the family of read/write registers that can be defined by a sequential specifi-
cation. This means that the correct behavior of such a register can be defined by a set made up of
all the allowed sequences of read and write operations (basically, in any of these sequences, each
read operation must return the value written by the closest write operation that precedes it). Two
distinct consistency conditions capture these sequences: atomicity (also called linearizability)
and sequential consistency).

Underlying time notion The definitions that follow refer to a notion of time. This time notion can
be seen as given by an imaginary clock that models the progress of a computation as perceived by an
external omniscient observer. It is accessible neither to the processes nor to the read/write registers.
Its aim is to capture the fact that, from the point of view of an omniscient external observer, the flow
of operations is such that (1) some operation invocations have terminated while others have not yet
started, and (2) some operation invocations overlap in time (they are concurrent). These notions will
be formally defined in Section 5.2.

5.1.2 The Notion of a Regular Register

Definition A regular register is a single-writer/multi-reader (SWMR) register, i.e., it can be written
by a single predetermined process, and read by any process. The definition of a regular register as-
sumes a single writer in order to prevent write conflicts. More precisely, as the writer is sequential, the
write operations are totally ordered (the corresponding sequence of write operations is called the write
sequence). The value returned by a read is defined as follows:

o If the read operation is not concurrent with write operations, it returns the current value of the
register (i.e., the value written by the last write in the current write sequence).

e [f the read operation is concurrent with write operations, it returns the value written by one of
these writes or the last value of the register before these writes.

R.write(0) R.write(1) R.write(2)

—

writer

reader

R.read() v R.read() — v/

Figure 5.1: Possible behaviors of a regular register

Example and the notion of a new/old inversion The definition of a regular register is illustrated in
Fig. 5.1 where a writer and a single reader are considered. The notation “R.read() — v” means that
the read operation returns the value v. As far as concurrency patterns are concerned, the durations of
each operation are indicated on the figure by double-headed arrows.

The writer issues three write operations that sequentially write into the register R the values 0, 1
and 2. On its side, the reader issues two read operations; the first obtains the value v, while the second
obtains the value v’. The first read is concurrent with the writes of the values 1 and 2 (their executions
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overlap in time); according to the definition of regularity, it can return for v any of the values 0, 1 or
2. The second read is concurrent only with the write of the value 2; hence, it can consequently return
for v’ the value 1 or the value 2.

So, as R is regular, the second read is allowed to return 1 (which has been written before the value
2), while the first read (that precedes it) is allowed to return the value 2 (which has been written after
the value 1). This is called a new/old inversion: in presence of read/write concurrency, a sequence of
read operations is not required to return a sequence of values that complies with the sequence of write
operations. It is interesting to notice that, if we suppress R.write(2) from the figure, v is restricted to
0 or 1, while v’ can only be the value 1 (and, as we are about to see, the register then behaves as if it
was atomic).

A regular register has no sequential specification It is easy to see that, due to the possibility of
new/old inversions, a regular register cannot have a sequential specification. To this end let us consider
the execution of a regular register as depicted in Fig. 5.2, which presents a new/old inversion.

R.write(0) R.write(1) R.write(2)
writer ey -

reader
R.read() — 2 R.read() — 1

Figure 5.2: A regular register has no sequential specification

When considering read/write registers, the read-from order relation associates the write operation
that wrote the value read with each read operation. This relation is depicted by the dashed arrows in
Fig.5.2.

If we want to totally order the read and write operations, issued by the processes, in such a way
that the sequence obtained belongs to the specification of a sequential register, we need to place first
all the write operations and then the read operations issued by the reader. This is due to the fact that
R.write(2) precedes R.read() — 2. On the other hand, as the read is sequential, it imposes a total
order on its read operations (called process order), and we then obtain the sequence

R.write(0), R.write(1), R.write(2), R.read() — 2, R.read() — 1,

which does not belong to the specification of a sequential register.

Why regular registers? While regular registers do not appear in shared memory systems, they can
be built on top of message-passing systems. As we will see in the next chapter, they allow for an
incremental construction of registers defined by a sequential specification, which are nothing other
than regular registers without new/old inversions.

5.1.3 Registers Defined from a Sequential Specification

The notion of an atomic register There are two main differences between regularity and atomicity,
namely, an atomic register (a) can be a multi-writer/multi-reader (MWMR) register and (b) does not
allow for new/old inversions (i.e., it has a sequential specification). Let us notice that an SWMR
read/write register is also a regular register. More precisely, an atomic register is defined by the
following properties:

o All the read and write operations appear as if they have been executed sequentially. Let S

denote the corresponding sequence (for consistency purposes, we use here the same notations
as the ones used in Section 5.2, where the notion of atomicity is formalized).
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e The sequence S respects the time order of the operations (i.e., if op; terminated before ops
started, then op; appears before ops in S).

e Each read returns the value written by the closest preceding write in the sequence S (or the
initial value if there is no preceding write operation).

The corresponding sequence of operations S is called a linearization of the register execution. Let
us notice that concurrent operations can be ordered arbitrarily as long as the sequence obtained is
a linearization. Hence, it is possible that an execution has several linearizations. This captures the
non-determinism inherent in a concurrent execution.

Intuitively, this definition states that everything must appear as if each operation has been exe-
cuted instantaneously at some point on the time line (of an omniscient external observer) between its
invocation (start event) and its termination (end event). This will be formalized in Section 5.2.

R.read() — 1 R.read() — 2
p1 T >r <=
\ ! \ /
\ ! \ //
! \
R.write(1) | ! R.write(2) /
,
P2 \ /) \ I \ Y B
' 7 \ I \\ I\\ //
N Vo o Rowrite(3) /' Ruread() — 2
+ 1 -
ps 1 ’ \\ 1
1
1
i
)

Omniscient observer’s time

Figure 5.3: Behavior of an atomic register

Example of an atomic MWMR register execution An example of an execution of an MWMR
atomic register accessed by three processes is described in Fig. 5.3. (Two dashed arrows are asso-
ciated with each operation invocation.) They meet at a point on the “real time” line at which the
corresponding operation could have instantaneously occurred. These points on the time line must de-
fine a linearization of the operations. In the example, everything appears as if the operations have

been executed according to the following linearization, where the subscript index associated with each
operation denotes the process that invoked the operation:

R.writea(1), R.read;() — 1, R.writeg(3), R.writea(2), R.read;() — 2, R.reads() — 2.

During another execution with the same concurrency pattern, the concurrent operations R.write(3)

and R.write(2) could be ordered the other way. In this case, the last two read operations should return
the value 3 in order that the register R behaves atomically.

When we consider the example described in Fig. 5.1 with v = 2 and v/ = 1, there is a new/old
inversion, and consequently the register R does not behave atomically. Differently, if (1) either v = 0

orland v’ = 1or2,or(2) v =1 = 2, there would be no new/old inversion, and consequently the
behavior of the register would be atomic.

The notion of a sequentially consistent register A sequentially consistent read/write register is a
weakened form of an atomic register, which satisfies the following three properties:

e All the read and write operations appear as if they have been executed sequentially; let S be the
corresponding sequence.
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e The sequence S respects the process order relation, i.e., for any process p;, if p; invokes opy
before op2, then op; must appear before ops in the sequence S.
e Each read returns the value written by the closest preceding write in S (or the initial value if

there is no preceding write operation).

Hence, while the order of the operations in the sequence S must respect the time of an omniscient
external observer in the definition of an atomic register, the sequence S is required to respect only the

process order relation in the definition of a sequentially consistent register.

P2

b Logical time time

Here R =1

Figure 5.4: Behavior of a sequentially consistent register

Example of a sequentially consistent MWMR register execution An example of an execution of
an MWMR atomic register accessed by two processes is described in Fig. 5.4. The corresponding

sequence .S respecting process order is the following one:
R.writea(2), R.reads() — 2, R.writer(1), R.read;() — 1.

It is easy to see that sequential consistency replaces the “physical” time of an omniscient global ob-
server with a logical time. Hence, any atomic execution of a register is also sequentially consistent.

5.2 A Formal Approach to Atomicity and Sequential Consistency

This section formalizes the notions of atomic read/write register and sequentially consistent register.
As well as eliminating possible ambiguities (due to the use of spoken/written languages), formalization
provides us with a precise framework that allows us to reason and prove a fundamental composability

property associated with atomicity (this property will be presented in Section 5.3).

5.2.1 Processes, Operations, and Events

Processes and operations As already indicated, each register R provides the processes with two
operations R.write() and R.read(). The notation R.op(arg)(res) is used denote any operation on a
register R, where arg is the input parameter (empty for a read, and the value v to be be written for a
write), and res is the response returned by the operation (ok for a write, and the value v obtained from
R for a read operation). When there is no ambiguity, we talk about operations where we should be

talking about operation executions.
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Events The execution of an operation op(arg)(res) on a register R by a process p; is modeled by
two events:

e The invocation event occurs when p; invokes (starts executing) the operation R.op(). It is de-
noted inv[R.op(arg) by p;].

e The reply event occurs when p; terminates (returns from) the operation R.op(). It is denoted
resp|R.op(res) by p;], and is also called matching reply with respect to inv|[R.op(arg) by p;].

We say that these events are generated by process p; and associated with register R.

5.2.2 Histories

Representing an execution as a history of events This paragraph formalizes what we usually have
in mind when we use the word execution or run.

As simultaneous (invocation and reply) events generated by sequential processes are independent,
it is always possible to order simultaneous (concurrent) events in an arbitrary way without altering
the behavior of an execution. This makes it possible to consider a total order relation on the events
(denoted <y7), which abstracts the time order in which the events do actually occur (i.e., the time of
the omniscient external observer). This is precisely how executions are formally captured.

Hence, the interaction between a set of sequential processes and a set of shared registers is modeled
by a sequence of invocation and reply events, called a history (sometimes also called a trace), and
denoted H = (H,<py) where H is the set of events generated by the processes and <y a total order
on these events.

The notation H |pi (f[ at p;) denotes the subsequence of H made up of all the events generated by
process p;. It is called the local history at p;.

As a simple example, Fig. 5.5 describes the history (the sequence of 12 events ey, .. ., €12) associ-
ated with the execution depicted in Fig. 5.3. (Only the first four events are described explicitly.)

R.read() — 1 R.read() — 2
P = ‘ ‘ ‘
! I I |
! I I |
I | ,
R.write(1) | R.write(2) !
Dj w : — :
1 [ 1 1 ! 1 1
| Do Do b )
| b v Rawrfte(3): Roread() — 2
Pk | | : A ! ; : X ; ; : ;
! ! I I I H ,
L T T
4—“—0&—‘—0+¢—6—F¢ Hiseory 1
[ €1 leg €4 €5 €6 er es €9 e en e

inv[R.write(1) by p;] i
resp[R.write()(ok) by p;]
resp[R.read()(1) by p;]

inv[R.read() by p/]

Figure 5.5: Example of a history

Equivalent histories Two histories _ H and H’ are said to be equivalent if they have the same local
histories, i.e., for each p;, H |pi = H'|p;. That is, equivalent histories are built from the same set of
events (remember that an event includes the name of an object, the name of a process, the name of an
operation, and its input or output parameter).
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Well-formed histories As we consider histories generated by sequential processes, we restrict our
attention to the histories H such that, for each process p;, H |p; (local history at p;) is sequential: it
starts with an invocation, followed by its matching reply, followed by another invocation (on the same
or another register), etc. We say in this case that His well-formed.

Partial order on operations A history H induces an irreflexive partial order on its operations as
follows. Let op = X.op1() by p; and op’ = Y.op2() by p; be two operations. Operation op precedes
operation op’ (denoted op — g op’) if op terminates before op’ starts, where “terminates” and “starts™
refer to the time line abstracted by the <y total order relation. More formally:

(op =5 op’) def (resplop] <g inv[op']).

Two operations op and op’ are said to overlap (as already seen, we also say they are concurrent) in
a history H if neither resplop] <p inv[op] nor resplop’] < inv[op]. Notice that two overlapping
operations are such that —(op — g op’) and —(op’ — 7 op).

The partial order generated by the execution described in Fig. 5.3 is given in Fig. 5.6.

@ Roread() —2

R.writey(2)

/  J
R.writes(1) @ \ \
R.read;( Y

R.writes(3)

@ R.reads() — 2

Figure 5.6: Partial order on the operations

Sequential history A history His sequential if its first event is an invocation, and then (1) each
invocation event is immediately followed by its matching reply event, and (2) each reply event is
immediately followed by an invocation event, until the execution terminates (if it is not infinite).

If Hisa sequential history, it has no overlapping operations, and consequently the order — on
its operations is a total order. A history H that is not sequential is concurrent.

A sequential history models a sequential multiprocess execution (there are no overlapping opera-
tions), while a concurrent history models a concurrent multiprocess execution (there are overlapping
operations). An important point of a sequential history lies in the fact that one can reason about ex-
ecutions at the granularity level defined by its operations (instead of being obliged to reason at the
granularity level of its underlying events).

Legal history Given a sequential history Sanda register R, let S R (§ at R) denote the subsequence
of S made up of all events involving only register R. (Notation S |R is similar to S |pi: in both cases
it denotes the subsequence of S made up of all events involving only register R or process p;.) Let us
notice that, as Sisa sequential history, each S | R is also a sequential history.

We say that a sequential history S is legal if, for each register R, the sequence S |R is such that
each of its read operations returns the value written by the closest preceding write in s | R (or the initial
value of R if there is no preceding write).
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5.2.3 A Formal Definition of Atomicity

Atomic history We define here atomicity for histories without pending operations, i.e., each invoca-
tion event of H has a matching reply event in H. (Extending the definition to histories with pending
operations is left as an exercise.) A register history H is atomic if there is a “witness” history S such
that:

1. Hand § are equivalent,
2. Sis sequential and legal, and

3. »>gC—g.

The definition above states that for a history H to be atomic, there must be a permutation S
(witness history) of H, which satisfies the following requirements. First, Sis composed of the same
set of events as H [item 1]. Second, S is sequential (i.e., an interleaving of the process histories at
the granularity of complete operations) and legal (i.e., it respects the sequential specification of each
register) [item 2]. Notice that, as S is sequential, —g is a total order. Finally, S also has to respect
the occurrence order of the operations as defined by — [item 3]. S represents a history that could
have been obtained by executing all the operations, one after the other, while respecting the occurrence
order of all the non-overlapping operations. Such a sequential history S constitutes what we called
before a linearization of H.

Remark on non-determinism It is important to notice that the notion of atomicity inherently in-
cludes a form of non-determinism in the sense that, given a history H, several linearizations of H
might exist.

Linearization point The very existence of a linearization of an (atomic) history H means that each
operation of H could have been instantaneously executed at a point on the time line (as defined by
the total order <j7) that lies between its invocation and reply time events. Such a point is called the
linearization point of the corresponding operation. (The points in Fig. 5.3 represent the linearization
points of the operations issued by the processes.)

One way of proving that all the histories generated by an algorithm are atomic consists in identify-
ing a linearization point for each of its operations. These points have to (1) respect the time occurrence
order of the non-overlapping operations and (2) be consistent with the sequential specification of the
object.

5.2.4 A Formal Definition of Sequential Consistency

As already indicated, sequential consistency is a weakened form of atomicity in which, when looking
at the witness sequence § the compliance with respect to real-time (—yC—g) is replaced by the
compliance to process 0 order only.

A register history His sequentially consistent if there is a “witness” history S such that:

1. Hand S are equivalent, and

2. Sis sequential and legal.

Let opl —; op2 if both the operations opl and op2 have been issued by p;, with opl before op2.
Trivially, for any p;, we have —;C— . To parallel the third item of the definition of atomicity, we
could include the following additional property Vi : —;C—g in the definition of sequential consis-
tency. But, this is not necessary as this property is already included in item 1, which states that H and
S are equivalent (i.e., Vi : H|p; = S|p;).
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5.3 Composability of Consistency Conditions

5.3.1 What Is Composability?

Definition Let P be any property defined on a set of objects. As already indicated, P is composable
if the set of objects as a whole satisfies the property P whenever each object taken alone satisfies P.
Hence, composability is an important concept that states that objects can be composed for free. As we
are about to see, atomicity is composable while sequential consistency is not.

Why composability is important Composability is important both when one has to reason about
algorithms that access shared registers, and when one has to implement shared registers.

e From a theoretical point of view, composability means that we can keep reasoning sequentially
independently of the number of atomic registers involved in the computation. Namely, we can
reason on a set of registers as if they were a single atomic object. We can reason in terms of
witness sequences, not only for each register separately, but also on all the registers as if they
were a single atomic object.

As an example, let us consider an application composed of processes that share two atomic
registers R1 and R2. Then, the composite object [R1, R2], that provides the processes with
the four operations: R1.write(), R1.read(), R2.write(), and R2.read(), behaves atomically
(everything appears as if one operation at a time was executed, and the projection of this global
sequence on the operations of R1 —resp. R2 — is a witness sequence for R1 —resp. R2 -).

e From a practical point of view, composability means modularity. This has several advantages.
On the one side, each atomic register can be implemented in its own way: the implementation
of one atomic register is not required to interfere with the implementation of the other atomic
registers.

On the other side, as soon as we have an algorithm that implements an atomic register (e.g., in
a message-passing system as we will see in the next chapter), we can use multiple independent
instances of it, one for each register, and the system will behave correctly without any additional
control or synchronization.

To summarize, as atomicity is composable, atomic registers compose for free (i.e., their composition
is at no additional cost).

5.3.2 Atomicity Is Composable

This section shows that atomicity is composable. Intuitively, this comes from the fact that it involves
the “same real-time” time occurrence order on non-concurrent operations whatever the registers and
the operations issued by the processes. As we will see, this appears clearly in the proof that follows.
Actually, the following theorem is correct not only for the atomic registers, but more generally for
any object that is atomic (such as a stack or a queue). It is consequently formulated and proved on
an object basis (as we have previously seen, an atomic register is a particular object that provides the
processes with a read and a write operation and is defined by a sequential specification).

Theorem 16. A history H is atomic if, and only if, for each object X involved in H, fAI|X is atomic.

Proof The “=" direction (only if) is an immediate consequence of the definition of atomicity: if H
is atomic then, for each object X involved in H,H | X is atomic. So, the rest of the proof is restricted
to the “<«" direction.

Given an object X, let §;< be a linearization of H | X. Tt follows from the definition of atomicity
that S/')\( defines a total order on the operations involving X. Let —x denote this total order. We
construct an order relation — defined on the whole set of operations of H as follows:
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1. For each object X: —x C —, and

2. g C —.

Basically, “— totally orders all operations on the object X, according to — x (item 1), while preserv-
ing — g, i.e., the real-time occurrence order on operations (item 2).

Claim C. “— is acyclic” (i.e., — defines a partial order on the set of all the operations of H ).

Assuming this claim, it is thus possible to construct a sequential history 5 including all events of
H and  respecting —. We trivially have —C—g where — g is the total order on the operations defined
from 5. We have the three following conditions: (1) H and S are equivalent (they contain the same
events), (2) Sis sequential (by construction) and legal (due to item 1 above), and (3) -y C—g (due
to item 2 above and —C—g). It follows that H is linearizable.

Proof of claim C. We show (by contradiction) that — is acyclic. Assume first that — induces a cycle
involving the operations on a single object X . Indeed, as —x is a total order, in particular transitive,
there are two operations op; and op; on X such that op; —x op; and op; —p op;. We have the
following:

e op;, —x op; = inv[op;] <m respop;] because X is atomic, and

e op; — g op; = resplop;] <m invlop;],

which shows a contradiction, as <y is a total order on the whole set of events.

It follows that any cycle must involve at least two objects. To obtain a contradiction we show that,
in that case, a cycle in — implies a cycle in — y (which is acyclic). Let us examine the way the cycle
could be obtained. If two consecutive edges of the cycle are due to either some — x (because of an
object X)), or = (due the total order <p), then the cycle can be shortened as any of these relations
is transitive. Moreover, op; —x op; —y 0py, is not possible for X # Y, as each operation is on one
object only (op; —x op; —y op;, would imply that op; is on both X and Y').

resp.[opl] inv.lop2] resp.[op3] inv.[op4]
Total order <y on events _. . . .
opl —p op2 op2 —y op3 op3 —y op4

Figure 5.7: Developing opl — g op2 —x op3 —x op4

So, let us consider any sequence of edges of the cycle such that: opl — op2 —x op3 — g op4.
We have (see Figure 5.7):

1. opl —p op2 = resplopl] < inv[op2] (definition of opl — 5 op2),

2. op2 —x op3 = invlop2] <p resplop3] (as X is atomic), and

3. op3 =y op4 = resplop3] <y inv]op4] (definition of op3 — 7 op4).
Combining these statements, we obtain resplopl] <g inv]op4] from which we can conclude that
opl —p op4. It follows that all the edges due to the relations — x (associated with every object X)

can be suppressed, and consequently any cycle in — can be reduced to a cycle in — g, which is a
contradiction as —  is an irreflexive partial order. End of proof of claim C. OTheorem 16
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5.3.3 Sequential Consistency Is Not Composable

Theorem 17. Sequential consistency is not composable.

Proof The proof consists in building a counter-example. Let us consider a register 12, and its execution
E depicted in Fig. 5.8. This execution is sequentially consistent, namely, the sequence S

R.write(1)

R.write(2) R.read() — 1

p2

Figure 5.8: The execution of the register R is sequentially consistent

R.writea(2), R.writei(1), R.reads() — 1,

satisfies the properties defining sequential consistency (it preserves process order, and belongs to the
sequential specification of a read/write register).
Let us now consider the execution E’ of the register R’ depicted in Fig. 5.9.

R .write(b) R.read() = a

j4

R'.write(a)

P2
Figure 5.9: The execution of the register R’ is sequentially consistent
This execution is sequentially consistent, namely, the sequence 5
R.write; (b), R.writez(a), R.readi() — a,

satisfies the property defining sequential consistency.
Let us now consider an execution £ + E’ involving both R and R/, as described in Fig. 5.10.

R.write(1) R .write(b) R'.read() = a

R’ .write(a) R.write(2) R.read() — 1

D2
Figure 5.10: An execution involving the registers R and R’

This execution is the “union” of the previous executions E and F’, and each of its projections on
R and R’ are trivially sequentially consistent. But, there is no way to order all the operations so that
both the projections of R and R’ are sequentially consistent. OT heorem 17

It is easy to see, from the previous proof, that each register considers its own “logical time” in
which its execution is correct. But as these logical times are independent, they cannot be combined,
which prevents sequential consistency from being composable. The “real-time” reference on which
atomicity is based allows it to be composable (all registers considers the same reference time).
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5.4 Bounds on the Implementation of Strong Consistency Conditions

5.4.1 Upper Bound on ¢ for Atomicity

Atomic registers can “easily” be implemented in failure-free asynchronous message-passing systems,
i.e., in the very constrained system model CAMP,, +[t = 0]. Hence, from both a practical and com-
putability point of view, a fundamental question is the following one: Is it possible to design atomic
register algorithms for any value of ¢, or is there a threshold on ¢ that cannot be bypassed when one
has to cope with the net effect of asynchrony and process failures?

This section answers this fundamental question by showing that it is impossible to design a dis-
tributed algorithm that builds an atomic register in CAMP,, +[t > n/2]. This proof is based on an
indistinguishability argument, which is common to several impossibility results, namely the fact that
some processes cannot distinguish one execution from another one. In this sense, although it is very
simple, this proof depicts an essential feature that lies at the core of fault-tolerant distributed comput-
ing.

Theorem 18. There is no algorithm that builds an atomic read/write register in the system model
CAMP,, [t > n/2].

Proof Given ¢ > n/2, let us partition the processes into two subsets P1 and P2 (i.e., P1 N P2 = 0
and P1U P2 = {p1,...,pn}) such that |P1| = [n/2] and |P2| = |n/2]. Let us observe that
max(|P1],|P2|) < t, which means that the system model includes executions in which all the pro-
cesses of P1 crash, and executions in which all the processes of P2 crash.

The proof is by contradiction. Let us assume that there is an algorithm A that builds an atomic
register R fort > n/2. Let 0 be the initial value of R. Let us define the following executions (depicted
in Fig. 5.11 where n = 5 and ¢ = 3). Remember that, according to the system model and the previous
assumptions, these executions can happen.

£y
R.write(1)
P1Y pe
£y
PQ{ : R.read() — 0
Py !
Twrite jTrm(]

Figure 5.11: There is no atomic register algorithm in CAMP,, 0]

e Execution Ej. In this execution, all the processes of P2 crash initially (so no process of P2
ever executes a step in E7), and all the processes in P1 are non-faulty. Moreover, a process
ps € P1issues R.write (1), and no other process of P1 invokes an operation. As the algorithm
A'is correct (assumption), it satisfies the liveness property and consequently this write operation
does terminate. Let 7,,-iz¢ be a (finite) time after it has terminated.

e Execution Fjy. In this execution, all the processes of P1 crash initially, the processes of P2 are
non-faulty and do nothing until 7,,,+. Let us observe that, due to asynchrony, this is possible.
After Typize, @ process py € P2 issues R.read (), and no other process of P2 invokes an opera-
tion. As the algorithm A is correct, this read operation terminates and returns the initial value 0
to py. Let T¢qq be a (finite) time after which this read operation has terminated.
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e Execution Fy. This execution is defined as follows (where “the same as” means that in both
executions, the processes issues the same operations and receive the same results at the very
same time):

— No process crashes.
— Fjy is the same as Fy until 7ypite.

— FE is the same as E until the time 7,¢qq.

If any, the messages that the processes of P1 send to the processes of P2 are delayed to be
received after time 7,.qq. Similarly, if any, the messages that the processes of P2 send to
the processes of P1 are delayed to be received after time 7,¢,4. (Remember that, due the
system asynchrony, messages can be delayed during arbitrarily long but finite periods.)

Let us consider the process p, € P2. This process cannot distinguish between Ej and E1q until
Tread- Hence, as it reads 0 in Ey, it has to read the same value in F; but, as the algorithm A ensures
atomicity, p, should read 1 in E1q (the last write that precedes the read operation wrote the value 1).
We obtain a contradiction, from which we conclude that there is no algorithm A with the required
properties. OTheorem 18

5.4.2 Upper Bound on ¢ for Sequential Consistency

This section considers the previous question when the consistency condition is sequential consistency.
It shows that the previous impossibility result still holds when we have to implement x > 2 sequen-
tially consistent registers.

Theorem 19. There is no algorithm that builds two or more sequentially consistent read/write registers
in the system model CAMP,, [t > n/2].

Proof The proof is similar to the previous one. Given ¢ > n/2, let us partition the processes into two
subsets P1 and P2 (ie., P1 N P2 = () and P1U P2 = {p1,...,p,}) such that |[P1| = [n/2] and
|P2| = |n/2]. Let us observe that max(|P1|,|P2|) < ¢, which means that the system model includes
executions in which all the processes of P1 crash, and executions in which all the processes of P2
crash.

The proof is by contradiction. Let us assume that there is an algorithm A that builds two sequen-
tially consistent registers R1 and R2 in CAMP,, +[t > n/2]. Let 0 be the initial value of both registers.
Let us define the following executions (depicted in Fig. 5.12 where n = 5 and ¢ = 3). Remember that,
according to the system model and the previous assumptions, these executions can happen.

Ey

R1.write(1) | R2read() — 0 :
P1) ps l l

T T E2
pg{ R2.write(2) 3 Rl.read() — 0
Py T

Figure 5.12: There is no algorithm for two sequentially consistent registers in CAMP, +[t > n/2]
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e Execution ;. In this execution the processes of P1 are correct while the processes of P2 crash
initially. Moreover, a process p, € P1 invokes first R1.write(1) and then R2.read(). As the
algorithm A is correct this read returns the initial value of R2, namely 0.

e Execution F». In this execution the processes of P1 crash initially, while the processes of P2
are correct, and a process p, € P2 invokes first R2.write(2) and then R1.read(). It follows that
this read returns 0 to p,.

e Execution F1o2. This execution merges the executions £ and Es, where the messages (if any)
from the processes of P} to the processes of P, and from the processes of P to the processes of
P are delayed for an arbitrarily long time. Moreover, all the messages sent inside P; arrive as
in Fp, and all the messages sent inside P» arrive as in Fs.

As no process of P; can distinguish F12 from Fj, the invocation of R2.read() by p,; returns 0.
For the same reason, the invocation of R1.read() by p, returns 0. (Once these read operations
have terminated, the messages from P to P>, and the messages from P, to P}, can be received.)

Considering execution Fj9, let us list all the possible operation ordering that respect the process
order at p, and p,. we obtain the following six possible schedules:

Rl.writei(1), R2.read1() — 0, R2.writea(2), Rl.reads() — 0
Rl.writei(1), R2.writex(2), R2.read;() — 0, Rl.reads() — 0
Rl.write1(1), R2.writep(2), Rl.reads() — 0, R2.read;() — 0.
R2.writes(2), R1l.writer(1), R2.read;() — 0, Rl.reads() — 0
R2.writez(2), Rl.writeq(1), Rl.read2() — 0, R2.read;() — 0
R2.writez(2), R2.reads() — 0, Rl.write;(1), Rl.read;() — 0

As it can be easily checked, none of these schedules defines a history H in which each read oper-
ation returns the last written value of the read register (in each of them, at least one read operation
returns a value that is incorrect with respect to the specification of a sequential read/write register). A
contradiction which concludes the proof of the theorem. Orheorem 19

5.4.3 Lower Bounds on the Durations of Read and Write Operations

Theorem 20 is due to R. Lipton and J. Sandberg (1988). Theorem 21 and Theorem 22 are due to H.
Attiya and J. Welch (1994).

Cost tradeoff linking read and write operations It is easy to see that an implementation of a
register R in which the write operation would consist in broadcasting the new value of R and updating
the local memory of the invoking process, and a read operation would consist in reading the local
memory of the invoking process, does not work. (Such an implementation would allow a process to
terminate an operation without receiving messages from the other processes.) Hence, the question:
Which is the minimal cost for read or write operations, in terms of the time duration that elapses
between the start event and the end event of the operation?

To answer this question, let us assume that, while local computation takes no time, there is an
upper bound ¢ on message transfer delays. The system model is no longer asynchronous, but these
timing assumptions are only to study the durations of read and write operations. Let duration(op)
denote the minimal duration needed by the operation op (the physical time between the start event of
op and its end event).

Theorem 20. Any algorithm that builds a sequentially consistent read/write register in CAMP, ;[t <
n/2] provides read() and write() operations such that duration(read) + duration(write) > 4.
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Proof The proof is by contradiction. It is a simple adaptation of the two previous proofs based on
an indistinguishability argument. Assuming duration(read) + duration(write) < §, let us consider
the following three executions, involving two registers 21 and R2, both initialized to 0. Moreover, all
messages delays are equal to J in each execution.

0 > duration(read) + duration(write)

s >
- ’ o

Rl.write(1) R2.read() — 0

R2.write(2) Rl.read() — 0

Figure 5.13: Tradeoff duration(read) + duration(write) > §

e Let E, be an execution in which a process p, issues R1.write(1), immediately followed by
R2.read(), which returns 0. The other processes execute no operations. As all message delays
are equal to 0 > duration(read) + duration(write), it follows that no process knows the
operation R1.write, (1) when p,, returns from its invocation of R2.read,().

e Let E, be an execution similar to E, in which a process p, # p, issues R2.write(1), imme-
diately followed by R1.read(), which returns 0. The other processes execute no operations. As
previously, no process knows the operation R2.write, (1) when p, returns from its invocation of
R1.read,().

e Let Eyy be the execution merging F,, and E, as depicted in Fig. 5.13, where p, and p, invoke
simultaneously their write operations. As 6 > duration(read) + duration(write), it follows
that p, cannot distinguish E, from E,,,. Consequently its invocation R2.read, () must return 0.
For the same reason, the invocation of R1.read, () must return 0. (The messages arrive too late
to be considered by p, and p, and affect the values they returned.)

When we list all the schedules of the four operations that can be associated with E,,, which
respect the process order at p, and p,, we obtain the same as those listed in the proof of The-
orem 19. The fact that none of them respects the sequential specification of both R1 and R2

concludes the proof of the theorem.
O7heorem 20

As an atomic register is also a sequentially consistent register, we have the following corollary.

Corollary 1. Any algorithm that implements an atomic read/write register in CAMP [t < n/2]
provides read() and write() operations such that duration(read) + duration(write) > 6.

Lower bounds on read and write operations for an atomic register In addition to the maximal
message transfer delay d, let us consider the uncertainty v < § on message transfer delays, defined
as follows. Any message transfer delay belongs to the time interval [(§ — u)..d]. The two theorems
that follow establish lower bounds on the duration of read and write operations when one has to build
atomic registers. Neither § nor u is known by the processes.

Theorem 21. Any algorithm that implements an atomic read/write register in CAMP, [t < n/2] is
such that duration(write) > u/2.
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Proof The proof is by contradiction. Let us assume that there is an algorithm A that implements an
MWMR atomic register and its operation write() is such that duration(write) < u/2. We consider
two of its executions.

Execution E;. Let us consider the execution F; depicted at the top of Fig. 5.14. This figure considers
0 = 5 and u = 4 (but the reasoning does not depend on these specific numerical values).

Process p; invokes R.write(l) at time 0, which terminates before time % Then, at time % process
p2 invokes R.write(1), which terminates before time u. Finally, at time u, p3 invokes R.read(). As
the register R is atomic, this read returns the value 2. Moreover, in this execution, the message delays
are the following ones:

e ¢ for the messages sent by p; to po,

e § — u for the messages sent by ps to p1, and

e 0 — 4 for all the other messages.

Let us observe that this execution respects both timing assumptions on message delays, and the as-
sumption duration(write) < .

0 5=2 u=4 0=5
p1 — — i
r e Rowrite(2y—
E, P2 N s :
3 ! Lo dRread() 5 2
s - : —
=i —u=1 d=5
I “5-4=3
R.write(l?)
p1 : =" — 5
'Rowrite(2) . - -4
Es D2 — Lf,;;;(;‘:zqw ‘ —= :
. [ Rread()i— 2
p3 — —

Figure 5.14: duration(write) > u/2

Execution Fs. Let us now consider the execution Fs depicted at the bottom of Fig. 5.14. This execu-
tion differs from E as follows: the operation R.write(1) issued by p; is shifted later by & (hence, it
starts at time 4 and terminates before time ) while the operation R.write(2) issued by py is shifted
earlier by 5 (hence, it starts at time 0 and terminates before time §). As the shift between the write
operations is equal to u, the message delays are modified as follows:

e ) — u for the messages sent by p; or received by po,

e ¢ for the messages sent by py or received by p;, and

e unchanged for all other messages.

As in Fjq, let us observe that this execution respects both timing assumptions on message delays, and
the assumption duration(write) < . Moreover,
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e the time that elapses between p; terminates R.write(1) and the time at which it receives a mes-
sage from po is the same as in E7,

e the time that elapses between po terminates R.write(2) and the time at which it receives a mes-
sage from p; is the same as in £, and

o the times at which ps receives messages from p; and ps are the same as inE;.

It follows that p3 cannot distinguish E; from E», and consequently returns the same result as in Ej,
while it should return 1 to ensure atomicity of register 12, which completes the proof of the theorem.
(Let us notice that F5 is correct with respect to sequential consistency; hence, the proof does not
extend to sequential consistency.) O7heorem 21

Theorem 22. Any algorithm that implements an atomic read/write register in CAMP, [t < n/2] is
such that duration(read) > u/4.

Proving this theorem constitutes Problem 2 of Section 5.7.

5.5 Summary

This chapter first defined the concept of a read/write register in the context where registers can be con-
currently accessed by several processes. To this end, it presented three consistency conditions which
can be associated with a read/write register: regularity, atomicity (also called linearizability), and se-
quential consistency. Regularity addresses the case where the semantics of the register is not defined
by a sequential specification, while the two other consistency conditions address the case where the
semantics of the register is defined by a sequential specification. These consistency conditions differ
in the fact that atomicity considers a single global time frame (usually called the “real-time” of an
external omniscient observer) for all the registers, while sequential consistency considers that each
register has its own time notion. As we have seen, this has a fundamental impact on read/write regis-
ters: atomic read/write registers are composable while sequentially consistent read/write registers are
not. This chapter also presented a ¢-resilience limit and lower bounds on the time it takes to execute a
read or a write operation when one has to implement an atomic or sequentially consistent register in
an asynchronous message-passing system prone to process crashes.

5.6 Bibliographic Notes

e The notion of a regular register was introduced by L. Lamport [259]. The notion of an atomic
read/write object (register), as studied here, was investigated and formalized by L. Lamport
in the same paper. (L. Lamport also introduced the notion of a safe register that is a weaker
notion than a regular register. This notion has not been addressed and developed here because
its interest is limited in the context of message passing systems.)

A more hardware-oriented investigation of atomic registers has been undertaken by J. Misra
[288]. An extension of the regularity condition to MWMR registers is described in [391].

e The generalization of the atomicity consistency condition to any object defined by a sequential
specification (set of traces) was developed by M. Herlihy and J. Wing under the name lineariz-
ability [216].

e The notion of composability on consistency conditions and the theorem stating that atomicity
is a local property are due to M. Herlihy and J. Wing. In their paper [216] composability is
called “locality”. As this term has several meanings in distributed computing, we used the term
“composability” which seems more appealing.

e The notion of sequential consistency is due to L. Lamport [257].
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5.7. Exercises and Problems

It is important to notice that, unlike atomicity, sequential consistency and most of the consistency
conditions encountered in database concurrency control [61, 340] do not satisfy the composabil-
ity property. This means that, ensuring sequential consistency on several registers requires that
their implementation algorithms cooperate in one way or another. Their composition is not given
for free. Such cooperation algorithms suited to failure-free systems are presented in [368].

Distributed algorithms implementing read/write registers with different semantics (atomicity, se-
quential consistency, normality, and the weaker causal consistency condition) in failure-free sys-
tems, and relations linking these consistency conditions can be found in many articles (e.g., [3,
24,42, 112, 186, 267, 291, 361, 372]) and in textbooks such as [43, 368].

Theorem 20 is due to R. Lipton and J. Sandberg [269]. Theorem 21 and Theorem 22 are due to
H. Attiya and J. Welch [42].

On the computability power of read/write registers in sequential computing, the reader can con-
sult the original paper [408], or one of the many books on sequential computability (e.g., [210,
220, 221, 294, 394, 397)]).

Exercises and Problems

1. Design an algorithm that builds a single sequentially consistent register in CAMP,, ;[0].

. Prove Theorem 22.

Solution in [42, 43].

. Before proceeding to the next chapter, try to design a distributed algorithm implementing a

regular register in CAMP, ¢[t < n/2].
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Building Read/Write Registers
Despite Asynchrony and
Less than Half of Processes Crash

(t <n/2)

This chapter is on the construction of multi-writer multi-reader registers in asynchronous message-
passing systems prone to the crash of a minority of processes (system model CAMP,, [t < n/2]). It
first considers atomic registers for which it adopts an incremental presentation, with three construc-
tions, each one extending the previous one. The first one builds a single-writer multi-reader (SWMR)
regular register, which is extended by the second construction to obtain a single-writer multi-reader
(SWMR) atomic register. The third one consists in a simple extension of the second one to obtain a
multi-writer multi-reader (MWMR) atomic register. The chapter then addresses the construction of
sequentially consistent registers. It presents two algorithmic approaches for building MWMR sequen-
tially consistent registers, one suited to the system model CAMP,, ;[t < n/2], the other one for the
same model enriched with a total order broadcast abstraction. Let us remember that atomicity and
sequential consistency define the class of strong consistency conditions, which means that their defi-
nitions rely on the existence of a total order on the read and write operations issued by the processes.

Keywords Acknowledgment, Asynchronous system, Atomic register, Client, Composability, Ma-
jority, Process crash failure, Read must write, Read/write register, Regular register, Sequentially con-
sistent register, Server, Two-phase algorithm.

6.1 A Structural View

Global architecture The structure of all the algorithms implementing a shared read/write register
REG is described in Fig. 6.1. The register is implemented collectively by the n processes, which
manage local data structures and send/receive messages.

Local data structures The local data structures managed by a process p; are:

e alocal register reg; which contains the last value written into REG as known by p; (this is not
necessarily the last value written into REG from a “real-time” point of view), and

e a set of control variables, whose appropriate management ensures that the invocations of the
REG .read() operation issued by p; return correct values, where “correct” refers to the consid-
ered consistency condition.
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application processes

local local local
i | memory | § i | memory | § i [ memory |/

distributed read/write

shared memory abstraction

underlying network

Figure 6.1: Building a read/write memory on top of CAMP,, [t < n/2]

On the algorithm side: both client and server The local algorithm executed by each process p;
consists of two parts:

e a client side composed of two local algorithms implementing the operations REG .read() and
REG .write(), and

e a server side defining the processing associated with each message reception.

At the implementation level, a process may send messages both in its client role and its server
role. Let us remember that “broadcast MSG(m)”, where MSG is a message type and m a message
content, is a shortcut for the statement “for all j € {1,...,n} do send MSG(m) to p; end for.” This
macro-operation is not reliable: if the invoking process crashes while executing it, an arbitrary subset
of processes (not known in advance, and possibly empty) receive the message.

Reminder: atomicity is composable We saw in the previous chapter that atomicity is composable;
this means that we have the following modularity property.

Distinct atomic read/write registers can be implemented either by a simple multiplexing of the
same implementation algorithm, or by different algorithms (one for each register), and this is at zero
cost. This means that these implementation algorithms do not have to cooperate in order that the whole
execution remains atomic for each of them. Hence, if an atomic register R1 is built by an algorithm
A1l (designed by a system programmer sp), and another atomic register R2 is built by an algorithm
R2 (designed by another system programmer spy # sp1), an execution involving R1 and R2 remains
atomic for R1 and R2 without requiring to modify A1 or A2. Whatever the number of atomic registers,
the implementation of each of them can remain ignorant of all the other ones.

6.2 Building an SWMR Regular Read/Write Register in CAMP,, [t <
n/2]

6.2.1 Problem Specification

The notion of a regular register was introduced in Section 5.1.2. A regular register is defined by the
two following properties:

o Safety. This property states which values can be returned by a read operation.

— If an operation REG .read() terminates and its execution was not concurrent with an invo-
cation of REG .write(), it returns the last value written into REG.
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— If an operation REG .read() terminates and its execution was concurrent with one or sev-
eral invocations of REG .write(), it returns a value written by one of these write operations,
or the last value of REG before these concurrent write operations. (Let us remember that,
as the notion of a regular register was defined for SWMR registers, if a read invocation is
concurrent with several write invocations, these write invocations are necessarily consec-
utive.)

e Liveness. Whatever the invoked operation (REG.read() or REG.write()), if the invoking pro-
cess is non-faulty, all its invocations terminate.

6.2.2 Implementing an SWMR Regular Register in CAMP,, ;[t < n/2]

Underlying principle The idea that underlies the construction is quite simple. Let p,, denote the
single writer process. On the one hand, p,, associates a sequence number with each of its write
operations and broadcasts the pair (new value, sequence number). On the other hand, every process p;
saves the pair with the highest sequence number it has ever seen in its local memory.

Both the safety property (regularity) and the liveness property associated with a regular register
are obtained from the “majority of correct processes” assumption (¢ < n/2). This is because this
assumption allows a process to always communicate with a majority of processes (i.e., with at least
one non-faulty process) before terminating its current read or write operation. This ensures that, as
any written value is registered by at least one correct process, it cannot be lost.

Local variables Each process p; manages the following local variables:

e As already indicated, reg; is a local data variable that contains the current value (as known by
p;) of the regular register REG.

e wsn; is a local control variable that keeps the sequence number associated with the value cur-
rently saved in reg;. As far as p,, is concerned, wsn,, is also used to generate the increasing
sequence numbers associated with the values written into REG.

e regsn; is a local control variable containing the sequence number that p; has associated with
its last read of REG. (These sequence numbers allow every acknowledgment message to be
correctly associated with the request that gave rise to its sending.)

All the local variables used to generate a sequence number are initialized to 0. The register REG
is assumed to be initialized to some value (say vp). Consequently, all the local variables reg; are
initialized to vy.

The construction An algorithm that builds a regular SWMR register REG is described in Fig. 6.2.
The statement “wait (TAG(f, sn, —) received from z processes)” means that the invoking process
is blocked until its input buffer contains messages from z different processes, each with type TAG
and carrying the sequence number value sn. When the wait statement terminates these messages are
consumed and suppressed from the input buffer.

When p,, invokes REG .write (v), it computes the next sequence number wsn,, (line 1), broad-
casts the message WRITE(v, wsn,,) (line 2), and waits for corresponding acknowledgments from a
majority of processes before terminating the write operation (line 3). When a process p; receives
such a message, it updates its current pair (reg;, wsn;) if wsn > wsn; (line 10). If wsn < wsn,,
the message is an old message and its content is ignored. In all cases, p; sends an acknowledgment
ACK_WRITE_REQ(w_sn) (line 11) back to py,.

When a process p; invokes REG.read(), it broadcasts a request message READ_REQ (regsn;)
where regsn; is a sequence number used to identify each of its read requests (lines 5-6). When a pro-
cess py, receives such a message it sends back to its sender its current value of the register REG, which



98 6.2. Building an SWMR Regular Read/Write Register in CAMP, ¢[t < n/2]

is captured by the pair (regy,, wsny). Then, when p; has received ACK_READ_REQ (regsn;, —, —) mes-
sages from a majority of processes, it returns the value v it has received, which is associated with the
greatest write sequence number.

operation REG.write (v) is % This code is only for the single writer p., %
(1) wsny < wsn, + 1;

(2) broadcast WRITE (v, wsnw );

(3) wait (ACK_WRITE (wsn.,) received from a majority of processes);

(4) return ().

% The code snippets that follow are for every process p; (i € {1,...,n}) %

operation REG .read () is % This code is for any process p; %
(5) regsn; < regsn; + 1;
(6) broadcast READ_REQ (regsn;);
(7)  wait (ACK,READ,REQ (regsn;, —, —) received from a majority of processes);
(8) let ACK_READ_REQ (regsn;, —,v) be a message received at the previous

line with the greatest write sequence number;
(9) return (v).

when WRITE (val, wsn) is received from p.,, do
(10) if (wsn > wsn;) then reg; < val; wsn; < wsn end if;
(11) send ACK_-WRITE (wsn) to pq.

when READ_REQ (7sn) is received from p; do % (G e{l,...,n}) %
(12) send ACK_READ_REQ (7sn, wsn;, reg;) to p;.

Figure 6.2: An algorithm that constructs an SWMR regular register in CAMP,, [t < n/2]

Remark on efficiency When it receives a WRITE (val, wsn) message from the writer p,,, a process
p; evaluates the predicate wsn > wsn;. Actually this predicate could be strengthened to wsn > wsn;
for a process p; # py,. Using the predicate wsn > wsn; allows us to not distinguish p,, from the other
processes. (Moreover, it will allow a simple generalization when we will go from an SWMR atomic
register to an MWMR atomic register in Section 6.4.)

The code of the algorithm can be easily modified to save a few messages. When p,, executes
REG .write(), it is not necessary for it to send a message to itself. It can instead write y v directly
into reg,,. Moreover, when p,, wants to read REG, it can return directly the current value of reg,,.
In the same vein, when a process p; (i # w) invokes REG.read(), it can save the sending of a
message to itself as long as, in addition to the acknowledgment messages it receives, it also considers
its own pair (wsn;, reg;) when it computes the value to be returned. In this case, when it waits for
acknowledgments, a process now has to wait for messages from a majority of processes minus one.

Cost It is easy to see that the cost of a read or a write operation is 2n messages. As far as the
time complexity is concerned, let us assume that (a) local computation durations are negligible when
compared to message transit delays, and (b) every message takes one time unit (maximal network la-
tency). The number of “time units” that are needed by an operation actually is the number of sequential
communication steps this operation gives rise to.

An operation thus takes 2 time units (let us remember that the communication graph is complete,
i.e., each pair of processes is connected by an independent bidirectional channel). Hence, the time
complexity (the number of sequential communication steps) does not depend on 7.

When the communication graph is not complete The algorithm described in Fig. 6.2 is based
on the assumption that the underlying communication graph is completely connected: any pair of
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processes is connected by a reliable channel.

So, an interesting question is: What does happen when this is not the case? It is relatively easy
to see that the algorithm can be modified in order to work in all the runs in which the communication
graph connecting the non-faulty processes remains strongly connected (i.e., any pair of non-faulty
processes is connected by a path of non-faulty processes and reliable channels). The modification of
the algorithm consists in adding an appropriate routing for the messages. In this case, both the message
complexity and the time complexity depend on the communication graph.

6.2.3 Proof of the SWMR Regular Register Construction

Theorem 23. The algorithm described in Fig. 6.2 constructs an SWMR regular register in the system
model CAMP,, [t < n/2).

Proof

Proof of the liveness property. We have to prove here that any operation invoked by a non-faulty pro-
cess terminates. Let us notice that the only statement where a process can block forever is a wait()
statement. The fact that no process blocks forever in such a statement follows directly from the four
following observations: (1) a process broadcasts a WRITE() or READ_REQ() message (appropriately
identified with a sequence number) before waiting for acknowledgments from a majority of processes,
(2) every WRITE() or READ_REQ() message is systematically answered by every non-faulty process,
(3) there is a majority of non-faulty processes, and (4) the channels are reliable.

Proof of the safety property. Let us first observe that, as there is a single writer, write operations
are totally ordered. Moreover, every write operation is identified with a sequence number, and no two
write operations have the same sequence number. To prove the safety property that defines a regular
register, we have to prove that, when a process p; invokes REG .read(), it obtains either the last value
written before the read operation was invoked or a value that is written by a concurrent write operation.

Let wn be the write sequence number associated with the value returned by p; (lines 8-9). Let
x > 0 be the sequence number of the last value written before the operation REG.read () is invoked,
and z + 1, ..., x + y be the sequence numbers of the write operations, if any, that are concurrent
with REG .read() (y = 0 corresponds to the case where there is no write concurrent with the read).
Let READ_REQ(7sn) be the read request message generated by REG.read (). The proof consists in
showing that wn € {z,...,z + y}.

As the write of the value associated with z is terminated, it follows from the algorithm that (at
least) a majority of processes py are such that wsny > z. As the operation REG.read() obtains
messages ACK_READ_REQ(rsn, —, —) from a majority of processes, it obtains at least one message
ACK_READ_REQ(rsn,wn, —) such that wn > z.

On the other hand, due to its very definition, the read operation is not concurrent with write oper-
ations whose sequence numbers are greater than « + y. This means that the read operation terminated
before the write numbered « + y + 1 is issued by the writer (if such a write is ever issued). Conse-
quently, wn < z + y, which concludes the proof of the safety property. O heorem 23

When the writer crashes If the writer crashes outside the write operation, the processes will obtain
the last value it has written. The case where it crashed while executing the write operation is more
interesting. It is possible that the writer p,, crashes after sending its new value to less than a majority
of processes. In this case, depending on both asynchrony and the actual crash pattern, it is possible
that, when some processes read, they will always obtain the new value, while others always obtain
the previous value. This does not contradict the definition of a regular register. Actually, if the writer
process crashes during a write operation, that operation may never terminate (it is then concurrent with
all the future read operations).
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It is easy to see that the crash of a process during a read operation has no effect on the behavior
of other processes. This is because a read operation does not entail modifications on local variables of
the other processes.

6.3 From an SWMR Regular Register to an SWMR Atomic Register

6.3.1 Why the Previous Algorithm Does Not Ensure Atomicity

Let us consider the scenario described in Fig. 6.3. There are 5 processes, and none of them crash. The
numbers on horizontal process axes are sequence numbers. The bold line (cutting the axes of all the
processes) is the “write line” associated with the write of the value with sequence number 15. As an
example, let us consider the process p;: before the cut by the write line, reg; contains the value whose
sequence number is 14, and after it contains the value whose sequence number is 15. As far as p;
is concerned, this process receives the message WRITE(—, 15) before the ones carrying the sequence
numbers 11 to 14. Due to asynchrony these messages are late (they have been bypassed by the message
WRITE(—, 15)); they will be discarded by p; when they eventually arrive. Let us remember that the
channels are reliable but are not required to be “first in, first out”.

14 \5

readl
14 15 read3

T )
1;} 10 \ / \ 15
N

Figure 6.3: Regularity is not atomicity

An ellipse corresponds to a read operation, so there are three reads denoted readl, read2 and
read3. Let us assume that readl is issued by p;. It obtains the values and the sequence numbers of
the set of the three processes py,, p, and itself, which constitutes a majority. The associated sequence
numbers are 15, 12, and 14. It follows that readl returns the value whose sequence number is 15. If
we consider read3, it is easy to see that it returns the value whose sequence number is 15. Let us now
consider read2. It obtains the sequence numbers 14, 14 and 10, and consequently returns the value
whose sequence number is 14.

When we look at Fig. 6.3 from an operation duration point of view, we see that, while readl
terminated before read2 started, it obtained the new value while read2 obtained the old value. There is
a new/old inversion. Consequently, the algorithm described in Fig. 6.2 does not ensure the atomicity
consistency property.

6.3.2 From Regularity to Atomicity

The key to obtaining atomicity: force a read to write A way to enrich the previous algorithm to
obtain an algorithm that guarantees atomicity consists in preventing new/old inversions. This can be
easily realized as follows:

e First (as shown in Fig. 6.2), force a process p; to obtain pairs (value, sequence number) from a
majority of processes. Let (v, sn) be the pair with the highest sequence number obtained by p;.
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e Then force process p; to write the value v it is about to return. This ensures that, when the read
terminates, a majority of processes have a value as recent as v in their local memory.

The parts of the algorithm described in Fig. 6.2 that are modified to go from regularity to atomicity
are the code of the read operation and the snippet associated with the reception of a message WRITE().
They are described in Fig. 6.4. The modified lines are suffixed by “M”. The new lines are denoted
“Nz” where x is an integer.

operation REG.read () is % This code is for any process p; %

5) regsn; <— regsn; + 1;

6) broadcast READ_REQ (regsn;);

7 wait (ACK,READ,REQ (regsn;, —, —) received from a majority of proccsses);

(8)  let ACK_READ_REQ (regsn;, msn,v) be a message received at the previous
line with the greatest write sequence number;

(N1) broadcast WRITE (v, msn);

(N2) wait (ACK_-WRITE (msn) received from a majority of processes);

9) return (v).

when WRITE (val, wsn) is received from p; do % (j € {1,...,n}) %
(10)  if (wsn > wsn;) then reg, < val; wsn; < wsn end if;
(11M) send ACK_WRITE (wsn) to p;.

Figure 6.4: SWMR register: from regularity to atomicity

Thanks to this embedded write of the read value, if the invoking process p; does not crash while
executing the read, a majority of the processes will have a value with a sequence number greater than
or equal to sn, where sn is the sequence number of the value it is about to return. It is easy to see
that this prevents new/old inversions from occurring. If p; crashes before returning from the read
operation, the WRITE() message it has sent to p; (if any) is taken into account by p; only if it carries
a value not older than the one kept in reg ;. It follows that a process that crashes during a read cannot
create inconsistency. Its only possible effect is to refresh the content of local variables with more up
to date values.

Finally, as now the writer is no longer the only process which send messages WRITE(), the process-
ing of these messages has to be slightly modified: the ACK_.WRITE_REQ() message is systematically
sent to the sender of the WRITE() message (line 11M)

6.4 From SWMR Atomic Register to MWMR Atomic Register

The algorithm presented below is due to H. Attiya, A. Bar-Noy, and D. Dolev (1995). It is often named
ABD in the literature.

6.4.1 Replacing Sequence Numbers by Timestamps

To go from a single writer atomic register to a multi-writer atomic register, the new problem to solve
is allowing the processes to share a single sequence number generator for the values they write into
REG. A simple way to do it is to use the set of local variables {wsni}lgign as follows.

When a process p; wants to write, it broadcasts a message WRITE_REQ(7egsn;) in order to obtain
the current sequence numbers wsn; of a majority of processes. It then adds 1 to the the maximal
value it has received and associates this new sequence number with the value v it wants to write. Let
us observe that, now, the local variable regsn; is used by p; to associate an identity to both its write
requests and its read requests.

Of course, this does not prevent several processes from associating the same sequence number
with their writes. (Let us notice that, when this occurs, the corresponding writes are concurrent.) This
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can be solved, by associating a timestamp (instead of a “unidimensional” sequence number) with each
write operation.

A timestamp is a pair (logical date, process identity). Scalar timestamps were introduced by L.
Lamport (1978). The two fundamental properties of timestamps are the following:

e the local clock of each process p; increases with respect to its individual progress and the
progress of all the other processes, and

o the whole set of timestamps generated by a computation define a total order causally consistent
with the flow of messages exchanged by all processes.

The first element of a timestamp is a date, and its second element is a location (process identity). Let
(snl,4) and (sn2, j) be two timestamps. The timestamp total order is defined as follows (lexicograph-
ical ordering):

(snl,i) < (sn2,7) = ((snl <sn2) V (snl=sn2 A i< j)).

6.4.2 Construction of an MWMR Atomic Register

The ABD construction The algorithm building an MWMR atomic register REG in CAMP, 4]t <
n/2] is described in Fig. 6.5. All the processes now have the same code and the same initialization of
all their local variables. They differ only in their identity.

Each process manages a new local variable {w; (last writer) that contains the identity of the process
that issued the write of the value currently saved in reg; (fw; can be initialized to any process identity,
e.g., 1). The timestamp of the value in reg; is consequently the pair (wsn;, {w;). The code associated
with the reception of a WRITE(val, wsn) message now takes into account the timestamp of the value
that is about to be written, instead of its sequence number only.

In the construction of a single-writer register, the values taken by a local variable wsn; are a subset
of the values taken by the local variable wsn,, (Where p,, is the writer), which increases by step equal
to 1. Whereas in the construction of a multi-writer register, it is possible that no local variable wsn;
always increases by a step equal to 1. When it issues a new write, a process associates the greatest
value of wsn it knows plus one with the value it writes (lines 4-5). Hence, the construction of a multi-
writer register replaces the sequence numbers used in the construction of a single-writer register by
logical dates whose progress complies with the causality relation defined from the local progress of
each process and the control flow generated by message exchanges (captured by the relation “ —j;”
defined in Section 2.2.2).

Observe that now, not only the read/write request messages and their acknowledgments are tagged
with a request sequence number defined by the requesting process, but the write messages also are
tagged the same way. This allows for an unambiguous identification of the write acknowledgments
sent to a writer.

On two-phase algorithms The algorithms implementing the REG .write () and REG.read () op-
erations have exactly the same structure: they first broadcast a request to obtain more recent control
information, do local computation, and finally issue a second broadcast to write a value.

This structure is encountered in a lot of distributed algorithms called distributed two-phase algo-
rithms. These phases refer to communication. The first phase consists in acquiring information on the
system state, while (according to the information obtained and some local computation) the second
phase consists in updating the system state.

6.4.3 Proof of the MWMR Atomic Register Construction

Lemma 5. The execution of REG .write () or REG.read () by a non-faulty process always terminates.
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operation REG .write (v) is
(1) regsn; < regsn; +1;

% Phase 1: acquire information on the system state %
(2) broadcast WRITE_REQ (regsn;);
(3) wait(ACK_-WRITE_REQ (regsn,;, —) received from a majority of processes);
(4) let msn be the greatest sequence number previously received

in an ACK_-WRITE_REQ (regsn;, —) message;

% Phase 2 : update system state %
(5) broadcast WRITE (regsn;, v, msn + 1,1);
(6) wait (ACK-WRITE (regsn;) received from a majority of processes);
(7)  return().

operation REG .read () is
() regsn; < regsn,; + 1;
% Phase 1: acquire information on the system state %
(9) broadcast READ_REQ (regsn;);
(10) wait ( ACK_READ_REQ (regsn;, —, —, —) received from a majority of processes);
(11) let (msn, mlw) be the greatest timestamp received in
an ACK_READ_REQ (regsn;, —, —, —) message;
(12) let v be such that ACK_READ_REQ (req_sn;, msn, mlw, v) has been received;
% Phase 2 : update system state %
(13) broadcast WRITE (regsn;, v, msn, méw);
(14) wait (ACK-WRITE (regsn;) received from a majority of processes);
(15) return (v).

when WRITE (rsn, val, wsn, fw) is received from p; do %je{l,...,n}t %
(16) if(wsn, lw) > (wsn;, lw;) then reg; < val; wsn; < wsn; Lw; + Lw end if;
(17) send ACK_WRITE (rsn) to p;.

when READ_REQ (7sn) is received from p; do %je{l,...,n}t%
(18) send ACK_READ_REQ (rsn, wsn;, fw;,eg;) to p;.

when WRITE_REQ (rsn) is received fromp; do % j € {1,...,n} %
(19) send ACK_-WRITE_REQ (7sn, wsn;) to p;.

Figure 6.5: Construction of an atomic MWMR register in CAMP,, ;[t < n/2] (code for any p;)

Proof The reasoning is exactly the same as the one stated in the proof of Theorem 23 where the
case of the SWMR regular register was considered. We repeat it here only to make the proof self-
contained. The fact that no process blocks forever in a wait statement follows directly from the four
following observations: (1) a process broadcasts a request message (identified with a proper sequence
number) before waiting for acknowledgments from a majority of processes, (2) every request message
is systematically answered by every non-faulty process, (3) there is a majority of non-faulty processes,
and (4) the channels are reliable. OLemma 5

Notion of an effective operation An effective read operation is such that the invoking process does
not crash while executing it. An effective write operation is a write operation such that either the
invoking process does not crash while executing it, or if it does crash the value it writes is returned by
an effective read.

The timestamp of an effective REG .write () operation is the timestamp it associates with the value
it writes (as defined at line 5). The timestamp of an effective REG.read () operation is the timestamp
associated with the value it returns (the pair (msn, m{w) computed at line 11).

An effective write is a write whose value is taken into account by at least one process. Let us
observe that all write operations issued by non-faulty processes are effective. On the other hand, some
of the write operations whose invoking processes crash during their invocation are effective, while
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others are not.

Lemma 6. Let wl and w2 be two effective write operations timestamped (snl,idl) and (sn2,id2),
respectively. wl # w2 = (snl,idl) # (sn2,id2).

Proof Let us first observe that if wl and w2 are issued by different processes, the second field of their
timestamps are different, and the lemma follows. So, let us consider that wl and w2 are issued by the
same process p;, (snl, ) being the timestamp of wl, and (sn2, ) being the the timestamp of w2.

Without loss of generality, let us assume that wl is executed first. As p; is sequential, it follows
that w1 has terminated when it issues w2, from which we conclude that a majority of processes p; are
such that (wsn;, fw;) > (snl,i) when wl terminates.

Let us now consider the first phase of w2. During this phase, p; collect values wsn from a majority
of processes. As any two majorities intersect, it follows that at least one of these wsn values is greater
than or equal to snl. Finally, the lemma follows from the fact that sn2 is set to a value greater than
the greatest sequence number received (lines 4-5). OLemma 6

Lemma 7. Let opl and op2 be two effective operations timestamped (snl,idl) and (sn2,id2), re-
spectively, such that opl terminates before op2 starts. We have:

If opl is a read or a write operation and op2 is a read operation, then (snl,idl) < (sn2,id2).

If opl is a read or a write operation and op?2 is a write operation, then (snl,idl) < (sn2,id2).

Proof The proof of this lemma uses Lemma 6 and is similar to it. The only difference is that, while a
write operation increases a wsn value, a read operation does not. A development of a complete proof
is left to the reader as an exercise. O Lemma 7

Lemma 8. There is a total order S on all the effective operations (i) that respects their real-time
occurrence order, and (it) is such that any read operation obtains the value written by the last write
operation that precedes it in S.

The notion of “real-time occurrence order” was defined in Section 5.2 of the previous chapter. An
operation opl precedes an operation op2 if the response event of opl appears before the invocation
event of op2 in the event history H = (H, <y ) that models the corresponding execution.

Proof Let us consider the total order S on all the effective operations defined as follows. The op-
erations are first ordered in S according to their timestamps. As all the write operations are totally
ordered by their timestamps (Lemma 6), it follows that, if two operations have the same timestamps,
one of them is necessarily a read operation. If a read and a write have the same timestamps, the write is
ordered in S before the read. If two reads have the same timestamp, the one that starts first is ordered
in S before the other one. (The first is the one whose invocation event appears first in the associated
history H B)
Given this total order § we show that it is a witness sequence (or linearization) of the execution.

e Proof of property (i). Let opl, timestamped (snl,idl), and op2, timestamped (sn2,id2), be
effective read or write operations such that opl terminates before op2 starts. Due to Lemma 7,
we have (snl,id1l) < (sn2,id2) if op2 is a read operation, and (snl,idl) < (sn2,id2) if op2
is a write operation. We conclude from the way S is built (from both the order on the operations
defined by their timestamps and the order on the response/invocation events), that opl is ordered
before op2 in S.

e Proof of property (ii). Let read be a read operation that returns a value v timestamped (sn, 7).
We conclude that v has been written by p; after it has computed the write sequence sn. The fact
that read obtains the value of the last preceding write in S follows directly from the way Sis
built and the fact that no two written values have the same timestamp (Lemma 6).
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ULemma 8

Theorem 24. The algorithm described in Fig. 6.5 constructs an MWMR atomic read/write register in
the system model CAMP,, ;[t < n/2].

Proof The proof follows from Lemma 5 (liveness) and Lemma 8 (safety). O heorem 24

6.5 Implementing Sequentially Consistent Registers

6.5.1 How to Address the Non-composability of Sequential Consistency

Reminder on the non-composability of sequential consistency We saw in Section 5.3.3 that, un-
like atomicity, sequential consistency is not a composable consistency condition. From an algorithmic
point of view, this means the following. Considering the system model CAMP,, ,[t < n/2] (where
sequential consistency can be implemented), let A1 be an algorithm that implements a sequentially
consistent register REG1 in CAMP,+[t < n/2], and let A2 be another algorithm that implements a
sequentially consistent register REG2 in the same system. Moreover, A1 and A2 are independent in
the sense they do not communicate and neither of them knows the code of the other.

Let us consider the composite read/write register 212, which is made up of the four opera-
tions R12.writel(), R12.read1(), R12.write2(), R12.read2(), where R12 is implemented by REG1
and REG2, REG1 being implemented by Al, and REG2 being implemented by A2. The non-
composability of sequential consistency states that such an implementation does not provide a sequen-
tially consistent composite read/write register R12.

How to implement composite sequentially consistent registers One way to implement compos-
able sequentially consistent registers consists in using the same underlying physical or logical time
frame for all the registers. This provides a kind of “GCD” on which the implementation of all the
registers relies. We present two such approaches in the following sections: the first one relies on a
total order broadcast abstraction, whereas the second one relies on the use of a common logical time.

6.5.2 Algorithms Based on a Total Order Broadcast Abstraction

Total order broadcast abstraction Total order broadcast (TO-broadcast) provides the processes
with two operations, denoted TO_broadcast (m) and TO_deliver (m). It is CO-broadcast plus the
following property: if a process to-delivers a message m before a message m/, no process to-delivers
m’ before m. Piecing together CO-broadcast (defined in Section 2.2), and the previous property on
message deliveries, we obtain the following set of properties which define TO-broadcast. It is assumed,
without loss of generality, that all messages are different.

e TO-validity. If a process to-delivers a message m, then m has been previously to-broadcast.
e TO-integrity. A process to-delivers a message m at most once.

e TO-order. If a process to-delivers a message m before a message m/, no process to-delivers m/
before m.

e TO-causal precedence. If a message m causally precedes a message m’, no process to-delivers
m/ before m (message causal precedence is defined in Section 2.2.2).

e TO-termination. (1) If a non-faulty process to-broadcasts a message m, or (2) if a process to-
delivers a message m, then each non-faulty process to-delivers the message m.
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Hence, all correct processes to-deliver the same sequence of messages, which includes at least the mes-
sages they to-broadcast, and this sequence of messages respects message causal precedence. More-
over, each faulty process to-delivers a prefix of this sequence.

The fact that there is a single message delivery order creates a “GCD” from which composite
sequentially registers can be built. It follows that TO-broadcast-based implementations of a set of
sequentially consistent registers can be envisaged, all using the same (causally consistent) total order
on message deliveries to order their write operations.

On the implementability of TO-broadcast TO-broadcast cannot be implemented in CAMP,, [t <
n/2]. This system model must be enriched with appropriate computability assumptions before TO-
broadcast can be built. Basically, the processes must agree on a total order on messages in which
each of them will to-deliver them. This is a fundamental agreement problem, which requires specific
computability assumptions (this problem will be addressed in Part IV of the book).

6.5.3 A TO-broadcast-based Algorithm with Local (Fast) Read Operations

Each process p; maintains a local copy of each register, z; for register X, y; for register Y, etc. The
algorithm is depicted in Fig. 6.6,

When a process p; invokes X.write(v), it to-broadcasts the message SEQ_CONS(i, X, v) (line 1),
and waits until it to-delivers it (line 2). When this occurs, it terminates its write operation (line 3).
However, a read is purely local (hence the name “fast” read). When a process p; invokes Y.read(), it
simply returns the current value of its local register y; (line 4).

When a process p; to-delivers a message SEQ_CONS(j, Z, v) (write of v in Z by p;) it first assigns
the value v to its local representation of Z (line 5). Then, if it is the writer of Z, it sets done; to true,
which allows its write to terminate.

operation X.write(v)is % X is any register %
(1) TO_broadcast SEQ_CONS(%, X, v);

(2) received; « false; wait (received;);
(3) return().

operation Y.read()is % Y is any register %
4)  return(y;).

when SEQ_CONS(j, Z, v) is to-delivered do
(5 2w
(6) if (j = i) then received; < true end if.

Figure 6.6: Fast read algorithm implementing sequential consistency (code for p;)

Let § be an upper bound on the time it takes to to-deliver a message SEQ_CONS(). The previous al-
gorithm (and the next one) constitutes an illustration of Theorem 20, which states that duration(read)+
duration(write) > §. Here we have duration(read) = 0 and duration(write) = §. (The algorithm
presented in Section 6.5.4 is such that duration(read) = § and duration(write) = 0.)

Let CAMP,,;[t < n/2, TO-broadcast| denote the system model CAMP,, ,[t < n/2] enriched
with the TO-broadcast abstraction.

Theorem 25. The algorithm describe in Fig. 6.6 builds sequentially consistent registers in the system
model CAMP, [t < n/2, TO-broadcast].

Proof All read operations trivially terminate. The fact that all write operations issued by a correct
process terminate follows from the termination property of TO-broadcast.
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As far as safety is concerned, let —— be the total order on write operations built by the TO-
broadcast abstraction. Due to the properties of TO-broadcast, — contains at least all the write oper-
ations issued by the correct processes, and respects all process orders. We construct a sequence S on
all operations by enriching = with the read operations as follows.

SEQ_CONS({, Z, vy)

x; v Z.read() — vy Yi < U

bi
Zp vy

SEQ_CONS(j, X, vj) SEQ_CONS(k, Y, vy)
Figure 6.7: Benefiting from TO-broadcast

Let SEQ_CONS(j, X, v;) and SEQ_CONS(k, Y, vy) be the messages associated with any two write
operations which are consecutive in ——. Due to the TO-broadcast abstraction, any process to-delivers
first SEQ_CONS(3, X, v;) and then SEQ_CONS(k, Y, vy,). For any process p; let us add (while respecting
its process order as defined by its code) all the read operations it issued between the time it to-delivered
SEQ-CONS(j, X, v;) and the time it to-delivered SEQ_CONS(k, Y, v;,) (Fig. 6.7). It follows from the
algorithm that all these read operations obtain the last value written in the corresponding registers X,
Y, Z, etc., where the meaning of last is with respect to the total order o Hence, the total order S we
obtain includes the read and write operations issued by all processes, and this total order is such that no
read operation obtains an overwritten value, which concludes the proof of the theorem. O7peorem 25

6.5.4 A TO-broadcast-based Algorithm with Local (Fast) Write Operations

Fast write operations Instead of forcing a write operation issued by a process p; to terminate only
when p; to-delivers the corresponding SEQ_CONS() message, it is possible to have a fast write im-
plementation in which write operations never have to wait. The synchronization price for obtaining
sequential consistency then has to be paid by the read operations.

The corresponding fast write algorithm and the previous fast read algorithm are dual. This duality
offers a choice when one has to implement sequentially consistent registers. The fast write algorithm
is more appropriate for w